JPS6278725A - Optical recording device - Google Patents

Optical recording device

Info

Publication number
JPS6278725A
JPS6278725A JP21940485A JP21940485A JPS6278725A JP S6278725 A JPS6278725 A JP S6278725A JP 21940485 A JP21940485 A JP 21940485A JP 21940485 A JP21940485 A JP 21940485A JP S6278725 A JPS6278725 A JP S6278725A
Authority
JP
Japan
Prior art keywords
magnetic field
recording
absorption spectrum
information
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21940485A
Other languages
Japanese (ja)
Inventor
Motomu Yoshimura
求 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP21940485A priority Critical patent/JPS6278725A/en
Publication of JPS6278725A publication Critical patent/JPS6278725A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

PURPOSE:To increase the multiplex degree of the intensity dimension of a magnetic field by holding a compound that produces the change of the light absorption spectrum before and after the absorption of light and controlling the degree of the spectrum change according to the intensity of the impressing magnetic field to use the intensity dimension of the magnetic field to the recording of information. CONSTITUTION:A recording medium 3a uses a photochromism compound with which the absorbing peak position of the light absorption spectrum is shifted before and after the absorption of light. The laser light 1b having the waveform of the absorption spectrum is delivered from a laser light source 1a and irradiated onto the medium 3a in the form of the laser light 1c whose beam diameter is stopped down by an objective lens 2. Under such conditions, a magnetic field whose intensity is modulated by the information is applied from an electrode 6 for impression of magnetic field. Thus the characteristics of the absorption spectrum of the medium 3a show the absorbing peak. However this absorbing peak is not shown when no magnetic field is impressed. The presence or absence of the corresponding absorption spectrum peak is shown in the form of a binary code. Then the information of (N+1) bits is recorded to the recording spots. Thus the multiplex degree of recording, i.e., the recording capacity is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光を用いた情報′の記録装置に関するもの
であり、かっ、磁場の強度次元で情報を多重記録する装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an information recording device using light, and more particularly, to a device for multiplexing information in the intensity dimension of a magnetic field.

〔従来の技術〕[Conventional technology]

第6図は例えば、「レーザー研究」第11巻第8号、 
 P 548〜P 555に(R,A、Bartoli
niにより)示され°た従来の光記録方式を示す断面図
であり、図において(1)は記録用のレーザー光源、(
2)は対物レンズ、(3)はディスク、(3a)はテル
ル化合物等の記録媒体、(3b)+よガラス等からなる
記録媒体支持基板である。(7)は記録媒体に情報とし
て記録されたピッ1− (***)である。
Figure 6 shows, for example, "Laser Research" Vol. 11 No. 8,
P 548-P 555 (R, A, Bartoli
1 is a cross-sectional view showing a conventional optical recording system shown by (1) in the figure, (1) is a laser light source for recording, (1) is a laser light source for recording;
2) is an objective lens, (3) is a disk, (3a) is a recording medium such as a tellurium compound, and (3b) is a recording medium support substrate made of glass or the like. (7) is a pit 1- (small hole) recorded as information on the recording medium.

次に動作について説明する。情報の記録は、ディスク(
3)を回転させながらレーザー光(1)を記録媒体(3
a)の面に対物レンズ(2)で集光し、レーザー光を書
き込むべき情報で変調することによって、記録媒体(3
龜)に熱的加工によりピット(***)(7)をあける形
で情報が書き込まれる。このようにレーザー光による熱
加工で書き込む方式では、9報は、1ビツトに1ピット
が入るだけである。
Next, the operation will be explained. Information is recorded on a disc (
3) while rotating the laser beam (1) to the recording medium (3).
By focusing the laser beam on the surface of the recording medium (3) with the objective lens (2) and modulating the laser beam with the information to be written,
Information is written in the form of a pit (small hole) (7) made by thermal processing. In this method of writing by thermal processing using a laser beam, only one pit is included in one bit in nine reports.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の光記録装置は以上のように構成されているので、
記録媒体の単位面積当たりに書き込める情報量は記録媒
体の単位面積当たりに、ビットを形成できる数できまる
。一段に現行のレーザー書き込みでは、レーザースポッ
トの径は約1μmであり、ピットの径もほぼ1μmが限
界値であり、1平方センチメートル(led)当たりに
書き込めるピットの数、即ち記録容量は1G”ビット/
Cシが限界値である。
Conventional optical recording devices are configured as described above, so
The amount of information that can be written per unit area of a recording medium is determined by the number of bits that can be formed per unit area of the recording medium. Furthermore, in current laser writing, the diameter of the laser spot is approximately 1 μm, and the diameter of the pit is also approximately 1 μm, which is the limit value, and the number of pits that can be written per 1 square centimeter (LED), that is, the recording capacity is 1 G” bit/
C is the limit value.

この発明は、上記のような問題点を解消するためになさ
れたもので、記録媒体への情報の書き込みを1スポット
に1ビットではなく、1スポツト内に磁場の強度の次元
でも情報を書き込むような多重性を持たせることにより
、単位面積当たりの記録容量の限界値が10”ビット/
d以上にできる光記録装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and instead of writing information to a recording medium in one bit per spot, it is possible to write information in one spot according to the strength of the magnetic field. By providing such multiplicity, the limit value of recording capacity per unit area is 10” bits/
The object of the present invention is to obtain an optical recording device capable of recording data more than d.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係わる光記録装置は、光を吸収することによ
り光吸収特性が、光の吸収の前後で変化することを特徴
とする記録媒体を、少なくとも光の入射側は透明である
基板2枚で挾み、レーザー光を照射した状態で、情報に
応じて磁場の強度を変調した磁場を印加し、記録媒体の
1つの記録スポットに、磁場の強度の次元での41報を
少なくとも2つ以上書き込むことを可能とし、記録媒体
の単位面積当たりの記録容量が、これまでの光記録装置
の限界値である108ピッl−/cイを越えろようにし
たものである。
The optical recording device according to the present invention uses two substrates that are transparent at least on the light incident side to record a recording medium whose light absorption characteristics change before and after the absorption of light. A magnetic field whose strength is modulated according to the information is applied while the magnetic field is sandwiched and irradiated with laser light, and at least two or more 41 reports in the dimension of magnetic field strength are written in one recording spot of the recording medium. This enables the recording capacity per unit area of the recording medium to exceed 108 pi/c, which is the limit value of conventional optical recording devices.

なお、磁極と基板とは第1図のごとく、45度の角度を
もたせ、磁場印加と光照射が同時に行える′ようにする
The magnetic pole and the substrate are arranged at an angle of 45 degrees, as shown in FIG. 1, so that magnetic field application and light irradiation can be performed simultaneously.

〔作 用〕[For production]

この発明における光記録装置は、これまでのように、レ
ーザー光により記録スポットにピッI・を形成させる記
録媒体の物理的形状変化を利用するため、1つの記録ス
ポットに1つの情報ビットシか記録出来ないのとは異な
り、光吸収の前後における吸収スペクトルが変化し、か
つ、その変化の度合が当該記録媒体に印加される磁場の
強さにより制御(いわゆるZeeman効果)しうる記
録媒体を用いているため、同一の記録スポットには、レ
ーザー光照射中に印加する磁場の強度が少なくとも2つ
以上の異なった値をもつモードよりなる磁場を印加する
ことにより、記録媒体の吸収スペクトルの変化がそのモ
ードに従って2つ以上生起し、記録媒体中の1つの記録
スポット中に磁場の強さの次元での情報ビットを2つ以
上多重記録される。
The optical recording device of the present invention utilizes the change in the physical shape of the recording medium that causes a laser beam to form a pit on the recording spot, as in the past, so it is possible to record only one information bit in one recording spot. Unlike the conventional method, a recording medium is used in which the absorption spectrum changes before and after light absorption, and the degree of this change can be controlled by the strength of the magnetic field applied to the recording medium (the so-called Zeeman effect). Therefore, by applying to the same recording spot a magnetic field whose intensity consists of at least two modes with different values during laser beam irradiation, changes in the absorption spectrum of the recording medium can be made according to that mode. Accordingly, two or more bits of information occur, and two or more information bits in the dimension of magnetic field strength are multiplex recorded in one recording spot in the recording medium.

即ち、N個の磁場の強度よりなる磁場モードを情報の記
録のために用いれば、記録媒体の吸収スペクトルの変化
がN個のモードに従ってN個起こしうるため、1つの記
録スポット中にNビットの記録容量を与えろことができ
る。
That is, if magnetic field modes consisting of N magnetic field intensities are used for recording information, the absorption spectrum of the recording medium can change N times according to the N modes, so N bits can be recorded in one recording spot. You can give it storage capacity.

その結果、記録容量も現行の限界値108ピット/Cイ
のN倍を可能とする。
As a result, the recording capacity can be increased by N times the current limit of 108 pits/C.

なお、情報の読み出しは、各記録スポットに磁場の強度
を連続して変化させた磁場を印加した状態で、各記録ス
ポットの記録媒体の吸収スペクトル、及び/または、発
光スペク)・ル、及び/または、反射スペクトルを測定
すれば、それらの結果は情報の記録時に印加された磁場
の強度の磁場を印加された履歴に対応した記録媒体の吸
収スペクトルの変化、およびその吸収スペクトルの変化
に起因する発光スペクトルあるいは反射スペクトルの変
化を示すものであるため、その結果より各記録スポット
に情報により変調されて、印加された磁場の強度のモー
ドの内容を判定し情報を検知する。
Note that reading information is performed by applying a magnetic field whose intensity is continuously changed to each recording spot, and reading the absorption spectrum and/or emission spectrum of the recording medium at each recording spot. Alternatively, if the reflection spectrum is measured, those results are due to changes in the absorption spectrum of the recording medium corresponding to the history of the application of a magnetic field of the strength of the magnetic field applied when information was recorded, and changes in the absorption spectrum. Since it indicates a change in the emission spectrum or reflection spectrum, the information is detected by determining the mode contents of the intensity of the magnetic field that is modulated in each recording spot and applied to each recording spot based on the result.

〔実施例〕〔Example〕

以下、この発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図において、(1a)はレーザー光源、(1b)は
(1a)より発せられたレーザー光、(IC)は対物レ
ンズ(2)によりビーム径が絞られたレーザー光、(2
)は対物レンズ、(3a)は記録媒体、(3b)は基板
、(4)(よ磁場変調装置、(5)はリード線、(6)
は磁場印加用磁極である。
In Figure 1, (1a) is a laser light source, (1b) is a laser beam emitted from (1a), (IC) is a laser beam whose beam diameter is narrowed down by an objective lens (2), and (2) is a laser beam emitted from (1a).
) is an objective lens, (3a) is a recording medium, (3b) is a substrate, (4) (a magnetic field modulator, (5) is a lead wire, (6) is
is a magnetic pole for applying a magnetic field.

実施例1 記録媒体(3a)として、光の吸収の前後で、光の吸収
スペクトルの吸収ピーク位置がンフ)・する、いわゆる
フォトクロミズム化合物を用いた例を示す。フォトクロ
ミズム化合物は、磁場を印加しない状態では、光吸収ス
ペクトルは、光の吸収の前後で第2図のAから八〇へ光
吸収のピーク位置がシフトする。ここで磁場を印加した
状態で光を照射すれば、印加する磁場の強度(I[)が
H,、H2゜H,、H,・・・ HNと大きくなるに従
って、ピーク位置がそれぞれA、、A2.A、、A、・
・・A、4へとシフトする(いわゆるZeeman効果
)。
Example 1 An example is shown in which a so-called photochromic compound is used as the recording medium (3a), in which the absorption peak position of the light absorption spectrum changes before and after light absorption. In a photochromic compound, when no magnetic field is applied, the light absorption spectrum shifts from A to 80 in FIG. 2 before and after light absorption. Here, if light is irradiated with a magnetic field applied, as the intensity of the applied magnetic field (I[) increases to H,, H2°H,, H,...HN, the peak position will become A,... A2. A,,A,・
...Shift to A, 4 (so-called Zeeman effect).

よって、第2図の特性図の吸収スペクトルAの波長のレ
ーザー光(1b)をレーザー光源(la)より発振し、
かつ対物レンズ(2)を通して、ビーム径を絞っt:レ
ーザー光(1c)として記録媒体(3a)に照射する。
Therefore, a laser beam (1b) having a wavelength of absorption spectrum A in the characteristic diagram of FIG. 2 is oscillated from a laser light source (la),
Then, the laser beam (1c) is irradiated onto the recording medium (3a) through the objective lens (2) with a narrowed beam diameter.

なお、特性図の縦軸Yは吸光度、横軸は波長(nl)を
表す。この状態で、磁場印加用磁極(6)より、磁場の
強度を情報により変調した磁場を印加する。例えば磁場
の強度のモードが、H=H2゜H=H,として磁場を印
加すれば、第3図のように記録媒体(3&)の吸収スペ
クトル特性は、A2とA3にのみ吸収ピークが存在し、
印加しなかったA、、A、、A、・・・・AHには吸収
ピークが存在しない。この各磁場の強度(H)に対応す
る吸収スペクトルピーク(A)の有無を1と0のバイナ
リ−コードとして(0,0,1,1,O,・・・、0)
の(N+1) ピッI・の情報を記録スポラI・に記録
する。
Note that the vertical axis Y of the characteristic diagram represents absorbance, and the horizontal axis represents wavelength (nl). In this state, a magnetic field whose intensity is modulated according to information is applied from the magnetic field applying magnetic pole (6). For example, if a magnetic field is applied with the magnetic field strength mode as H=H2°H=H, the absorption spectrum characteristics of the recording medium (3&) will have absorption peaks only at A2 and A3 as shown in Figure 3. ,
No absorption peak exists for A, , A, , A, . . . AH to which no voltage was applied. The presence or absence of the absorption spectrum peak (A) corresponding to the strength (H) of each magnetic field is expressed as a binary code of 1 and 0 (0, 0, 1, 1, O, ..., 0).
(N+1) The information of Pi I is recorded in the recording spora I.

なお、記録媒体(3a)として用いたフォトクロミズム
化合物としては、スピロピラン類、フルギド類、アゾベ
ンゼン類、およびR,媒体やHg媒体の錯体類を始めと
する一般のフォトクロミズム材料が用いられる。
As the photochromic compound used as the recording medium (3a), general photochromic materials such as spiropyrans, fulgides, azobenzenes, and complexes of R, medium, and Hg medium are used.

実施例2 記録媒体(3a)として、光の吸収により、吸収した波
長部分の吸収のみが、光吸収前の吸収スペクトルより欠
除させられる、いわゆるホールバーニング現象を示す化
合物を用いた例を示す。
Example 2 An example is shown in which a compound exhibiting a so-called hole burning phenomenon, in which only the absorption of the absorbed wavelength portion is eliminated from the absorption spectrum before light absorption due to absorption of light, is used as the recording medium (3a).

第4図はホールバーニング現象を示す記録媒体(3a)
のレーザー光照射によるスペクトル中へのホールの生成
を示す図である。
Figure 4 shows a recording medium (3a) showing the hole burning phenomenon.
FIG. 3 is a diagram showing the generation of holes in the spectrum by laser light irradiation.

磁場([)を印加しない(H=O)の場合には、吸収ス
ペクトル中の波長h0の位置にホールが生成する。
When no magnetic field ([) is applied (H=O), a hole is generated at the position of wavelength h0 in the absorption spectrum.

磁場(H)の強度をH=H1,1(2,H,、H,・・
・・・・HNと大きくするに従い、それぞれの磁場の強
度に対応して、吸収スペクトル中に生成するホールの位
置がh+、h2− h3.h4・・h8へとシフトする
(いわゆるZeeman効果)。よって、第4図の吸収
スペクトルhoの波長のレーザー光(Ib)をレーザー
光源(1a)より発振し、かつ対物レンズ(2)を通し
て、ビーム径を絞ったレーザー光(1c)として記録媒
体(3a)に照射する。この状態で、磁場変調装置(4
)より磁場の強度を情報により変調した磁場を磁場(6
)より印加する。例えば、印加する磁場の強度のモード
がH=H,とH=H,として磁場を印加すれば、第5図
のように記録媒体(3a)の吸収スペクトル特性(よ、
h、とh 3にのみ吸収ピークが存在し、印加しなかっ
たり、、h、・・・ilNにはホールが存在しない。こ
の各磁場の強度()1)に対応する、吸収スペクI・ル
中のホール(h)の有無を1,0のバイナリ−コードと
して(0,1,0,1,・0)の(N+1)ビットの情
報を記録スポットに記録する。ここで記録媒体(3a)
として用いるホールバーニング現象を示す化合物として
は、クロリン類、ホルフィリン類、フタロシアニン類、
キニザリン類、アミノアクリジン類、ペリレン類、アル
カリパライト類等を始めとする一般のホールバーニング
現象を示す材料が用いられる。
The strength of the magnetic field (H) is expressed as H=H1,1(2,H,,H,...
...As HN increases, the positions of holes generated in the absorption spectrum become h+, h2- h3, etc., corresponding to the respective magnetic field strengths. Shift to h4...h8 (so-called Zeeman effect). Therefore, a laser beam (Ib) having a wavelength of the absorption spectrum ho shown in FIG. ). In this state, the magnetic field modulator (4
), the magnetic field whose intensity is modulated by information is expressed as a magnetic field (6
). For example, if a magnetic field is applied with the intensity modes of the applied magnetic field being H=H and H=H, the absorption spectrum characteristics of the recording medium (3a) as shown in FIG.
Absorption peaks exist only at h, and h3, and no holes exist at no voltage or at h, . . . ilN. The presence or absence of a hole (h) in the absorption spectrum I, which corresponds to the strength of each magnetic field ()1), is expressed as a binary code of 1,0 and (N+1 of (0,1,0,1,・0)). ) bit information is recorded on the recording spot. Here the recording medium (3a)
Compounds that exhibit the hole-burning phenomenon that can be used include chlorins, phorphyrins, phthalocyanines,
Common materials exhibiting the hole burning phenomenon are used, including quinizarines, aminoacridines, perylenes, alkaline palites, and the like.

以上の実施例1と2で用いろフォトクロミズム化合物と
ホールバーニング現象を示す化合物の記録容量、即ちフ
ォトクロミズム化合物では、磁場印加により生ずる吸収
ピーク位置の数(N)とホールバーニング現象を示す化
合物では、磁場印加により生ずるシフトしたホールの数
(N)は、それぞれピーク位置およびホールの位置に対
応するそれぞれの化合物のエネルギー準位の数(N)に
対応するものであるから、それぞれのエネルギー準位か
、明確に分離している方か、ピーク位置の数(N)とシ
フトしたホールの数(N)を増大させるのには好ましい
ものである。その様な状態を与える条件としては、記録
媒体(3a)はなるべく低高状態に保たれることが好ま
しい。
The recording capacity of the photochromic compound used in Examples 1 and 2 above and the compound exhibiting the hole burning phenomenon, that is, the number (N) of absorption peak positions generated by applying a magnetic field in the case of the photochromic compound, and the recording capacity of the compound exhibiting the hole burning phenomenon in the magnetic field. The number of shifted holes (N) produced by the application corresponds to the number (N) of energy levels of each compound corresponding to the peak position and hole position, respectively, so each energy level or A clear separation is preferable in order to increase the number of peak positions (N) and the number of shifted holes (N). As a condition for providing such a state, it is preferable that the recording medium (3a) is kept as low as possible.

また、記録した情報の読み出しは、吸収スペクトルの変
化を直接測定して行ってもよいが、吸収スペクトルの変
化は発光スペクトル、及び/または反射スペクトルの変
化を測定することによっても行える。
Further, the recorded information may be read out by directly measuring changes in the absorption spectrum, but changes in the absorption spectrum can also be performed by measuring changes in the emission spectrum and/or reflection spectrum.

なお、発光スペクトルまたは反射スペクトルにより情報
の読み出しを行う場合には、記録用レーザ光の入射側の
反対側の基板は必ずしも透明である必要はない。
Note that when reading information based on the emission spectrum or the reflection spectrum, the substrate on the side opposite to the incident side of the recording laser beam does not necessarily need to be transparent.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば情報の記録を光の吸収
の前後での光の吸収スペクトルの変化を生ずる化合物を
磁極の間に入れ、スペクトルの変化の度合を印加する磁
場の強度により制御し、磁場の強度の次元を情報の記録
に用いるように構成したので、情報の記録を行うレーザ
ー光を照射した記録スポットには、磁場の強度次元の多
重度を上積みできる゛ため、この発明の光記録装置の記
録容量は現行の記録容量の限界値1G”ビット/ciを
容易に越える。
As described above, according to the present invention, information is recorded by inserting a compound that causes a change in the light absorption spectrum before and after light absorption between the magnetic poles, and controlling the degree of change in the spectrum by the intensity of the applied magnetic field. However, since the structure is configured so that the dimension of the magnetic field strength is used for recording information, the multiplicity of the strength dimension of the magnetic field can be added to the recording spot irradiated with the laser light for recording information. The recording capacity of an optical recording device easily exceeds the current recording capacity limit of 1 G'' bit/ci.

さらにこの発明では多重度を記録媒体に印加する磁場次
元で行っているため、記録用のレーザー光源は必ずしも
波長可変でなくてもよい。しかしこの装置には波長可変
レーザーを用いて、記録をすることはもちろん可能であ
り、波長次元をも記録に用いれば、記録の多重度、即ち
記録容量はより増大する。以上のようにこの発明によれ
ば、現状の光記録装置の情報の記録容量の限界値10’
ビツト/ cdを容易に越え得るのみならず、用いるレ
ーザー光の発振波長が単一のものでも良い等の効果が得
られ、この発明の産業上の利用価値は極めて大きい。
Furthermore, in this invention, since the multiplicity is determined by the dimension of the magnetic field applied to the recording medium, the laser light source for recording does not necessarily have to be wavelength tunable. However, it is of course possible to perform recording using a variable wavelength laser in this device, and if the wavelength dimension is also used for recording, the multiplicity of recording, that is, the recording capacity will be further increased. As described above, according to the present invention, the limit value of the information recording capacity of the current optical recording device is 10'.
This invention not only can easily exceed bits/cd, but also allows the oscillation wavelength of the laser beam to be of a single wavelength. Therefore, the industrial value of this invention is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による光記録装置を示す構
成図、第2図はこの発明の一実施例の記録媒体の吸収ス
ペクトル特性を示す特性図、第3図は第2図に示された
記録媒体に、情報の記録を行った後の記録媒体の吸収ス
ペクトル特性の1例を示す特性図、第4図はこの発明の
他の実施例の記録媒体の吸収スペクトル特性を示す特性
図、第5図は第4図に示された記録媒体に、情報の記録
を行った後の記録媒体の吸収スペクトル特性の1例を示
す特性図、第6図は従来の光記録装置を示す構成図であ
る。 (1a)はレーザー光源、(1b)はレーザー光、(1
仁)はレーザー光(1b)のビーム径から絞られたレー
ザー光、(2)は対物レンズ、(3)はディスク、(3
a)は記録媒体、(3b)は基板、(4)は磁場変調装
置、(5)はリード線、(6)は磁極、(7)はビット
(***)。 なお、図中同一符号は同−又は相当部分を示す。
FIG. 1 is a block diagram showing an optical recording device according to an embodiment of the present invention, FIG. 2 is a characteristic diagram showing absorption spectrum characteristics of a recording medium according to an embodiment of the present invention, and FIG. FIG. 4 is a characteristic diagram showing an example of the absorption spectrum characteristics of a recording medium after information has been recorded on the recording medium. FIG. 4 is a characteristic diagram showing the absorption spectrum characteristics of a recording medium according to another embodiment of the present invention , FIG. 5 is a characteristic diagram showing an example of the absorption spectrum characteristics of the recording medium after information is recorded on the recording medium shown in FIG. 4, and FIG. 6 is a configuration showing a conventional optical recording device. It is a diagram. (1a) is a laser light source, (1b) is a laser beam, (1
(2) is the objective lens, (3) is the disk, (3) is the laser beam focused from the beam diameter of the laser beam (1b), (2) is the objective lens, (3) is the disk
a) is a recording medium, (3b) is a substrate, (4) is a magnetic field modulator, (5) is a lead wire, (6) is a magnetic pole, and (7) is a bit (small hole). Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)一対の基板の間に光を吸収することによりそのも
のの光吸収特性が、光を吸収する前後で変化する性質を
有する化合物を挾み、当該化合物に磁場を印加した状態
で、光を照射することにより、当該化合物の光の吸収前
後での光吸収特性の変化の度合を、印加する磁場の強度
で制御し、磁場の強度の次元で情報を多重記録すること
を特徴とする光記録装置。
(1) A compound whose light absorption characteristics change before and after absorbing light is sandwiched between a pair of substrates, and a magnetic field is applied to the compound, and light is emitted. Optical recording characterized in that, by irradiation, the degree of change in the light absorption characteristics of the compound before and after light absorption is controlled by the intensity of the applied magnetic field, and information is multiplexed in the dimension of the intensity of the magnetic field. Device.
(2)基板のうち少なくとも光の入射側の基板は透明で
あることを特徴とする特許請求の範囲第1項記載の光記
録装置。
(2) The optical recording device according to claim 1, wherein at least one of the substrates on the light incident side is transparent.
JP21940485A 1985-09-30 1985-09-30 Optical recording device Pending JPS6278725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21940485A JPS6278725A (en) 1985-09-30 1985-09-30 Optical recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21940485A JPS6278725A (en) 1985-09-30 1985-09-30 Optical recording device

Publications (1)

Publication Number Publication Date
JPS6278725A true JPS6278725A (en) 1987-04-11

Family

ID=16734874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21940485A Pending JPS6278725A (en) 1985-09-30 1985-09-30 Optical recording device

Country Status (1)

Country Link
JP (1) JPS6278725A (en)

Similar Documents

Publication Publication Date Title
EP0106673B1 (en) Optical and reversible recording and reproducing apparatus
JPH0773506A (en) Optical recording medium and its reproducing device
EP0129730A2 (en) Photo-electro data memory
JPS6278725A (en) Optical recording device
US4819206A (en) Optical recording system
KR20050085346A (en) Apparatus and method for recording an information on a recordable optical record carrier using oval spot profile
JPH03200957A (en) Rewritable photochromic optical disk
JP3006645B2 (en) Optical disk drive
JPH03120625A (en) Information recording and reproducing device
JP2827897B2 (en) Optical recording medium
JPS59152528A (en) Optical recorder
JPH10340486A (en) Optical disk, master disk manufacturing device of the same and manufacture of the same
JP2778428B2 (en) Optical disk drive
JP2967700B2 (en) Optical recording medium
JPH0785313B2 (en) Optical recording device
JP2776214B2 (en) Recording and / or reproducing apparatus for optical recording medium
JPH11265509A (en) Optical information recording and reproducing method and optical information recording medium
JPH0565939B2 (en)
JPH07118081B2 (en) Optical disk drive
JP2819763B2 (en) Optical reproduction method and apparatus used for the same
JPH0610731B2 (en) Optical recording material
JPH04205918A (en) Recording method for information
JPH1186329A (en) Super-high resolution reproduction method of optical memory device and optical memory device
JPH07210874A (en) Optical recording medium and its reproducing device
JPH01137438A (en) Optical disk information recording and reproducing device