JPS6278567A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS6278567A
JPS6278567A JP21965185A JP21965185A JPS6278567A JP S6278567 A JPS6278567 A JP S6278567A JP 21965185 A JP21965185 A JP 21965185A JP 21965185 A JP21965185 A JP 21965185A JP S6278567 A JPS6278567 A JP S6278567A
Authority
JP
Japan
Prior art keywords
gas
protective layer
surface protective
glow discharge
gaseous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21965185A
Other languages
Japanese (ja)
Other versions
JPH0778642B2 (en
Inventor
Takao Kawamura
河村 孝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP60219651A priority Critical patent/JPH0778642B2/en
Publication of JPS6278567A publication Critical patent/JPS6278567A/en
Publication of JPH0778642B2 publication Critical patent/JPH0778642B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain an electrophotographic sensitive body having excellent durability and long life by using gaseous silane and gaseous methane for gas and maintaining the atomic ratio of silicon atoms and carbon atoms in a surface protective layer in a specific range. CONSTITUTION:The gaseous silane and gaseous methane are used for the gas to form the electrophotographic sensitive body formed with silicon carbide on the surface protective layer by a glow discharge decomposition method using the gas for forming the silicon carbide and the atomic ratio of the silicon atoms and carbon atoms of the surface protective layer is maintained in a 0.2<=X<=0.6 range when expressed as Si(1-x)Cx. The gaseous pressure in a reaction vessel of a glow discharge decomposition device is preferably set at 0.1-0.6Torr in order to obtain a high hardness characteristic. The rate of vapor deposition is low and there is no practicability if the pressure is below 0.1Torr. The hardness characteristic is low if the pressure exceeds 0.6Torr. The pressure may be adequately set at 0.2-0.4Torr.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は表面保護層にシリコンカーバイド層を形成した
電子写真感光体の改良に係り、高硬度特性を達成した電
子写真感光体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an improvement of an electrophotographic photoreceptor having a silicon carbide layer formed as a surface protective layer, and relates to an electrophotographic photoreceptor that has achieved high hardness characteristics.

〔従来技術及びその問題点〕[Prior art and its problems]

近年、電子写真技術の進歩は目覚ましく、超高速複写機
やレーザービームプリンタなどの開発が活発に進められ
ており、これらの機器に用いられる感光体は長期間、高
速で使用されるため、動作の安定性及び耐久性が要求さ
れている。現在、Se、CdS 、 ZnO等の光電材
料が一般的に使用されているが、アモルファスシリコン
は耐熱性、耐摩耗性、無公害性、光感度特性等に優れて
いるという理由から、アモルファスシリコン(以下、a
−Stと略す)の電子写真感光体への応用が注目されて
いる。
In recent years, advances in electrophotography technology have been remarkable, and the development of ultra-high-speed copying machines and laser beam printers is actively underway.The photoreceptors used in these devices are used at high speeds for long periods of time, so their operation is slow. Stability and durability are required. Currently, photoelectric materials such as Se, CdS, and ZnO are commonly used, but amorphous silicon ( Below, a
-St) is attracting attention for its application to electrophotographic photoreceptors.

かかるa−Si感光体は、第1図に示す通り積層型が最
も感光体特性上価れていることが判っている。
It has been found that the laminated type of a-Si photoreceptor has the best photoreceptor characteristics as shown in FIG.

即ち、第1図によれば、アルミニウムやNESAガラス
などの導電性の基板(1)上にキャリア注入阻止層(2
)、光導電層(3)及び表面保護層(4)を順次積層し
ている。そして、キャリア注入阻止N(2)を形成して
基板(1)からのキャリアの注入を阻止したり、残留電
位を低下せしめるようにしており、表面保護層(4)に
ついては感光体の耐久性を高めるために高硬度特性を得
るようにすることが第1の目的であり、他に対コロナ性
、化学的安定性、反射防止という機能も要求されている
That is, according to FIG. 1, a carrier injection blocking layer (2) is formed on a conductive substrate (1) such as aluminum or NESA glass.
), a photoconductive layer (3) and a surface protection layer (4) are sequentially laminated. Then, a carrier injection blocking layer N (2) is formed to prevent carrier injection from the substrate (1) and to lower the residual potential. The first objective is to obtain high hardness properties in order to increase the hardness, and other functions such as corona resistance, chemical stability, and antireflection are also required.

この表面保護層(4)には上記緒特性を満たすためにシ
リコンカーバイド層をグロー放電分解法にて形成するこ
とが提案されている。
It has been proposed that this surface protective layer (4) be formed with a silicon carbide layer by a glow discharge decomposition method in order to satisfy the above-mentioned characteristics.

しかしながら、感光体の耐久性を決定する表面保8!層
の硬度特性に対して原料ガスの選択や成膜条件などを決
めた報告は未だ発表されていない。
However, surface maintenance 8! determines the durability of the photoreceptor! No report has yet been published that determines the selection of raw material gas, film formation conditions, etc. with respect to the hardness characteristics of the layer.

C発明の目的〕 従って、本発明の目的は高硬度特性を有するシリコンカ
ーバイド層を得んがために製造条件を見い出して一層優
れた高硬度表面保護層を形成し、これにより優れた耐久
性及び長寿命の電子写真感光体を提供することにある。
C.Object of the Invention] Therefore, the object of the present invention is to find manufacturing conditions for obtaining a silicon carbide layer having high hardness characteristics, form an even more excellent high hardness surface protective layer, and thereby achieve excellent durability and The object of the present invention is to provide an electrophotographic photoreceptor with a long life.

〔問題を解決するための手段〕[Means to solve the problem]

本発明によれば、シリコンカーバイド生成用ガスを用い
てグロー放電分解法により表面保護層にシリコンカーバ
イドを形成した電子写真感光体において、前記ガスにシ
ランガスとメタンガスを用いると共に表面保護層のシリ
コン原子とカーボン原子の原子比率をSi +1−X)
  Cxと表して0.2≦x≦0.6の範囲になるよう
にしたことを特徴とする電子写真感光体が提供される。
According to the present invention, in an electrophotographic photoreceptor in which silicon carbide is formed on a surface protective layer by a glow discharge decomposition method using a silicon carbide generating gas, silane gas and methane gas are used as the gas, and silicon atoms in the surface protective layer are The atomic ratio of carbon atoms is Si +1-X)
An electrophotographic photoreceptor is provided, characterized in that Cx is in the range of 0.2≦x≦0.6.

本発明の電子写真感光体に係る表面保護層を形成するに
際してシリコンカーバイド生成用ガスにシランガス(S
iH4)を用いてグロー放電分解するという点では従来
のものと軌を−にしているが、カーバイド生成ガスのう
ちでもメタンガス(CI(4,)を選択してグロー放電
分解に供し、更に表面保護層のシリコン原子とカーボン
原子の原子比率をSi。−Xl  cx と表して0.
2 ≦x≦0.6の範囲になるように成膜条件を設定す
ることが、従来の技術に対する顕著な特徴である。
When forming the surface protective layer of the electrophotographic photoreceptor of the present invention, silane gas (S
Although it differs from conventional methods in that glow discharge decomposition is performed using iH4), methane gas (CI(4,)) is selected among the carbide-forming gases and subjected to glow discharge decomposition, and further surface protection is performed. The atomic ratio of silicon atoms to carbon atoms in the layer is expressed as Si.-Xl cx and is 0.
Setting the film forming conditions so that the range 2≦x≦0.6 is satisfied is a remarkable feature over the conventional technique.

シリコンカーバイド生成用ガスにはシリコン元素供給ガ
スとして従来周知の通り、シランガスがあり、他方カー
バイド供給ガスとして一般にCH4゜C,Lがコスト及
び成膜時の分解効率の点から選択されている。
The gas for producing silicon carbide includes silane gas, which is conventionally known as a silicon element supply gas, while CH4°C,L is generally selected as the carbide supply gas from the viewpoint of cost and decomposition efficiency during film formation.

本発明者はこのカーバイド供給ガスとしてCI。The inventor uses CI as this carbide supply gas.

ガスを選択すれば、他のCzHaガスに比べて顕著な高
硬度特性を示すことを知見した。
It has been found that, if the gas is selected, it exhibits remarkable hardness characteristics compared to other CzHa gases.

更に本発明においては、このシリコンカーバイド生成用
ガスの選択に加えてシリコン原子とカーボン原子の原子
比率をSi(+−+r+  Cえと表して0.2≦x≦
0.6の範囲から成る表面保護層とすれば、この高硬度
特性が顕著になり、好適には0.3≦x≦0.5の範囲
に設定すればよい。
Furthermore, in the present invention, in addition to the selection of the gas for producing silicon carbide, the atomic ratio of silicon atoms and carbon atoms is set such that Si(+-+r+C) is 0.2≦x≦
If the surface protective layer has a hardness in the range of 0.6, this high hardness property becomes remarkable, and it is preferable to set the hardness in the range of 0.3≦x≦0.5.

更にまた本発明によれば、グロー放電分解装置の内部圧
力も最も重要な要因であることも見い出した。
Furthermore, according to the present invention, it has been found that the internal pressure of the glow discharge decomposition device is also the most important factor.

即ち、上述した通りの高硬度特性を得るためにグロー放
電分解装置の反応容器内部ガス圧力を0.1乃至0.6
Torrに設定するのが望ましい。0. ITorr未
満であると蒸着速度が小さく4実用性に欠け、0.6T
orrを超えると硬度特性が小さくなり、好適には0.
2乃至0.4Torrに設定すればよい。
That is, in order to obtain the high hardness characteristics as described above, the gas pressure inside the reaction vessel of the glow discharge decomposition device is set to 0.1 to 0.6.
It is desirable to set it to Torr. 0. If it is less than ITorr, the deposition rate is low and is not practical, and 0.6T
If it exceeds orr, the hardness characteristics become small, preferably 0.
It may be set to 2 to 0.4 Torr.

次に、a−Si層を生成するための容量結合型グロー放
電分解装置を第2図に基づいて説明する。
Next, a capacitively coupled glow discharge decomposition apparatus for producing an a-Si layer will be described with reference to FIG.

図中の第1.第2.第3.第4タンク(5)(6)(7
)(8)には、それぞれSiH4,CH,又はCJt、
 B2H2,NOガスが密封されている。また5il1
4゜CH,又はCd5.、B2H,ガス何れもキャリア
ーガスは水素である。これらのガスは対応する第1.第
2゜第3及び第4調整弁(9)(10)(11)(12
)を開放することにより放出され、その流量がマスフロ
ーコントローラ(13)(14)(15)  (16)
により規制され、第1.第2及び第3タンク(5)  
(6)(7)からのガスは第1主管(17)へ、また第
4タンク(8)からのNOガスは第2主管(18)へ送
られる。尚、(19)(20)は止め弁である。第1.
第2主管(17)  (18)を通じて流れるガスは反
応管(21)へと送り込まれるが、この反応管内部の基
盤の周囲には容量結合型放電用電極(22)が設置され
ており、それ自体の高周波電力は50Watts乃至3
にilowattsが、また周波数はIMHz乃至数1
0MHzが適当である。反応管(21)内部には、その
上にa−3i膜が形成される、例えばアルミニウムやN
ESAガラスのような基板(23)がモーター(24)
により回転可能である試料保持台(25)上に載置され
ており、該基板(23)自体は適当な加熱手段により、
約50乃至400℃好ましくは約150乃至300℃の
温度に均一加熱されている。また、反応管(21)の内
部はa−3i膜形成時に高度の真空状態(放電圧0.1
乃至2.0Torr)を必要とすることにより回転ポン
プ(26)と拡散ポンプ(27)に連結されている。
1 in the diagram. Second. Third. 4th tank (5) (6) (7
) (8) contains SiH4, CH, or CJt, respectively.
B2H2, NO gas is sealed. Also 5il1
4°CH, or Cd5. , B2H, the carrier gas is hydrogen. These gases correspond to the first. 2nd ° 3rd and 4th regulating valve (9) (10) (11) (12
) is released by opening the mass flow controller (13) (14) (15) (16)
1. 2nd and 3rd tank (5)
The gas from (6) and (7) is sent to the first main pipe (17), and the NO gas from the fourth tank (8) is sent to the second main pipe (18). Note that (19) and (20) are stop valves. 1st.
The gas flowing through the second main pipes (17) and (18) is sent into the reaction tube (21), and a capacitively coupled discharge electrode (22) is installed around the base inside this reaction tube. Its high frequency power is 50Watts to 3
ilowatts, and the frequency is from IMHz to number 1
0MHz is appropriate. Inside the reaction tube (21), an a-3i film is formed on it, for example, aluminum or N.
The ESA glass-like substrate (23) is the motor (24)
The substrate (23) itself is placed on a sample holding table (25) which is rotatable by a heating means.
It is uniformly heated to a temperature of about 50 to 400°C, preferably about 150 to 300°C. In addition, the inside of the reaction tube (21) is in a highly vacuum state (discharge voltage 0.1
2.0 Torr) and is connected to a rotary pump (26) and a diffusion pump (27).

以上のように構成されたグロー放電分解装置において、
例えばNoを含有するa−3i膜を基板(23)上に形
成するときは、第1及び第4調整弁(9)(12)を開
放して第1タンク(5)よりSiH4ガスを、第4タン
ク(8)よりNoガスを、また硼素も含有させるときは
第3調整弁(11)をも開放して、第3タンク(7)よ
りBZ)16ガスを放出する。放出量はマスフローコン
トローラ(13)(15)(16)により規制され、S
iH4ガス或いは、それにBAH6ガスが混合されたガ
スが第1主管(17)を介して、また、それとともにS
iI+4に対し一定のモル比にあるNoガスが第2主管
(18)を介して反応管(21)へと送り込まれる。
In the glow discharge decomposition device configured as above,
For example, when forming an a-3i film containing No on the substrate (23), the first and fourth regulating valves (9) and (12) are opened to supply SiH4 gas from the first tank (5) to the first tank (5). When the No. 4 tank (8) contains No gas and also boron, the third regulating valve (11) is also opened and the BZ) 16 gas is released from the third tank (7). The release amount is regulated by mass flow controllers (13) (15) (16), and S
iH4 gas or a gas mixed with BAH6 gas is passed through the first main pipe (17) and together with S
No gas in a constant molar ratio to iI+4 is sent into the reaction tube (21) via the second main pipe (18).

そして反応管(21)内部が0.1乃至2,0Torr
程度の真空状態、基板温度が50乃至400℃、容量型
放電用電極(22)の高周波電力が10Watts乃至
3にilowatts 、また周波数が1乃至10MH
zに設定されていることに相俟って、グロー放電が起こ
り、ガスが分解して、基板上に酸素及び水素を含有した
a−3i膜、或いはそれに加えて適量の硼素を含有した
a−3i膜が約10乃至2500人/分の成膜速度で形
成される。
And the inside of the reaction tube (21) is 0.1 to 2.0 Torr.
In a vacuum state of about 100 mph, the substrate temperature is 50 to 400°C, the high frequency power of the capacitive discharge electrode (22) is 10 Watts to 3 watts, and the frequency is 1 to 10 MH.
Coupled with the setting of z, a glow discharge occurs and the gas decomposes, forming an a-3i film containing oxygen and hydrogen on the substrate, or an a-3i film containing an appropriate amount of boron in addition to the a-3i film on the substrate. 3i films are formed at a deposition rate of about 10 to 2500 people/min.

〔実施例〕〔Example〕

次に実施例を述べる。 Next, an example will be described.

(例1) ダイヤモンドバイトを用いた超精密旋盤により鏡面に仕
上げた基板用アルミニウム製ドラムをアルカリ樹脂、水
洗、乾燥を行って清浄し、第2図に示した容量結合型グ
ロー放電分解装置の反応室(21)内に設置した。
(Example 1) An aluminum drum for substrates finished to a mirror finish using an ultra-precision lathe using a diamond cutting tool was cleaned with alkaline resin, washed with water, and dried. It was installed in the room (21).

第1タンク(5)よりS itl aガスを、第3タン
ク(7)よりBzH6ガスを、第4タンク(8)よりN
oガスをそれぞれ82cc/min、 0.12cc/
min、 2.5cc/minの流量で、更にH2ガス
を330cc/minの流量で放出し、グロー放電分解
法により厚み3μmのキャリア注入阻止層(2)を形成
した。
S itl a gas is supplied from the first tank (5), BzH6 gas is supplied from the third tank (7), and N is supplied from the fourth tank (8).
o gas at 82cc/min and 0.12cc/, respectively.
H2 gas was further discharged at a flow rate of 330 cc/min, and a carrier injection blocking layer (2) with a thickness of 3 μm was formed by glow discharge decomposition.

次いで同様の操作にてSiH4ガス、B211.ガス及
びH2ガスをそれぞれ225cc/min、 39X1
0−6cc/min及び240cc/minの流量で放
出し、グロー放電分解法により201Jmの厚みで光導
電N(3)を形成した。然る後、SiH4ガスとCH,
ガスを全量で6003CCMとなるように設定して混合
比を変えながらグロー放電分解法により表面保護層(4
)を形成した。
Next, SiH4 gas, B211. Gas and H2 gas each at 225cc/min, 39X1
A photoconductive N(3) with a thickness of 201 Jm was formed by the glow discharge decomposition method by discharging at flow rates of 0-6 cc/min and 240 cc/min. After that, SiH4 gas and CH,
A surface protective layer (4 CCM) was formed using the glow discharge decomposition method while changing the mixing ratio by setting the total amount of gas to 6003 CCM.
) was formed.

この場合、基板温度は300℃、ガス圧力は0.35T
orr又は0.5Torr 、高周波電力は0.2W/
cm”(100W)又は0.4W/cmJ250W)に
なるように設定し、成膜したSiとCの原子比率はXM
A法により分析を行った。
In this case, the substrate temperature is 300℃ and the gas pressure is 0.35T.
orr or 0.5Torr, high frequency power is 0.2W/
cm” (100W) or 0.4W/cmJ250W), and the atomic ratio of Si and C in the film was set to
Analysis was performed using Method A.

かくして得られた感光体について、この表面に加重をか
けたダイヤモンド針を膜上に移動させて引っかき傷の有
無によりその加重量を相対値として示すようにし、感光
体の硬度特性を確かめたところ、第3図に示す通りの結
果を得た。
Regarding the photoreceptor obtained in this way, the hardness characteristics of the photoreceptor were confirmed by moving a diamond needle with a weight applied to the surface over the film and showing the amount of the weight as a relative value depending on the presence or absence of scratches. The results shown in FIG. 3 were obtained.

図中、△印、○印、0印はそれぞれガス圧力を0.35
Torr、高周波電力を0.4W/cm”に設定した場
合、0.35Torr、0.2W/cm”に設定した場
合、0.5Torr 。
In the figure, △, ○, and 0 marks each indicate gas pressure of 0.35
Torr, when the high frequency power is set to 0.4 W/cm'', it is 0.35 Torr, and when it is set to 0.2 W/cm'', it is 0.5 Torr.

0.2W/am2に設定した場合であり、A、B、Cは
それぞれの特性曲線である。
This is the case where the power was set to 0.2 W/am2, and A, B, and C are respective characteristic curves.

比較例としてム印、・印、■印はC114ガスに代えて
C2II 4ガスを用いて同じ条件により作製したもの
であり、それぞれガス圧力を0.35Torr、高周波
電力を0.4W/cm”に設定した場合、0.35To
rr、0.2讐/cm”に設定した場合、0.5Tor
r 、0.2W/cm”に設定した場合であり、D、E
、Fはそれぞれの特性曲線である。
As comparative examples, the ones marked with mu, *, and ■ were made under the same conditions using C2II 4 gas instead of C114 gas, and the gas pressure was 0.35 Torr and the high frequency power was 0.4 W/cm'', respectively. If set, 0.35To
rr, 0.5 Tor when set to 0.2 m/cm”
r, 0.2W/cm", and D, E
, F are respective characteristic curves.

第3図に示す通り、C2H4ガスに比べてC(14ガス
を用いるとガス圧力及び電力が同一条件であれば顕著に
硬度が向上することが判る。
As shown in FIG. 3, it can be seen that when using C(14 gas) compared to C2H4 gas, the hardness is significantly improved under the same gas pressure and electric power conditions.

また、CH4ガスを用いてもガス圧力によって硬度が変
わることが判り、本発明者が繰り返し行った実験によれ
ば、0.1乃至0.6Torrに設定すればよいことが
判明した。
Furthermore, it has been found that even when CH4 gas is used, the hardness changes depending on the gas pressure, and according to repeated experiments conducted by the present inventor, it has been found that the hardness should be set at 0.1 to 0.6 Torr.

尚、本発明による表面保護層はX線回折法より結晶ピー
クが検出されず、アモルファスであると推定される。
Note that the surface protective layer according to the present invention has no crystal peak detected by X-ray diffraction, and is therefore presumed to be amorphous.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明の電子写真感光体によれば、より一
層の高硬度特性を有するシリコンカーバイド層を表面保
護層とすることができ、これにより耐久性及び長寿命が
達成でき、超高速複写機やレーザービームプリンタに好
適な高倍転性の電子写真感光体が提供できる。
As described above, according to the electrophotographic photoreceptor of the present invention, a silicon carbide layer having even higher hardness characteristics can be used as a surface protective layer, thereby achieving durability and long life, and enabling ultra-high speed copying. It is possible to provide an electrophotographic photoreceptor with high conversion properties suitable for machines and laser beam printers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に用いられる電子写真感光体の
断面図、第2図は本発明の実施例に用いられるグロー放
電分解装置の概略図、第3図は本発明の電子写真感光体
に係る表面保護層のシリコン原子とカーボン原子の原子
比率に対する相対的硬度を示す線図である。 1・・・基板  2・・・キャリア注入阻止層3・・・
光導電層  4・・・表面保護層代理人   弁理士 
1)原 勝 彦 第1図 第8図
FIG. 1 is a cross-sectional view of an electrophotographic photoreceptor used in an embodiment of the present invention, FIG. 2 is a schematic diagram of a glow discharge decomposition apparatus used in an embodiment of the present invention, and FIG. 3 is a cross-sectional view of an electrophotographic photoreceptor of the present invention. FIG. 2 is a diagram showing relative hardness to the atomic ratio of silicon atoms and carbon atoms of a surface protective layer related to a body. 1... Substrate 2... Carrier injection blocking layer 3...
Photoconductive layer 4...Surface protective layer agent Patent attorney
1) Katsuhiko Hara Figure 1 Figure 8

Claims (1)

【特許請求の範囲】[Claims] シリコンカーバイド生成用ガスを用いてグロー放電分解
法により表面保護層にシリコンカーバイドを形成した電
子写真感光体において、前記ガスにシランガスとメタン
ガスを用いると共に表面保護層のシリコン原子とカーボ
ン原子の原子比率をSi_(_1_−_x_)C_xと
表して0.2≦x≦0.6の範囲になるようにしたこと
を特徴とする電子写真感光体。
In an electrophotographic photoreceptor in which silicon carbide is formed on a surface protective layer by a glow discharge decomposition method using a silicon carbide generating gas, silane gas and methane gas are used as the gas, and the atomic ratio of silicon atoms and carbon atoms in the surface protective layer is adjusted. An electrophotographic photoreceptor characterized in that Si_(_1_-_x_)C_x satisfies a range of 0.2≦x≦0.6.
JP60219651A 1985-10-01 1985-10-01 Electrophotographic photoreceptor Expired - Lifetime JPH0778642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60219651A JPH0778642B2 (en) 1985-10-01 1985-10-01 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60219651A JPH0778642B2 (en) 1985-10-01 1985-10-01 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPS6278567A true JPS6278567A (en) 1987-04-10
JPH0778642B2 JPH0778642B2 (en) 1995-08-23

Family

ID=16738850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60219651A Expired - Lifetime JPH0778642B2 (en) 1985-10-01 1985-10-01 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JPH0778642B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200047A (en) * 1981-06-02 1982-12-08 Nippon Telegr & Teleph Corp <Ntt> Electrophotographic photoreceptor
JPS58192044A (en) * 1982-05-06 1983-11-09 Konishiroku Photo Ind Co Ltd Photoreceptor
JPS59119358A (en) * 1982-12-27 1984-07-10 Toshiba Corp Photosensitive body for electrophotography

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200047A (en) * 1981-06-02 1982-12-08 Nippon Telegr & Teleph Corp <Ntt> Electrophotographic photoreceptor
JPS58192044A (en) * 1982-05-06 1983-11-09 Konishiroku Photo Ind Co Ltd Photoreceptor
JPS59119358A (en) * 1982-12-27 1984-07-10 Toshiba Corp Photosensitive body for electrophotography

Also Published As

Publication number Publication date
JPH0778642B2 (en) 1995-08-23

Similar Documents

Publication Publication Date Title
US4555464A (en) Amorphous silicon electrophotographic photosensitive materials
EP0926560B1 (en) Electrophotographic photosensitive member
EP0531625A1 (en) Light-receiving member
JPS60243663A (en) Electrophotographic sensitive body
JPS6067955A (en) Electrophotographic sensitive body
JPS6278567A (en) Electrophotographic sensitive body
JPS62231264A (en) Electrophotographic sensitive body
JP2811312B2 (en) Electrophotographic photoreceptor, method of manufacturing the same, and electrophotographic recording apparatus equipped with the photoreceptor
JPS59224847A (en) Photosensitive body
JPS63136514A (en) Manufacture of amorphous silicon carbide film
JPS6385752A (en) Production of electrophotographic sensitive body
JPS6329762A (en) Electrophotographic sensitive body
JPS634240A (en) Electrophotographic sensitive body
JPS634239A (en) Electrophotographic sensitive body
JP2608418B2 (en) Manufacturing method of photoconductive member
JPS63135954A (en) Electrophotographic sensitive body
JP2608417B2 (en) Manufacturing method of photoconductive member
JPS635348A (en) Electrophotographic sensitive body
JPS63271356A (en) Electrophotographic sensitive body
JP2742583B2 (en) Electrophotographic photoreceptor
JPS634242A (en) Electrophotographic sensitive body
JPS63127248A (en) Electrophotographic sensitive body
JPS6332558A (en) Electrophotographic sensitive body
JPS6330855A (en) Electrophotographic sensitive body
JPS6361260A (en) Electrophotographic sensitive body

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term