JPS6277562A - Refrigeration cycle - Google Patents

Refrigeration cycle

Info

Publication number
JPS6277562A
JPS6277562A JP21491885A JP21491885A JPS6277562A JP S6277562 A JPS6277562 A JP S6277562A JP 21491885 A JP21491885 A JP 21491885A JP 21491885 A JP21491885 A JP 21491885A JP S6277562 A JPS6277562 A JP S6277562A
Authority
JP
Japan
Prior art keywords
expander
compressor
refrigeration cycle
refrigerant
compression mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21491885A
Other languages
Japanese (ja)
Inventor
守田 慶一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21491885A priority Critical patent/JPS6277562A/en
Publication of JPS6277562A publication Critical patent/JPS6277562A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Saccharide Compounds (AREA)
  • Fats And Perfumes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、冷凍サイクルに関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a refrigeration cycle.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、圧縮機、凝縮器、膨張装置、蒸発器とを順次連通
してなる冷凍サイクルを備えた冷凍サイクルにおいては
膨張装置はキャピラリ等が用いられていた。このキャピ
ラリでは凝縮した冷媒な細径の配管を通すことにより減
圧、膨張させるのみで、減圧装置で発生する冷媒の膨張
エネルギーが有効利用されず、無駄になっていた。
Conventionally, in a refrigeration cycle including a refrigeration cycle in which a compressor, a condenser, an expansion device, and an evaporator are connected in sequence, a capillary or the like has been used as the expansion device. This capillary only reduces the pressure and expands the condensed refrigerant by passing it through a small diameter pipe, and the expansion energy of the refrigerant generated in the pressure reducing device is not effectively utilized and was wasted.

そこで、この冷媒の膨張エネルギーを利用するものとし
て、例えば実開昭55−10988号公報に示されるよ
うに減圧装置として膨張タービンを設け、この膨張ター
ビンの回転によりファンモータを回転させるものがある
。これによれば、冷媒の膨張エネルギーを熱交換器への
送風に利用することが可能となり冷凍サイクル全体の効
率が向上する。
Therefore, as a method of utilizing the expansion energy of the refrigerant, for example, as shown in Japanese Utility Model Application Laid-Open No. 55-10988, an expansion turbine is provided as a pressure reducing device, and a fan motor is rotated by the rotation of the expansion turbine. According to this, the expansion energy of the refrigerant can be used for blowing air to the heat exchanger, and the efficiency of the entire refrigeration cycle is improved.

しかしながら、このよjな装置においては冷媒の膨張エ
ネルギー!サイクル外部−のファンへの駆動に用いるた
め、膨張タービンの回転軸を密封する必要があり、技術
的に困難であり、装置が高価なものになってしま)とい
5欠点があった。
However, in such a device, the expansion energy of the refrigerant! Since it is used to drive a fan outside the cycle, it is necessary to seal the rotating shaft of the expansion turbine, which is technically difficult and makes the device expensive.

〔発明の目的〕[Purpose of the invention]

本発明は、冷媒の膨張エネルギーを回収することにより
冷凍サイクル全体の効率向上を得るとともに、構造が簡
単で、冷媒の密閉が容易な冷凍サイクルを得ることを目
的とする、 〔発明の概要〕 本発明は、圧縮機の圧縮機構と同軸に膨張機を設け、圧
縮機構、凝縮器、膨張機、蒸発器とを順次連通し、冷媒
の膨張エネルギーを圧縮機構の回転エネルギーに加え、
冷凍サイクル全体の効率を向上させた冷凍サイクルであ
る。
[Summary of the Invention] The present invention aims to improve the efficiency of the entire refrigeration cycle by recovering the expansion energy of the refrigerant, and to obtain a refrigeration cycle with a simple structure and easy sealing of the refrigerant. The invention provides an expander coaxially with the compression mechanism of the compressor, sequentially communicates the compression mechanism, condenser, expander, and evaporator, and adds the expansion energy of the refrigerant to the rotational energy of the compression mechanism.
This is a refrigeration cycle that improves the efficiency of the entire refrigeration cycle.

〔発明の実施例〕[Embodiments of the invention]

本発明の7実施例を第1図乃至第5図に基づいて説明す
る。圧縮機1は密閉型ロータリー圧縮機であり、圧縮機
内部は高圧となっている。圧縮機1円にはモータ部分で
あるステータ10.ロータ11が設けられ、モータ部分
の下部には圧縮機構が配置されている。圧縮機構は、コ
ンプレッサシリンダ20、コンプレッサローラー21等
から構成されている。さらに圧縮機1円の圧縮機構下部
には膨張機が設けられている。本実施例ではこの膨張機
はスライディング々つ型としているがローリングピスト
ン型、タービン屋等でもよい。膨張機は膨張機入口管3
0から冷媒を吸入し、膨張機圧縮機1内の回転部分であ
るモータ部分、圧縮機構、膨張・機はすべてシャフト6
を軸とし、モータ部分と圧縮機構の間のシャフト6の回
りにはメインベアリング7、圧縮機構と膨張機の間は仕
切板8、そして膨張機のシャフト6回りにはサブベアリ
ング9が設けられている。
Seven embodiments of the present invention will be described based on FIGS. 1 to 5. The compressor 1 is a hermetic rotary compressor, and the inside of the compressor is under high pressure. 1 yen of the compressor has a stator 10, which is the motor part. A rotor 11 is provided, and a compression mechanism is arranged below the motor portion. The compression mechanism includes a compressor cylinder 20, a compressor roller 21, and the like. Further, an expander is provided below the compression mechanism of the compressor. In this embodiment, the expander is of a sliding type, but may be of a rolling piston type, a turbine type, or the like. The expander is expander inlet pipe 3
The refrigerant is sucked in from 0, and the rotating parts of the expander-compressor 1, such as the motor, compression mechanism, and expansion/machine, are all connected to the shaft 6.
A main bearing 7 is provided around the shaft 6 between the motor part and the compression mechanism, a partition plate 8 is provided between the compression mechanism and the expander, and a sub-bearing 9 is provided around the shaft 6 of the expander. There is.

なお、圧縮機構でにサクションカップ24から吸込管2
3を通じて吸込まれた冷媒が圧縮室25で圧縮され、圧
縮機1内の空間に吐出され、吐出管26から外部へと送
出される。、13はモータ部た に電力を供給するそめの端子である。市た、圧縮機1内
の下部にはシャフト6の回転を円滑に行な’Sr:2h
の油(図示せず)が溜られている。
Note that the compression mechanism connects the suction cup 24 to the suction pipe 2.
The refrigerant sucked through the compressor 3 is compressed in the compression chamber 25, discharged into the space within the compressor 1, and sent out from the discharge pipe 26. , 13 are terminals for supplying electric power to the motor section. In the lower part of the compressor 1, the shaft 6 is rotated smoothly.
of oil (not shown) is collected.

次に第2図により膨張機部分ケ詳細に説明する。Next, the expander section will be explained in detail with reference to FIG.

膨張機入口管30は膨張室35へと連通する。膨張室3
5は4室あり、それぞ−れのベーン34及び膨張機シリ
ンダ32、膨張機ローラ31により仕ぜられている。そ
して、シャフト6の回転により各膨張室35は膨張機入
口管30との連通時から各膨張機出口管33との連通時
に至るまでVr:漸時体積が増大するように形成されて
いる、なお膨張機出口管33の膨張室35への連通部分
には膨張量を増大させるために副室36が設けらnてい
る。
Expander inlet pipe 30 communicates with expansion chamber 35 . Expansion chamber 3
5 has four chambers, each of which is served by a vane 34, an expander cylinder 32, and an expander roller 31. The rotation of the shaft 6 causes each expansion chamber 35 to gradually increase in volume from the time of communication with the expander inlet pipe 30 to the time of communication with each expander outlet pipe 33. A subchamber 36 is provided in a portion of the expander outlet pipe 33 that communicates with the expansion chamber 35 in order to increase the amount of expansion.

以上のような構成からなる圧縮機を用いた本実施例の冷
凍サイクルな第2図、第3図により説明する・、圧縮機
1の吐出管26は凝縮器2人口に接続され、凝縮器2の
出口は配管3により圧縮機1円の膨張機入口管30に接
続されている、そして膨張機出口管33は配管4により
蒸発器5人口に接続され、蒸発器5出口は、圧縮機1の
吸込管23に接続されて冷凍サイクルが構成されている
The refrigeration cycle of this embodiment using the compressor configured as above will be explained with reference to FIGS. 2 and 3. The discharge pipe 26 of the compressor 1 is connected to the condenser 2, and The outlet of the evaporator 5 is connected to the expander inlet pipe 30 of the compressor 1 by a pipe 3, and the expander outlet pipe 33 is connected to the evaporator 5 by a pipe 4. A refrigeration cycle is configured by being connected to the suction pipe 23.

以下、本実施例の動作を説明する。圧縮機1の圧縮機構
で圧縮さrた冷媒は、吐出管26から凝縮器2へ送られ
る。そして、凝縮器2で凝縮された冷媒は配管3、圧縮
機1の膨張機入口管3oを通り、膨張室35へと流入す
る。膨張室35へ流入した冷媒は高圧であり、流入方向
とシャフト6の位置により冷媒の膨張力は圧縮機構の冷
媒圧縮方向へとシャフト6を回転させるよ5に働く。
The operation of this embodiment will be explained below. The refrigerant compressed by the compression mechanism of the compressor 1 is sent to the condenser 2 from the discharge pipe 26. The refrigerant condensed in the condenser 2 passes through the pipe 3 and the expander inlet pipe 3o of the compressor 1, and flows into the expansion chamber 35. The refrigerant flowing into the expansion chamber 35 is under high pressure, and depending on the direction of inflow and the position of the shaft 6, the expansion force of the refrigerant acts 5 to rotate the shaft 6 in the refrigerant compression direction of the compression mechanism.

これにより冷媒の膨張エネルギーがモータ駆動力に加算
され、圧縮機構の冷媒圧縮に用いられる。
As a result, the expansion energy of the refrigerant is added to the motor driving force, and is used for refrigerant compression in the compression mechanism.

従ってモータの入力C’f!i、力)はこの冷媒の膨張
エネルギー分だけ少なくて済み、圧縮機の圧縮効率、冷
凍サイクル全体の効率が向上する。
Therefore, the motor input C'f! i, force) is reduced by the expansion energy of this refrigerant, improving the compression efficiency of the compressor and the efficiency of the entire refrigeration cycle.

また、膨張機全体が密閉型圧縮機の内部に設けられてい
るため、膨張機の軸すなわちシャフト6を封止する必要
が、なく、困難な軸封技術が不用となる。
Further, since the entire expander is provided inside the hermetic compressor, there is no need to seal the expander shaft, that is, the shaft 6, and difficult shaft sealing techniques are not required.

さらに、膨張機の軸と圧縮機構の軸を同一のシャフトで
兼用し定ため、部品数が少なくて丁み、膨張機の軸への
給油も圧縮機構0始油構造と兼用できる。
Furthermore, since the same shaft is used as both the expander shaft and the compression mechanism shaft, the number of parts is reduced, and the expander shaft can also be supplied with oil using the zero oil start structure of the compression mechanism.

なお、本実施例のような高圧型圧IMIHの場合、圧縮
機内が高圧のため膨張機ベーンの背圧を容易に得ること
が可能となる。
In the case of a high-pressure type IMIH as in this embodiment, the pressure inside the compressor is high, so it is possible to easily obtain the back pressure of the expander vanes.

また、膨張機中では冷媒が蒸発し、圧縮機構が冷却され
るため、圧縮機構の体積効率が向上する。
Furthermore, since the refrigerant evaporates in the expander and the compression mechanism is cooled, the volumetric efficiency of the compression mechanism is improved.

さらに、圧縮機ンインバータ装置等により可変速するも
のにおいては、圧縮機構と膨張機構と膨張機との軸がシ
ャフトにより兼用されているだめ圧縮機構のロータの回
転数と膨張機のローターの回転数が同期し、適正な絞り
量が得られる、なお、本実施例では、膨張機を圧縮機構
の下部に配置し1.′が、圧縮機構の上部に配置しても
良い。
In addition, in the case of variable speed compressor inverter devices, etc., the rotation speed of the rotor of the compression mechanism and the rotation speed of the rotor of the expander are two-dimensional. In this embodiment, the expander is placed below the compression mechanism, and 1. ' may be placed at the top of the compression mechanism.

また、第4図、第5図に模式的に示すよ5に圧縮機構の
ガス負荷C図中A矢印)と、膨張機のガス負荷(図中B
矢印)とが打ち消し合へよ’1だ両口−ター21.31
の位置な°決めれば大巾に振動が低減する。
In addition, as schematically shown in Figures 4 and 5, 5 shows the gas load of the compression mechanism (arrow A in the diagram) and the gas load of the expander (arrow B in the diagram).
arrow) and cancel each other out '1' both mouths - tar 21.31
If you decide on the correct position, the vibration will be greatly reduced.

次に第2の実施例ケ第6図により説明する。Next, a second embodiment will be explained with reference to FIG. 6.

この実施例は、本発明をヒートポンプ式冷凍サイクルに
適用した例であり、圧縮機は第1の実施例と同様のもの
である。本実施例の冷凍サイクルは。
This embodiment is an example in which the present invention is applied to a heat pump type refrigeration cycle, and the compressor is the same as that in the first embodiment. The refrigeration cycle of this example is as follows.

圧縮機1、四方弁50、室外熱交換器51.4ケの逆止
弁からなるブリッジ回路53、膨張機、室内熱交換器5
4′%:連通し定もので、暖房時は、第6図中実線矢印
方向に冷媒が流れ、冷房時は第6図中破線矢印方向に冷
媒が流れるように四方弁50が切り換えられる。
Compressor 1, four-way valve 50, outdoor heat exchanger 51. Bridge circuit 53 consisting of four check valves, expander, indoor heat exchanger 5
4'%: Communication is constant, and the four-way valve 50 is switched so that during heating, the refrigerant flows in the direction of the solid line arrow in FIG. 6, and during cooling, the refrigerant flows in the direction of the broken line arrow in FIG.

すなわち、暖房時は圧縮機l→四方弁50→室内熱交、
換器54→逆止弁a60→配管3→膨張機→配管4−→
逆止弁c62→室外熱交換器51→四方弁50→圧縮機
1の順に冷媒が流れる。逆に冷房時には圧縮機1→四方
弁50→室外熱交換器51→逆止弁dfi3→配管3→
膨張機→配管4→逆止弁bftl→室外熱交換器54→
四方弁5o→圧縮機1の順に流れる。従って、膨張機に
は暖房、冷房いずれの場合も一方の配管3から冷媒が流
入し、他方の配管4から冷媒が流出するため、冷房暖房
ともに膨張機を利用可能である。
In other words, during heating, compressor l → four-way valve 50 → indoor heat exchanger,
Exchanger 54 → Check valve a60 → Piping 3 → Expander → Piping 4- →
The refrigerant flows in the order of check valve c62 → outdoor heat exchanger 51 → four-way valve 50 → compressor 1. Conversely, during cooling, compressor 1 → four-way valve 50 → outdoor heat exchanger 51 → check valve dfi 3 → piping 3 →
Expander → Piping 4 → Check valve bftl → Outdoor heat exchanger 54 →
It flows in the order of four-way valve 5o → compressor 1. Therefore, in both heating and cooling, refrigerant flows into the expander from one pipe 3 and refrigerant flows out from the other pipe 4, so the expander can be used for both cooling and heating.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、圧縮機内に圧縮機構と同軸の膨張機を
設け、圧縮機構、凝縮器、膨張機、蒸発器を順次連通し
て冷凍サイクルを構成したため、膨張機の軸を軸封する
等の困難な手段v1s丁ことなく、冷媒の膨張エネルギ
ーV冷媒圧IIK利用することができ、圧縮機の圧縮効
率、冷凍サイクル全体の効率を向上させることができる
According to the present invention, an expander coaxial with the compression mechanism is provided in the compressor, and the compression mechanism, condenser, expander, and evaporator are sequentially connected to form a refrigeration cycle, so that the shaft of the expander can be sealed, etc. It is possible to utilize the expansion energy of the refrigerant (V refrigerant pressure IIK) without the difficult measures, and it is possible to improve the compression efficiency of the compressor and the efficiency of the entire refrigeration cycle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る冷凍サイクルに用いら
れる圧縮機を概略的に示す縦断面図、第2図は同実施例
の圧縮機内の膨張機を概略的に示す横断面口、第3図は
同実施例の冷凍サイクル図、第4図は同実施例の圧縮機
のガス負荷を模式的に表わす図、第5図は同実施例の膨
張機のガス負荷を模1式的に表わす図、第6図は本発明
の第2実施例に係る冷凍サイクルの冷凍サイクル図であ
る。 1・−圧縮機     2・・・s!1Iii器5・・
・蒸発器     6・・・シャフト20・−シリンダ
   21・・・ローラ23・・・吸込口    25
・・・圧縮室26・・・吐出口    30・・・膨張
機入口管31・・・膨張機ローラ 32・・・膨張機シ
リンダ33・−膨張機出口管 34・−ベーン35・・
・膨張室 代理人 弁理士 則 近 憲 佑 同  湯山幸夫 第1図 第2図 第3図 第4図 第5図 F%1 第6図
FIG. 1 is a vertical cross-sectional view schematically showing a compressor used in a refrigeration cycle according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view schematically showing an expander in the compressor of the same embodiment. Fig. 3 is a refrigeration cycle diagram of the same example, Fig. 4 is a diagram schematically representing the gas load on the compressor of the same example, and Fig. 5 is a diagram schematically representing the gas load on the expander of the same example. FIG. 6 is a refrigeration cycle diagram of a refrigeration cycle according to a second embodiment of the present invention. 1.-Compressor 2...s! 1Iiii device 5...
・Evaporator 6...Shaft 20・-Cylinder 21...Roller 23...Suction port 25
... Compression chamber 26 ... Discharge port 30 ... Expander inlet pipe 31 ... Expander roller 32 ... Expander cylinder 33 - Expander outlet pipe 34 - Vane 35 ...
・Expansion Chamber Agent Patent Attorney Nori Ken Chika Yukio Yuyama Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 F%1 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 圧縮機内に圧縮機構と、この圧縮機構と同軸の膨張機と
を設け、前記圧縮機構、凝縮器、前記膨張機、蒸発器と
を順次連通してなることを特徴とする冷凍サイクル。
A refrigeration cycle characterized in that a compression mechanism is provided in a compressor, and an expander coaxial with the compression mechanism is provided, and the compression mechanism, condenser, expander, and evaporator are successively communicated with each other.
JP21491885A 1985-09-30 1985-09-30 Refrigeration cycle Pending JPS6277562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21491885A JPS6277562A (en) 1985-09-30 1985-09-30 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21491885A JPS6277562A (en) 1985-09-30 1985-09-30 Refrigeration cycle

Publications (1)

Publication Number Publication Date
JPS6277562A true JPS6277562A (en) 1987-04-09

Family

ID=16663733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21491885A Pending JPS6277562A (en) 1985-09-30 1985-09-30 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JPS6277562A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1411309A3 (en) * 2002-10-18 2004-04-28 Matsushita Electric Industrial Co., Ltd. Expander
JP2006105564A (en) * 2004-10-08 2006-04-20 Daikin Ind Ltd Fluid machine
JP2007211784A (en) * 2007-04-09 2007-08-23 Daikin Ind Ltd Refrigeration unit
JP2007332974A (en) * 2007-09-10 2007-12-27 Daikin Ind Ltd Fluid machinery
JP2008145100A (en) * 2008-02-25 2008-06-26 Daikin Ind Ltd Refrigeration unit
JP2008163832A (en) * 2006-12-28 2008-07-17 Daikin Ind Ltd Fluid machine
JP2009092378A (en) * 2006-10-25 2009-04-30 Panasonic Corp Refrigeration cycle device
US8087260B2 (en) 2007-01-18 2012-01-03 Panasonic Corporation Fluid machine and refrigeration cycle apparatus
US8177532B2 (en) 2006-05-26 2012-05-15 Panasonic Corporation Expander and expander-compressor unit
US8316663B2 (en) 2007-05-16 2012-11-27 Panasonic Corporation Expander-compressor unit and refrigeration cycle apparatus having the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1411309A3 (en) * 2002-10-18 2004-04-28 Matsushita Electric Industrial Co., Ltd. Expander
US6877340B2 (en) 2002-10-18 2005-04-12 Matsushita Electric Industrial Co., Ltd. Expander
JP2006105564A (en) * 2004-10-08 2006-04-20 Daikin Ind Ltd Fluid machine
US8177532B2 (en) 2006-05-26 2012-05-15 Panasonic Corporation Expander and expander-compressor unit
JP2009092378A (en) * 2006-10-25 2009-04-30 Panasonic Corp Refrigeration cycle device
US8074471B2 (en) 2006-10-25 2011-12-13 Panasonic Corporation Refrigeration cycle apparatus and fluid machine used for the same
JP2008163832A (en) * 2006-12-28 2008-07-17 Daikin Ind Ltd Fluid machine
US8087260B2 (en) 2007-01-18 2012-01-03 Panasonic Corporation Fluid machine and refrigeration cycle apparatus
JP2007211784A (en) * 2007-04-09 2007-08-23 Daikin Ind Ltd Refrigeration unit
US8316663B2 (en) 2007-05-16 2012-11-27 Panasonic Corporation Expander-compressor unit and refrigeration cycle apparatus having the same
JP2007332974A (en) * 2007-09-10 2007-12-27 Daikin Ind Ltd Fluid machinery
JP2008145100A (en) * 2008-02-25 2008-06-26 Daikin Ind Ltd Refrigeration unit

Similar Documents

Publication Publication Date Title
US4235079A (en) Vapor compression refrigeration and heat pump apparatus
CN103765125B (en) Refrigerating circulatory device
CN100460629C (en) Expansion machine
JPWO2011055444A1 (en) Heat pump device, two-stage compressor, and operation method of heat pump device
JPS6277562A (en) Refrigeration cycle
JP2701658B2 (en) Air conditioner
JPH0886289A (en) Rolling piston type rotary machine
CN107191372A (en) Rotary compressor and the refrigerating plant with it
CN1164904C (en) Carbon dioxide transcrisis refrigeration circulation rotor type expansion energy-saving device
JP2003138901A (en) Fluid machinery
CN207004814U (en) Rotary compressor and there is its refrigerating plant
JP3216351B2 (en) Air conditioner
JPH03267592A (en) Hermetic rotary compressor
JPH11241693A (en) Compressor
CN113898596A (en) Multistage centrifugal compressor
JPH03260391A (en) Closed type rotary compressor
JPH11230072A (en) Compressor
US3908396A (en) Direct cycle heating, cooling and refrigerating apparatus
KR100585807B1 (en) Modulation type twin rotary compressor and operation method
JPH1162863A (en) Compressor
JPH02133757A (en) Two-stage compression refrigerating cycle
JPH02136588A (en) Sealed type rotary compressor
JPH0127017Y2 (en)
JPS6230698Y2 (en)
KR0161214B1 (en) Scroll compressor