JPS627873A - Plural-layer electroless plating method - Google Patents

Plural-layer electroless plating method

Info

Publication number
JPS627873A
JPS627873A JP14596785A JP14596785A JPS627873A JP S627873 A JPS627873 A JP S627873A JP 14596785 A JP14596785 A JP 14596785A JP 14596785 A JP14596785 A JP 14596785A JP S627873 A JPS627873 A JP S627873A
Authority
JP
Japan
Prior art keywords
plating
electroless
alloy
article
plural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14596785A
Other languages
Japanese (ja)
Inventor
Yoshinori Takakura
高倉 義憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14596785A priority Critical patent/JPS627873A/en
Publication of JPS627873A publication Critical patent/JPS627873A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/52Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating using reducing agents for coating with metallic material not provided for in a single one of groups C23C18/32 - C23C18/50

Abstract

PURPOSE:To obtain a plural-layer film excellent in electric conductivity on the surface of an article to be treated by performing successively the electroless Ni plating having a required thickness, the electroless Cu plating, the electroless Ag plating and the electroless Au plating for obtaining the electric conductivity among respective-films on the article consisting of Al(alloy) or Mg(alloy). CONSTITUTION:Oil stuck on the surface of Al(alloy) or Mg(alloy) is removed with trichlene or the like and thereafter degreased (a) with an alkaline aq. soln. composed essentially of NaOH. Successively the surface of the above- mentioned article after the degreasing is pickled (b) with an acidic aq. soln. composed essentially of HNO3 to remove a smut and thereafter Zn substitution (c) is performed by an ordinary method. After peeling (d) the above-mentioned layer (c) substituted with An with an acidic aq. soln., the second Zn substitution (e) is performed to obtain a dense crystalline grain. Then the aimed plural-layer electroless plating is performed with a comparatively simple method by performing successively the electroless Ni plating (f) having a required thickness, the electroless Cu plating (g), the electroless Ag plating (h) and athe electroless Au plating (i) on the surface of the article after the above-mentioned treatment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は例えばミリ波帯で使用する立体回路電気部品
に係るめっき方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a plating method for three-dimensional circuit electrical components used, for example, in the millimeter wave band.

〔従来の技術〕[Conventional technology]

周知のように、アルミニウム又はアルミニウム合金、マ
グネシウム又はマグネシウム合金は実用金属の中で共に
比重が小さく、加工しやすいために航空宇宙機器の軽量
化のニーズの高まりと共に着目され2種々の用途に実用
されている。
As is well known, aluminum or aluminum alloys and magnesium or magnesium alloys both have the lowest specific gravity among practical metals and are easy to process, so they have attracted attention as the need for lighter aerospace equipment increases, and have been put to practical use in a variety of applications. ing.

かかる用途の中で2例えばミリ波帯で使用する立体回路
電気部品には電気部品を内蔵するための箱状のシャーシ
及びマイクロ波伝送回路としての導波管が広範に使用さ
れている。
Among such applications, for example, box-shaped chassis for housing electrical components and waveguides as microwave transmission circuits are widely used for three-dimensional circuit electrical components used in the millimeter wave band.

かかる立体回路電気部品は周波数が高くなる程。The higher the frequency of such three-dimensional circuit electrical parts, the higher the frequency.

構造が複雑となり2寸法精度が厳しく、電気的な損失を
最小にする要求も一段と厳しいものとなる。
The structure becomes complex, two-dimensional accuracy becomes stricter, and the requirement to minimize electrical loss becomes even more severe.

例えば空胴共振器の特性を決めるものに表皮深さくδ)
および表面粗さがある。空胴共振器としてはδが小さい
ほど良好であり、これらは共振器の金属材料によって決
まり下記の式で示される。
For example, the skin depth δ) determines the characteristics of a cavity resonator.
and surface roughness. The smaller δ is, the better the cavity resonator is, and these values are determined by the metal material of the resonator and are expressed by the following formula.

ρ;比抵抗(Ω−a)、μ=μ”μは透磁率(μ、=4
πX 10= H/m ) r;比透磁率、f;周波数(Ilz) 、λO;波長(
m)しかしながら、アルミニウム又はアルミニウムな皮
膜を得ろことにより上記目的が達成できることをみいだ
し2本発明を完成するに到った。
ρ: Specific resistance (Ω-a), μ=μ” μ is magnetic permeability (μ, = 4
πX 10= H/m) r: relative permeability, f: frequency (Ilz), λO: wavelength (
m) However, it was discovered that the above object could be achieved by obtaining aluminum or an aluminum film, and the present invention was completed.

即ち2本発明のアルミニウム又はアルミニウム合金、マ
グネシウム又はマグネシウム合金から成る基材表面への
表面処理方法は常法により脱脂。
Namely, the surface treatment method for the surface of the substrate made of aluminum or aluminum alloy, magnesium or magnesium alloy according to the present invention is degreasing by a conventional method.

酸洗い、二重亜鉛置換を行った後、所要厚さの無電解ニ
ッケルめっきと、無電解銅めっきと、無電解銀めっきと
、無電解金めつきとを順番に行って複数のめつき層を形
成し、上記無電解鋼めっき皮膜と無電解銀めっき皮膜と
無電解金めつき皮膜とで導電性を得るようにしたことを
特徴とする。
After pickling and double zinc substitution, electroless nickel plating to the required thickness, electroless copper plating, electroless silver plating, and electroless gold plating are performed in order to create multiple plating layers. The electroless steel plating film, the electroless silver plating film, and the electroless gold plating film provide electrical conductivity.

以下において本発明の詳細な説明する。The present invention will be described in detail below.

本発明のアルミニウム又はアルミニウム合金。Aluminum or aluminum alloy of the present invention.

マグネシウム又はマグネシウム合金から成る基材表面へ
の表面処理方法は基材に直接めっきを施すことは困難で
あるため一般的に用いら4ている脱脂、酸洗いを行った
後、二重亜鉛置換を行う。
The surface treatment method for the surface of a substrate made of magnesium or magnesium alloy is that it is difficult to directly plate the substrate, so after degreasing and pickling, double zinc substitution is commonly used. conduct.

ついで、亜鉛置換層の上に、めっきを行うのであるが、
無電解銅めっきの場合は密着良好なめつき皮膜が得られ
ないため、無電解ニッケルめっきにすることが望ましい
Next, plating is performed on the zinc substitution layer,
In the case of electroless copper plating, it is not possible to obtain a plating film with good adhesion, so it is desirable to use electroless nickel plating.

本発明の表面処理方法はついで物品の良電導性を確保す
るために無電解銅めっきと、無電解銀めっきと、無電解
金めつきとを行うのである。
In the surface treatment method of the present invention, electroless copper plating, electroless silver plating, and electroless gold plating are then performed to ensure good electrical conductivity of the article.

かかる表面処理方法において、無電解金めっき皮膜は電
気特性において無電解銀めっき皮膜より劣るが銀めっき
皮膜の電気特性を損わない程度のめつき膜厚を銀めっき
皮膜の酸化及び腐食を防止するために行っているのであ
る。
In this surface treatment method, the electroless gold plating film is inferior in electrical properties to the electroless silver plating film, but the thickness of the plating film is set to a level that does not impair the electrical properties of the silver plating film to prevent oxidation and corrosion of the silver plating film. That's why I'm doing it.

〔作用〕[Effect]

この発明においては、外部電源を一切用いないで処理で
きるので電気めっきの欠点である凹凸部及び端部におけ
る膜厚分布が悪いのを均一化でき。
In the present invention, since the process can be performed without using any external power source, it is possible to uniformize the poor film thickness distribution at uneven parts and edges, which is a drawback of electroplating.

複雑な形状の物品でも補助極を使用しないでめっきが可
能となり、めっき付着部がなくなり品質的に安定しため
つき処理ができる。
Even products with complex shapes can be plated without the use of auxiliary electrodes, and there are no plating adhesion areas, making it possible to perform a tanning process with stable quality.

又、電導性の良好な銅、銀、金を行っているので、安定
した電気特性が得られる。
In addition, since copper, silver, and gold are used, which have good conductivity, stable electrical characteristics can be obtained.

〔実施例〕〔Example〕

以下において実施例を掲げこの発明を更に詳しく説明す
る。
The present invention will be explained in more detail below with reference to Examples.

第1図は本発明の一実施例のめつき工程を示す図テ、(
1)ハアルミニウム又はアルミニウム合金である。アル
ミニウム又はアルミニウム合金(1)をトリクレン等に
より物品に付着した油を除去し、ついで水酸化ナトリウ
ムを主とするアルカリ水溶液にて脱脂(イ)を行う。
FIG. 1 is a diagram showing the plating process of an embodiment of the present invention.
1) Aluminum or aluminum alloy. Oil adhering to the aluminum or aluminum alloy (1) is removed using trichloride or the like, and then degreasing (a) is performed using an alkaline aqueous solution containing mainly sodium hydroxide.

脱脂(イ)により、素材(1)の合金成分のスマット力
を生じるので硝酸を主とする酸水溶液にて酸洗℃・(ロ
)を行いスマットを除去する。
Degreasing (a) generates smut power from the alloy components of material (1), so pickling is performed at °C (b) with an acid aqueous solution mainly containing nitric acid to remove the smut.

アルミニウム又はアルミニウム合金(1)上に直接めっ
きすることは困難であるために常法により亜鉛を置換(
ハ)する。第一回目の亜鉛置換層(ハ)+−i結晶粒子
が荒くピンホールが多いので、無電解ニッケルめっき(
へ)の密着をよ(するために第1回目の亜鉛置換層(ハ
)を酸水溶液にて剥離に)し、結晶粒子の緻密な第二回
目の亜鉛置換(ホ)を行う。
Since it is difficult to directly plate on aluminum or aluminum alloy (1), zinc is replaced by a conventional method (
c) Do. The first zinc substitution layer (c)+-i Since the crystal grains are rough and have many pinholes, electroless nickel plating (
The first zinc substitution layer (c) is peeled off with an acid aqueous solution to improve the adhesion of (f)), and the second zinc substitution layer (e) is performed to make the crystal grains denser.

かかる処理後、所要厚みの無電解ニッケルめっき(へ)
と、無電解鋼めっき(ト)と、無電解銀めっき(ト)と
、無電解金めつき(IJ)とを行うのである。
After this treatment, electroless nickel plating is applied to the required thickness.
Then, electroless steel plating (g), electroless silver plating (g), and electroless gold plating (IJ) are performed.

電気特性は無電解鋼めっき(ト)と、無電解銀めっき(
イ)と、無電解金めつき則とで得るようにしている。又
、無電解銀めっき(イ)の電気特性は第2図に示したよ
うに一番よいために無電解銀めっき(イ)の電気特性を
損わないように最低限必要なめつき厚の無電解金めつき
を行っている。こうして、無電解銀めっきの酸化及び腐
食を防止しているのであ ゛る。
The electrical properties are electroless steel plating (G) and electroless silver plating (G).
b) and the electroless gold plating rule. In addition, since the electrical properties of electroless silver plating (A) are the best as shown in Figure 2, the minimum required plating thickness is We perform electrolytic gold plating. In this way, oxidation and corrosion of the electroless silver plating is prevented.

第2図は各めっき皮膜の比抵抗値の測定結果である。FIG. 2 shows the measurement results of the specific resistance values of each plating film.

得られた各めっき皮膜の比抵抗値は純金属に近い値を示
している。
The specific resistance value of each plated film obtained is close to that of pure metal.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明によれば長年待望されてい
た複雑な形状をした物品にも容易にめっきを施すことが
でき、しかも素材の電気特性も改善されるので、今後広
範に使用されると予想される例えばミリ波帯で使用する
空胴共振器のめつきに大いに期待されるところであり、
高い信頼性を保証することができる。
As explained above, according to this invention, it is possible to easily plate articles with complex shapes, which has been desired for many years, and the electrical properties of the material are also improved, so it is expected that it will be used widely in the future. There are great expectations for the plating of cavity resonators used in the millimeter wave band, for example.
High reliability can be guaranteed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による一実施例のめつき工程を示す図、
第2図は各めっき皮膜の比抵抗値の測定結果を示す図で
あり9図中(1)は素材である。
FIG. 1 is a diagram showing a plating process of an embodiment according to the present invention;
FIG. 2 is a diagram showing the measurement results of the resistivity values of each plating film, and (1) in FIG. 9 is the material.

Claims (1)

【特許請求の範囲】[Claims] 所要形状のアルミニウム又はアルミニウム合金、マグネ
シウム又はマグネシウム合金から成る物品に常法により
脱脂、酸洗い、二重亜鉛置換を行つた後、所要厚さの無
電解ニッケルめつきと、無電解銅めつきと、無電解銀め
つきと、無電解金めつきとを順番に行つて複数のめつき
層を形成し、上記無電解銅めつき皮膜と無電解銀めつき
皮膜と無電解金めつき皮膜とで導電性を得るようにした
ことを特徴とする複層無電解めつき方法。
After degreasing, pickling, and double zinc substitution using conventional methods, an article made of aluminum or aluminum alloy, magnesium or magnesium alloy in the desired shape is subjected to electroless nickel plating and electroless copper plating to the desired thickness. , perform electroless silver plating and electroless gold plating in order to form a plurality of plating layers, and form the electroless copper plating film, the electroless silver plating film, and the electroless gold plating film. A multi-layer electroless plating method characterized in that conductivity is obtained in the following manner.
JP14596785A 1985-07-03 1985-07-03 Plural-layer electroless plating method Pending JPS627873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14596785A JPS627873A (en) 1985-07-03 1985-07-03 Plural-layer electroless plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14596785A JPS627873A (en) 1985-07-03 1985-07-03 Plural-layer electroless plating method

Publications (1)

Publication Number Publication Date
JPS627873A true JPS627873A (en) 1987-01-14

Family

ID=15397143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14596785A Pending JPS627873A (en) 1985-07-03 1985-07-03 Plural-layer electroless plating method

Country Status (1)

Country Link
JP (1) JPS627873A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0556074U (en) * 1992-01-14 1993-07-27 株式会社キンダイ Long sheet processing machine
KR100453994B1 (en) * 2002-03-14 2004-10-26 주식회사 에이치 제이 텍 Two layer non-electrolysis nickel coating method by dynamic etching of magnesium and magnesium alloy
JP2009504923A (en) * 2005-08-17 2009-02-05 マクダーミッド インコーポレーテッド Pretreatment of magnesium substrate for electroplating
CN108486554A (en) * 2018-05-30 2018-09-04 天水天光半导体有限责任公司 A kind of Electroless Plating Ni on semiconductor silicon device, the technique of Au

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0556074U (en) * 1992-01-14 1993-07-27 株式会社キンダイ Long sheet processing machine
KR100453994B1 (en) * 2002-03-14 2004-10-26 주식회사 에이치 제이 텍 Two layer non-electrolysis nickel coating method by dynamic etching of magnesium and magnesium alloy
JP2009504923A (en) * 2005-08-17 2009-02-05 マクダーミッド インコーポレーテッド Pretreatment of magnesium substrate for electroplating
JP4857340B2 (en) * 2005-08-17 2012-01-18 マクダーミッド インコーポレーテッド Pretreatment of magnesium substrate for electroplating
CN108486554A (en) * 2018-05-30 2018-09-04 天水天光半导体有限责任公司 A kind of Electroless Plating Ni on semiconductor silicon device, the technique of Au

Similar Documents

Publication Publication Date Title
KR900000865B1 (en) Copper-chromium-polyimide composite and its manufaturiring process
JP6149066B2 (en) Surface treated copper foil
US4193849A (en) Method for making a raw board for use in printed circuits
KR102106924B1 (en) Surface-treated copper foil for printed wiring boards, copper-clad laminate for printed wiring boards and printed wiring boards
US4640747A (en) Process for surface treatment of copper product
JP6190846B2 (en) Surface treated copper foil
RU2287618C2 (en) Laminate foil and its production method
JP2002292788A (en) Composite copper foil and method for manufacturing the same
JP6389916B2 (en) Method for producing a copper clad laminate for laser drilling
CN102317510A (en) Metal foil, method for producing same, insulating substrate, and wiring board
US5322975A (en) Universal carrier supported thin copper line
JPS627873A (en) Plural-layer electroless plating method
CN1406105A (en) Copper alloy foil for lamina plate
CN102076889B (en) Composite material for electrical/electronic component and electrical/electronic component using the same
JP6526558B2 (en) Composite metal foil for printed wiring board, composite metal foil with carrier for printed wiring board, metal-clad laminate for printed wiring board obtained using these, and printed wiring board
CN102548202B (en) Roughly-processed copper foil and manufacture method thereof
GB2080630A (en) Printed circuit panels
KR20120115339A (en) Copper foil for printed circuit board and copper-clad laminate for printed circuit board
JPS6136596B2 (en)
JPS5921392B2 (en) Manufacturing method of copper foil for printed circuits
KR20230135611A (en) Surface treatment copper foil
JP3342479B2 (en) Copper foil surface treatment method
JP5443157B2 (en) High frequency copper foil, copper clad laminate using the same, and method for producing the same
US3934985A (en) Multilayer structure
JPS62230996A (en) Method for plating aluminum substrate