JPS62807A - Measuring machine for circle or arc or the like - Google Patents

Measuring machine for circle or arc or the like

Info

Publication number
JPS62807A
JPS62807A JP13384186A JP13384186A JPS62807A JP S62807 A JPS62807 A JP S62807A JP 13384186 A JP13384186 A JP 13384186A JP 13384186 A JP13384186 A JP 13384186A JP S62807 A JPS62807 A JP S62807A
Authority
JP
Japan
Prior art keywords
micrometer
measured
center
contact angle
angle error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13384186A
Other languages
Japanese (ja)
Other versions
JPS6410762B2 (en
Inventor
Kenichi Tagawa
田側 健一
Kunio Tokano
戸鹿野 邦雄
Chuichi Sato
忠一 佐藤
Yukiyoshi Okazaki
岡崎 幸由
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP13384186A priority Critical patent/JPS62807A/en
Publication of JPS62807A publication Critical patent/JPS62807A/en
Publication of JPS6410762B2 publication Critical patent/JPS6410762B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To obtain an accurate measured value by detecting and correcting a contact angle error. CONSTITUTION:The center of rotation of the measuring element 21 of a microm eter 2 is made as coincident with the center of the arc of a body 7 to be mea sured as possible. Then, a table 6 is moved by a constant quantity O0O1 in the Y-axial direction without exceeding the detection range of the micrometer 2. Then, the center of curvature of the body 7 to be measured is moved to O1 and the center of rotation of a spindle 1 is held at O1 as it is to measure an object surface A1 after movement, thereby calculating the position of the center of curvature of the object surface from the output thetai of a rotary encoder 5 and the output of the micrometer 2 by a known calculating method. If there is a contact angle error DELTAtheta, calculated polar coordinates are (O0O1, 90 deg.+DELTAtheta). For the purpose, the moving direction of the measured body, i.e. 90 deg. is subtracted from the actual angle to fine the contact angle error DELTAtheta. Thus, the error is found to calculate distance for correcting the measuring element 21 by a correcting device 21. Consequently, the measuring operation is carried out after the position of the measuring element is adjusted to take an accurate measure ment.

Description

【発明の詳細な説明】 この発明は、円または円弧等の測定機、とくに被測定物
における円または円形等の測定において、測定機に取付
けられた測定子と被測定物との接点の本来あるべき位置
からのずれを検出し、この検出値にもとづいて測定子の
位置補正を行う位置補正装置を備えた円または円弧等の
測定機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses a measuring device for measuring circles, arcs, etc., especially when measuring circles, circular shapes, etc. on an object to be measured. The present invention relates to a measuring device for measuring circles, arcs, etc., which is equipped with a position correction device that detects a deviation from an expected position and corrects the position of a measuring stylus based on the detected value.

従来の例えは第1図に示されたような円または円弧測定
機においては測微計2の取付誤差(第2図参照)、測定
子21の曲り(第3図参照)等により、測定子と被測定
物との接点が本来おるべき位置(第4図のA点)からず
れていることが多く、例えばB点のような位置にあった
The conventional analogy is that in a circle or arc measuring machine like the one shown in Figure 1, the measuring head may be damaged due to installation errors of the micrometer 2 (see Figure 2), bending of the measuring head 21 (see Figure 3), etc. In many cases, the contact point between the test piece and the object to be measured is deviated from its original position (point A in FIG. 4), for example, at a position such as point B.

上記のずれを角度で表わし、これを測定子接点角度誤差
Δ0と呼ぶ。今迄は、このような測定子接点角度誤差Δ
θは気付かなかつたり、あるいは無視されていた。しか
し被測定物の曲率半径が小さいときは、その影響が大き
く、正確な測定を必要とする場会には、上記の接点角度
誤差Δθを無視するわけにはゆかず、これの対応策を考
えなければならない状況になって来た。
The above-mentioned deviation is expressed in terms of an angle, and this is called the contact point angle error Δ0. Until now, this type of sensor contact angle error Δ
θ was either not noticed or ignored. However, when the radius of curvature of the object to be measured is small, its influence is large, and in situations where accurate measurement is required, the above contact angle error Δθ cannot be ignored, and countermeasures have been considered. I've reached a situation where I have to do it.

この発明は上記のような状況の下に開発さ°れたもので
、円または円弧等の測定において、本測定に先立ち、測
定機の測微計に取、付けられた測定子と被測定物との接
点が本来あるべき位置からどれたけずれているかを接点
角度誤差として検出し、この検出値にもとづいて測定子
の位置を測定子の通常の移動方向である半径方向とは直
角をなす方向に微動させて、位置補正する方法および接
点角度誤差を回転角度検出器の信号から差引くことによ
る補正方法、ならびに補正方法を具体化した装置を備え
た円または円弧等の測定機である。
This invention was developed under the above-mentioned circumstances, and when measuring a circle or arc, etc., prior to the actual measurement, the measuring head attached to the micrometer of the measuring device and the object to be measured are The amount of deviation of the contact point from its original position is detected as the contact angle error, and based on this detected value, the position of the contact point is adjusted in a direction perpendicular to the radial direction, which is the normal movement direction of the contact point. This is a measuring machine for measuring circles, arcs, etc., which is equipped with a method of correcting the position by slightly moving the contact point, a method of correction by subtracting the contact angle error from the signal of the rotation angle detector, and a device that embodies the method of correction.

次にこの発明の@1の実施例を図を参照しながら説明す
る。1は測定機本体10に取付けられたスピンドルで、
このスピンドル1の下方には測微計2を半径方向に移動
させるための半径方向スライド3が取付けられ、更にこ
の半径方向スライド3には、半径方向スライド3による
測微計2の移動方向に対して直角方向に微動出来るよう
に構成された補正装置4が設置されている。そしてスピ
ンドル1の上方部分には、スピンドル10回転角度を検
出するための回転角度検出器としてのロータリーエンコ
ーダ5が取付けられている。6は被測定物7を載置し、
測定位置へ移動させるためのテーブルで、測定機本体1
0に対し、前後左右に2個のステッピングモータ8によ
って移動できるように構成されている。測微計2からの
測定信号やロータリーエンコーダ5からの回転角度信号
はインターフェースを介してコンピュータに入り、コン
ピュータにより記憶、計算等が行われ、さらにコンピュ
ータよりの指令信号がインターフェースを介してステッ
ピングモータ8に伝達されるようになっている。
Next, an embodiment of @1 of the present invention will be described with reference to the drawings. 1 is a spindle attached to the measuring machine main body 10;
A radial slide 3 for moving the micrometer 2 in the radial direction is attached below the spindle 1, and the radial slide 3 also has a A correction device 4 is installed which is configured to be able to move slightly in the right angle direction. A rotary encoder 5 is attached to the upper part of the spindle 1 as a rotation angle detector for detecting the rotation angle of the spindle 10. 6 places the object to be measured 7;
A table for moving the measuring machine body 1 to the measuring position.
0, it is configured so that it can be moved forward, backward, left and right by two stepping motors 8. The measurement signal from the micrometer 2 and the rotation angle signal from the rotary encoder 5 enter the computer via the interface, where they are stored, calculated, etc., and the command signal from the computer is sent via the interface to the stepping motor 8. It is intended to be transmitted to

上記の補正装置4はスライドまたはピボットa3るいは
ばねを使用した微動機構を主体とし、この実施例ではマ
イクロメータまたはダイヤルゲージ等による微調整検出
装置も備えている。要は正確な微小移動ができ、その微
小な移動距離を正確に把握できればよい。この補正装置
に駆動源を設けて、計算機からの信号により移動量をフ
ィードバックさせて、移動を自動的に行う工うにするこ
とも出来る。
The above-mentioned correction device 4 is mainly composed of a fine adjustment mechanism using a slide or pivot A3 or a spring, and in this embodiment also includes a fine adjustment detection device such as a micrometer or a dial gauge. The point is that it is sufficient to be able to make accurate minute movements and to accurately grasp the distance of that minute movement. It is also possible to provide this correction device with a drive source and feed back the amount of movement based on a signal from a computer so that the movement can be performed automatically.

次にこの測定機の作用について説明する。Next, the operation of this measuring device will be explained.

まず測微計2の測定子210回転中心と被測定物7の円
弧の中心とを可能な限り一致させる。次にテーブル6を
例えば第6図のようにY軸方向に、測微計2の検知範囲
を超えない程度に、一定量可I移動して、テーブル6上
の被測定物Tの曲率中心をO8まで移動させ、スピンド
ル10回転中心は0゜のま\の位置で、移動後の被測定
面A1  を測定し、AIの曲率中心の位置をロータリ
ーエンコーダ5の出力θ1と、測微計2の出力Δriか
ら既知の計算方法により計算する。こ\で測定子21の
接点角度誤差Δθがなければ、計算上OI  の位置は
、極座標表示で(0,0,,90°)になるが、実際に
は接点角度誤差Δθがあるので、その極座標表示は(0
00し90″+Δθ)となる。従って実際の角度から、
被測定物の移動方向、即ち90°を差引けば、接点角度
誤差Δθを求めることができる。この接点角度誤差Δθ
がわかれば、補正装置4により測定子21を補正前の位
置B点(第7図参照)から本来あるべき位置A点まで微
動させる距離は幾何学的関係から、被測定物70曲率半
径の大きさをRとすれば、Ra1nΔθとなる。このと
きの曲率半径の大きさRは、被測定物の称呼半径を用い
ることができる。上記の工う忙補正数値が求まり、測定
子の位置調整を行ってから、円または円弧等の測定を行
えば、接点角度誤差Δθは含まれないので、正確な測定
を行うことができる。
First, the center of rotation of the probe 210 of the micrometer 2 and the center of the arc of the object to be measured 7 are made to coincide as much as possible. Next, the table 6 is moved by a certain amount in the Y-axis direction, for example, as shown in FIG. 08, and with the rotation center of the spindle 10 still at 0°, measure the surface to be measured A1 after the movement. It is calculated from the output Δri using a known calculation method. Here, if there is no contact angle error Δθ of the contact point 21, the calculated position of OI will be (0, 0,, 90°) in polar coordinates, but since there is actually a contact angle error Δθ, Polar coordinate display is (0
00 to 90″+Δθ). Therefore, from the actual angle,
By subtracting the moving direction of the object to be measured, that is, 90°, the contact angle error Δθ can be determined. This contact angle error Δθ
If this is known, the distance by which the measuring stylus 21 is slightly moved by the correction device 4 from the pre-correction position B point (see Figure 7) to the original position A point is determined by the size of the radius of curvature of the object to be measured 70 from the geometrical relationship. If the distance is R, it becomes Ra1nΔθ. As the size R of the radius of curvature at this time, the nominal radius of the object to be measured can be used. If the above-described processing correction value is determined and the position of the contact point is adjusted before measuring a circle or an arc, accurate measurement can be performed since the contact angle error Δθ is not included.

次に示す第2の実施例においては、測定子と被測定物と
の相対関係は第1の実施例と同じでおるが、測定子は円
弧運動せず、被測定物が円弧運動するように構成された
測定機であり、1はスピンドル、2は測微計、3は半径
方向スライド、4は半径方向スライド3に対して直角方
向に動く微動機構および微調整検出装置とをもった補正
装置、5はロータリーエンコーダ、6はテーブル、7は
被測定物、8はステッピングモータで、電算機装置は図
示を省略している。この測定機においても最初スピンド
ル1の回転中、心と被測定物70円または円弧の曲率中
心とを可能な限り一致させる。次にテーブル6を任意の
方向に測微計2の検知範囲を超えない程度に一定量動か
してテーブル6上の被測定物Tの中心を移動させ、その
位置で、被測定面を測定し、その状態における曲率中心
の位置を、ロータリーエンコーダ5の出力θ1と測微計
の出力Δriから計算する。以後第1の実施例と同様に
、もし接点角度誤差Δθがめれば、接点角度誤差Δ0と
被測建物の称呼の曲率半径RとからRa1nΔ0を計算
し、その計算値をもとに、補正装置により測定子の位置
を半径方向とは直角の方向に補正することにより、正確
な測定を行うことができる。
In the second embodiment shown below, the relative relationship between the probe and the object to be measured is the same as in the first embodiment, but the probe does not move in an arc and the object to be measured moves in an arc. 1 is a spindle, 2 is a micrometer, 3 is a radial slide, and 4 is a correction device having a fine movement mechanism that moves in a direction perpendicular to the radial slide 3 and a fine adjustment detection device. , 5 is a rotary encoder, 6 is a table, 7 is an object to be measured, 8 is a stepping motor, and the computer device is not shown. In this measuring device as well, initially during the rotation of the spindle 1, the center and the center of curvature of the object to be measured 70 circles or arcs are made to coincide as much as possible. Next, move the table 6 in any direction by a certain amount without exceeding the detection range of the micrometer 2, move the center of the object T on the table 6, and measure the surface to be measured at that position. The position of the center of curvature in this state is calculated from the output θ1 of the rotary encoder 5 and the output Δri of the micrometer. Thereafter, similarly to the first embodiment, if the contact angle error Δθ is calculated, Ra1nΔ0 is calculated from the contact angle error Δ0 and the nominal radius of curvature R of the building to be measured, and based on the calculated value, the correction device By correcting the position of the probe in a direction perpendicular to the radial direction, accurate measurement can be performed.

次にこの発明の第3の実施例について説明する。この実
施例における測定機は、外観上は従来のものと変らない
が、電算機のソフトウェアが異る。測微計2の測定子2
1の被測定物との接点角度誤差を前記の第11第2の実
施例と同様に求め、この接点角度誤差Δθが求まったら
、この実施例の場合には、測定子の位置補正は行わず、
接点角度誤差Δ0を含んだロータリーエンコーダ5の測
定角度から、この接点、角度誤−差Δ0を差引くための
電算機のソフトウェアを作成し、計算により補正する。
Next, a third embodiment of the invention will be described. The measuring machine in this embodiment is the same in appearance as the conventional one, but the computer software is different. Measuring head 2 of micrometer 2
1, the contact angle error with the object to be measured is determined in the same manner as in the 11th and 2nd embodiments, and once this contact angle error Δθ is determined, in the case of this embodiment, the position of the contact point is not corrected. ,
Computer software is created to subtract this contact angle error Δ0 from the measured angle of the rotary encoder 5, which includes the contact angle error Δ0, and the calculation is corrected.

接点角度誤差Δ0があると電算機にはPl(Δr1(#
i) 、 (θ1)〕 ではなく、pt(Δ’y i 
(# i+Δ#) 、 #i)として記憶されるので、
予め求めた接点角度誤差Δθθ値を用い、電算機の入力
としてPi (mr i (a 1+Δe ) 、θl
〕をP l’(Δr’l (a l +Δe ) 、 
e i +Δθ〕 と変換すれば、ロータリーエンコー
ダ5の示す値と測定子接点の位置は一致し、接点角度誤
差Δθが相殺され、正確な測定値が得られる。
If there is a contact angle error Δ0, the computer will write Pl(Δr1(#
i), (θ1)] but pt(Δ'y i
(#i+Δ#), #i), so
Using the contact angle error Δθθ value obtained in advance, Pi (mr i (a 1 + Δe ), θl
] as P l'(Δr'l (a l +Δe),
e i +Δθ], the value indicated by the rotary encoder 5 and the position of the probe contact point match, the contact angle error Δθ is canceled out, and an accurate measurement value is obtained.

前記第1の実施例、第2の実施例にこの第3の実施例を
組合せることにより、測定子自体の位tll[正を行う
と共に、測定角度を計算により補正するので、更に測定
を正確に行うことも可能である。
By combining the third embodiment with the first and second embodiments, the position of the probe itself is corrected, and the measurement angle is corrected by calculation, making the measurement even more accurate. It is also possible to do so.

この発明の測定機によれば、円または円弧等の測定を測
定子接点角度誤差Δ0を補正後、または補正しながら測
定することができるので、正確な測定値を得ることがで
き、I#に曲率半径の小さい円弧等の測定には従来の測
定機に比較して格段に正確な測定値が得られる。
According to the measuring machine of the present invention, it is possible to measure a circle or an arc after or while correcting the contact angle error Δ0 of the contact point of the contact point, so that accurate measurement values can be obtained and I# can be measured. When measuring circular arcs with a small radius of curvature, much more accurate measurement values can be obtained compared to conventional measuring instruments.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の円または円弧等を計測する測定機を示す
斜視図、第2図およびWJ3図は測定子と被測定物の接
点が正規の位置からずれる原因を示した斜視図、第4図
は接点角度誤差の説明図、第5図はこの発明の@1の実
施例を示す斜視図、第6図は接点角度誤差を求める方法
を示す説明図、第7図は接点角度誤差の補正方法を示す
説明図、@8図は第2の実施例を示す斜視図、第9図は
第3の実施例に関する斜視図である。 〔主要部分の符号の説明〕 1はスピンドル、2は測微計、3は半径方向スライド、
4は微動装置、5はロータリーエンコーダ、6はテーブ
ル、7は被測定物、8はステッピングモータ。 第5図 第6図 第7図 第9図 手続補正書 昭和61年7月19日 特許庁長官 黒 1)明 雄 殿 1、事件の表示 昭和61年特許願第133841号 2、発明の名称 円または円弧等の測定機 3、補正をする者 事件との関係  特許出願人 住所 東京都千代田区丸の内二丁目3番2号名称(42
0)  日本精工株式会社 4、代理人 別紙の通り、正式図面1通を提出致します。
Fig. 1 is a perspective view showing a conventional measuring device for measuring circles or arcs, etc. Fig. 2 and WJ3 are perspective views showing the cause of the contact point of the probe and the object to be measured shifting from the normal position, Fig. 4 The figure is an explanatory diagram of the contact angle error, Figure 5 is a perspective view showing the embodiment of @1 of this invention, Figure 6 is an explanatory diagram showing the method for determining the contact angle error, and Figure 7 is correction of the contact angle error. An explanatory diagram showing the method, FIG. 8 is a perspective view showing the second embodiment, and FIG. 9 is a perspective view relating to the third embodiment. [Explanation of symbols of main parts] 1 is the spindle, 2 is the micrometer, 3 is the radial slide,
4 is a fine movement device, 5 is a rotary encoder, 6 is a table, 7 is an object to be measured, and 8 is a stepping motor. Figure 5 Figure 6 Figure 7 Figure 9 Procedural amendment July 19, 1988 Commissioner of the Patent Office Black 1) Akio Yu 1, Display of the case 1986 Patent Application No. 133841 2, Title of the invention Yen Or measuring device 3 for circular arcs, etc., relationship with the person making the amendment Patent applicant address 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Name (42
0) NSK Ltd. 4. We will submit one official drawing as per the agent attachment.

Claims (1)

【特許請求の範囲】 円または円弧等を測定すべき被測定物を載 置するテーブルと、 被測定物に接触させる測定子を支持する測 微計と、 テーブルと測微計とを相対的に移動させる ための移動機構と、 測微計とテーブルとを相対的に回転させる ための回転機構と、 測微計とテーブルとの相対回転の角度を検 出する回転角度検出手段と、 回転機構の回転中心に対し測微計を半径方 向に移動させるための測微計移動機構と、 該測微計移動機構に支持され測微計をその 半径方向移動方向に直角方向に微動させて測定子の測微
計への支持位置を補正すべく測微計を支持した測定子取
付位置補正機構と、 同一被測定物に対し異なる位置での2度の 計測による、回転角度検出手段からの出力信号により測
定子支持位置補正量を算出する演算手段 とを備えたことを特徴とする円または円弧 等の測定機。
[Claims] A table on which a measured object to be measured, such as a circle or an arc, is placed; a micrometer that supports a probe to be brought into contact with the measured object; and a relative relationship between the table and the micrometer. A moving mechanism for moving the micrometer and the table, a rotation mechanism for rotating the micrometer and the table relative to each other, a rotation angle detection means for detecting a relative rotation angle between the micrometer and the table, and rotation of the rotation mechanism. a micrometer moving mechanism for moving the micrometer in the radial direction relative to the center; Measurement is performed using the output signal from the rotation angle detection means, which measures the same object to be measured twice at different positions. 1. A measuring device for measuring circles, arcs, etc., comprising a calculation means for calculating a child support position correction amount.
JP13384186A 1986-06-11 1986-06-11 Measuring machine for circle or arc or the like Granted JPS62807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13384186A JPS62807A (en) 1986-06-11 1986-06-11 Measuring machine for circle or arc or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13384186A JPS62807A (en) 1986-06-11 1986-06-11 Measuring machine for circle or arc or the like

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8401678A Division JPS5512407A (en) 1978-07-12 1978-07-12 Method of compensating error in measuring circle of arc and meter with compensator

Publications (2)

Publication Number Publication Date
JPS62807A true JPS62807A (en) 1987-01-06
JPS6410762B2 JPS6410762B2 (en) 1989-02-22

Family

ID=15114290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13384186A Granted JPS62807A (en) 1986-06-11 1986-06-11 Measuring machine for circle or arc or the like

Country Status (1)

Country Link
JP (1) JPS62807A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108955494A (en) * 2018-09-03 2018-12-07 武汉建工集团股份有限公司 A kind of portable radian measuring instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108955494A (en) * 2018-09-03 2018-12-07 武汉建工集团股份有限公司 A kind of portable radian measuring instrument

Also Published As

Publication number Publication date
JPS6410762B2 (en) 1989-02-22

Similar Documents

Publication Publication Date Title
JP6149337B1 (en) Surface shape measuring device
US4026031A (en) Surface measurement instruments
US7131207B2 (en) Workpiece inspection method
JP2764103B2 (en) Method of using analog measuring probe and positioning device
JPS6238642B2 (en)
US20080184579A1 (en) Measuring methods for use on machine tools
US6453730B2 (en) Surface texture measuring instrument, surface texture measuring method and stylus radius measuring instrument
JP6664074B2 (en) Flatness measurement device
US10921107B2 (en) Lens-measuring machine and lens-measurement method
JP2017156255A (en) Roundness measuring apparatus
JPS623882B2 (en)
JP3880030B2 (en) V-groove shape measuring method and apparatus
JP6743351B2 (en) Method for calculating misalignment of roundness measuring machine and roundness measuring machine
JP2746511B2 (en) Method for measuring orientation flat width of single crystal ingot
JPH08122050A (en) Contour shape-measuring method and tool for measurement
JPS62807A (en) Measuring machine for circle or arc or the like
JP3025413B2 (en) Method and apparatus for measuring contour shape
CN111443657B (en) Method for correcting installation offset of machine encoder
JPS6130681B2 (en)
JPS6121761B2 (en)
JPS6334405B2 (en)
JP2000114327A (en) Resistivity measuring instrument for semiconductor wafer
JPH0260474B2 (en)
JPS61260966A (en) Machine tool with automatic measuring function
JPS589012A (en) Measuring device for arc shape