JPS6276766A - Solid state image pickup device - Google Patents

Solid state image pickup device

Info

Publication number
JPS6276766A
JPS6276766A JP60217261A JP21726185A JPS6276766A JP S6276766 A JPS6276766 A JP S6276766A JP 60217261 A JP60217261 A JP 60217261A JP 21726185 A JP21726185 A JP 21726185A JP S6276766 A JPS6276766 A JP S6276766A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
type
vertical
gate
signal line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60217261A
Other languages
Japanese (ja)
Inventor
Tokuo Koizumi
小泉 徳夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP60217261A priority Critical patent/JPS6276766A/en
Publication of JPS6276766A publication Critical patent/JPS6276766A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To increase the maximum charge amount and to reduce a noise by forming a low density impurity diffused layer of the same conductivity type as a semiconductor substrate under the drain diffused layer of a switch MOS transistor for forming the titled device and laterally. CONSTITUTION:Individual photoelectric converters which form a solid state image sensor is formed of switch MOS transistors. In other words, the surface peripheral edge of a P-type semiconductor substrate 24 is enclosed by an oxide film 26, and N-type source region 21 and drain region 22 are diffused in the surface layer of the substrate 24 surround by the film 26. Then, a gate insulating film which contains a gate 23 which is used also as a vertical scanning gate is provided between the regions, the entire surface is coated with an interlayer insulating film 28, a hole is opened, and a vertical signal line 25 is attached to the exposed region 22. In this structure, buried P<-> type regions 27 are formed underside and laterally of the region 22 to increase the junction capacity and to reduce the capacity of vertical and horizontal signal lines.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体基板上に光程変換素子Sよび走査回路を
集積化した固体撮像装置′置にj′51するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is implemented in a solid-state imaging device in which a light distance conversion element S and a scanning circuit are integrated on a semiconductor substrate.

〔発明の概髪〕[Overview of the invention]

本発明はテレビカメラ等に1目いる固体撮像装置におい
て、固本撮像装・gの光電変換部の構造を第1項に記述
した如くすることによって、撮像・′時性の向上を計っ
たものである。
The present invention is a solid-state imaging device used in a television camera, etc., in which the structure of the photoelectric conversion section of the solid-state imaging device is as described in Section 1, thereby improving the imaging speed. It is.

〔従来の技術〕[Conventional technology]

従来の技術の概要を第2図(、)及び第2図(b)を用
いて説明する。
An overview of the conventional technology will be explained using FIGS. 2(a) and 2(b).

第2図(、)は二次元固体撮像装置の構成例を示す。FIG. 2(,) shows an example of the configuration of a two-dimensional solid-state imaging device.

光′辺変喚素子は元ダイオード1を用いており、光ダイ
オード1はマ) l)ツクス状に配置されている。
The light side changing element uses an original diode 1, and the photodiodes 1 are arranged in a matrix.

たとえば光ダイオード1を選択するスイッチはhros
トランジスタ2および5であり、MO3I−ランジスタ
2および3は各々垂直走査回路9及び水平走査回路10
により垂直走査ゲート4及び水平ゲート5を通じ1ff
lJ @されている。すなわち垂直走査回wI9により
選択された光ダイオード1の光情報は垂直信号課6Vこ
スイッチ用MO8)ランジヌタ2を通じ読み出される。
For example, the switch that selects photodiode 1 is hros
transistors 2 and 5; MO3I-transistors 2 and 3 are vertical scanning circuit 9 and horizontal scanning circuit 10, respectively;
1ff through vertical scanning gate 4 and horizontal gate 5
lJ has been @. That is, the optical information of the photodiode 1 selected by the vertical scanning circuit wI9 is read out through the vertical signal section 6V and the switch MO8).

次に水平走査回路10により選択されたスイッチ用MO
8)ランジスタ3は垂直信号線6にある光・清報を水平
1d号線7に読み出し、出力端8に光情報を出力する。
Next, the MO for the switch selected by the horizontal scanning circuit 10
8) The transistor 3 reads out the optical information on the vertical signal line 6 to the horizontal line 1d 7, and outputs the optical information to the output terminal 8.

このようにマトリックス状に配置された光ダイオード1
に蓄積された光情報を順次選択及び走査することにより
1画像信号として取り出すものである。
Photodiodes 1 arranged in a matrix like this
One image signal is extracted by sequentially selecting and scanning the optical information accumulated in the image signal.

スイッチ用MOSトランジスタ2及び3または垂直走査
ゲート4、水平ゲート5または垂直信号線6、水平信号
線7、出力端8は目的に応じ複数になっている場合もあ
る。
There may be a plurality of switching MOS transistors 2 and 3, vertical scanning gate 4, horizontal gate 5, vertical signal line 6, horizontal signal line 7, and output terminal 8 depending on the purpose.

第2図(b)は光電変換部の単位画素の断面構造を示す
。以下説明の便宜上、電子を信号電荷とするNチャンネ
ル型の撮像装置について述べるが、正孔を信号1荷とす
るPチャンネル型の撮像装置においても以下の説明は極
性および導電型を逆にするのみで、同様に適用できるも
のである@単位画素は、P型si単結晶からなるSt基
板14とn型拡散ノー11で形成される光ダイオード、
と同時に形成されるn型拡散層11をソースとして多結
晶S1からなるゲートf’[極13及びn型拡散層12
をドレイ/とするMO8型電界効果トランジスタで形成
される。ドレイン12はALなとの金属からなる電極1
5と接続され第1図に示す垂直信号線6を形成する。
FIG. 2(b) shows a cross-sectional structure of a unit pixel of the photoelectric conversion section. For convenience of explanation, an N-channel type imaging device that uses electrons as the signal charge will be described below, but even for a P-channel type imaging device that uses holes as the signal charge, the following explanation will only be made by reversing the polarity and conductivity type. The unit pixel which can be similarly applied is a photodiode formed by an St substrate 14 made of a P-type Si single crystal and an N-type diffusion node 11;
Gate f' [pole 13 and n-type diffusion layer 12
It is formed of an MO8 type field effect transistor with a drain/. The drain 12 is an electrode 1 made of metal such as AL.
5 to form a vertical signal line 6 shown in FIG.

光17が撮像面に入射すると口型拡散層11およびP型
Sl基板14内で電子−正孔対を発生し、この内遊子が
信号電荷としてn型拡散層11に注入され、n型拡散層
11とP型Sl基板14で形成される接合容せにより蓄
積される。垂直走査ゲート13に正のパルスが印加され
ると、正電位となっているn型拡散J1.2(ドレイン
)に上記電子すなわち信号電荷が電極15(第2図(a
)では垂直信号線6)K読み出され、第2図(轟)で説
明した如く出力端8まで読み出される。このときD型拡
散層11(ソース)は正の電位となり、次に走査される
まで光17により発生する電子を蓄積しつづけ正の電位
が低下する。このように各単位画素を選択走置し画像信
号として出力g88に取り出す〇〔発明が解決しようと
する問題点及び目的〕しかし以下の欠点を有しているた
め実用化がはばまれている。
When the light 17 is incident on the imaging surface, electron-hole pairs are generated within the mouth-shaped diffusion layer 11 and the P-type Sl substrate 14, and these inner electrons are injected as signal charges into the n-type diffusion layer 11, and the n-type diffusion layer 11 and a P-type Sl substrate 14. When a positive pulse is applied to the vertical scanning gate 13, the electrons, that is, signal charges are transferred to the n-type diffusion J1.2 (drain), which is at a positive potential, on the electrode 15 (Fig. 2(a)
), the vertical signal line 6)K is read out, and the signal is read out to the output end 8 as explained in FIG. 2 (Todoroki). At this time, the D-type diffusion layer 11 (source) has a positive potential, continues to accumulate electrons generated by the light 17 until the next scan, and the positive potential decreases. In this way, each unit pixel is selectively scanned and output as an image signal to the output g88. [Problems and Objectives to be Solved by the Invention] However, the following drawbacks prevent it from being put to practical use.

撮像装置の解像度を向上するためには、単位画素の数を
増加しなければならない。すると当然のことながら単位
lI!ii索の面積が小なくなる。必然的にn型拡散層
11の面積が小さくなり信号電荷を蓄積する8量も小さ
くなる。それと同時にn型拡散層12の数が増え、それ
と接続されている垂直信号線16の容量が増大する。以
上のことから、n型拡散層11の面積及びd量が小さく
なるために感度の低下及び最大信号「イ荷献が小さくな
る。
In order to improve the resolution of an imaging device, the number of unit pixels must be increased. Then, of course, the unit is lI! ii The area of the cord becomes smaller. Inevitably, the area of the n-type diffusion layer 11 becomes smaller, and the amount of signal charge accumulated therein also becomes smaller. At the same time, the number of n-type diffusion layers 12 increases, and the capacitance of the vertical signal line 16 connected thereto increases. From the above, since the area and the amount d of the n-type diffusion layer 11 are reduced, the sensitivity is reduced and the maximum signal charge is reduced.

また垂直信号線6の容量が増大するため電気的雑音が大
きくなる。水平信号@7についても垂直信号線6と同様
のことがいえる。このためダイナミックレンジを低下さ
せ、撮像・持件の悪化を招き、解像度の向上を計ること
が不可能であるという問題点を有している。そこで、本
発明は従来のこのような問題点を解決するため、固体撮
像装置dの最大電荷量を増加させ、垂直信号線6及び水
平信号線7の容量を低下させることにより電気的雑音を
抑圧しダイナミックレンジを増大させることにより解像
度及び撮像特性を向上させることを目的とする。
Furthermore, since the capacitance of the vertical signal line 6 increases, electrical noise increases. The same thing can be said about the horizontal signal @7 as for the vertical signal line 6. This poses a problem in that the dynamic range is reduced, the imaging quality is deteriorated, and it is impossible to improve the resolution. Therefore, in order to solve these conventional problems, the present invention suppresses electrical noise by increasing the maximum charge amount of the solid-state imaging device d and reducing the capacitance of the vertical signal line 6 and the horizontal signal line 7. The objective is to improve resolution and imaging characteristics by increasing the dynamic range.

〔問題点を解決するための千′段〕[1000 steps to solve problems]

本発明の固体撮像装置は第1導電型の半導体基板と、該
半導体基板の1主表面に1次元あるいは2次元状に配置
された上記半導体基板と逆の導電型を有する複数個の拡
散層と、からなる4数個の光′電変換素子と、該光電変
換素子の光情報を順次読み出す上記半導体の上記1主表
面に投げられたスイッチ用MOSトランジスタと走置回
路を備えた固体撮像装置において、上記スイッチ用MO
Sトランジスタのドレインの拡散層の下および横方向に
上記半導体基板と同一の導電型の不純物の濃度がぼい低
a度不純物層を股ゆたことを特徴とするO 〔作用〕 本発明の上記の構造にすることによって、光電変換素子
を形成する光ダイオードの受台容量を増加すると同時に
垂直信号線及び水平信号線の容量を低下することができ
、最大電荷量の増加、電気的雑音の低下によりダイナミ
ックレンジの増加が可り目となり、解像度の向上をさま
たげることなく撮像特性を向上させることが可能になる
のである。
The solid-state imaging device of the present invention includes a semiconductor substrate of a first conductivity type, and a plurality of diffusion layers having a conductivity type opposite to that of the semiconductor substrate arranged one-dimensionally or two-dimensionally on one main surface of the semiconductor substrate. In a solid-state imaging device comprising four or more photoelectric conversion elements consisting of , a switching MOS transistor and a scanning circuit thrown on the first main surface of the semiconductor for sequentially reading out optical information of the photoelectric conversion elements. , MO for the above switch
O characterized in that a low-a-degree impurity layer having a low concentration of impurities of the same conductivity type as the semiconductor substrate is disposed below and in the lateral direction of the drain diffusion layer of the S transistor. By adopting this structure, it is possible to increase the pedestal capacity of the photodiode forming the photoelectric conversion element and at the same time reduce the capacity of the vertical signal line and horizontal signal line, increasing the maximum charge amount and reducing electrical noise. This significantly increases the dynamic range, making it possible to improve imaging characteristics without hindering the improvement of resolution.

〔実施例〕〔Example〕

本発明の固体#L像装置纒の実施例を第1図(、)、 
(b)に示す。
An embodiment of the solid-state #L imaging device of the present invention is shown in FIG.
Shown in (b).

第2図に示した従来の単位画素と比較して異なる点は、
n型拡散層22の下Hよび横方向にP型不純物濃度の低
いp−jd 27を設けている。P一層27はn型拡散
層22の真下に埋込層として形成しても同様な効果を得
る。すなわち光ダイオードを形成するn型拡散層21と
P型半導体基板24のn−P接合部量を大きくするため
にP型半導体基板の濃度を自由に大きく接定した場合で
も、垂直信号線6の容量はn型拡散層22とP一層27
の接合容量で決定されるため、増の口することがない。
The differences compared to the conventional unit pixel shown in Figure 2 are as follows.
A p-jd layer 27 having a low concentration of P-type impurities is provided below the n-type diffusion layer 22 and in the lateral direction. The same effect can be obtained even if the P layer 27 is formed as a buried layer directly under the n-type diffusion layer 22. In other words, even if the concentration of the P-type semiconductor substrate is freely set to a large value in order to increase the amount of n-P junction between the n-type diffusion layer 21 and the P-type semiconductor substrate 24 that form the photodiode, the vertical signal line 6 The capacitance is the n-type diffusion layer 22 and the P layer 27
Since it is determined by the junction capacitance, there is no need to increase it.

これは換言すると、垂[頁信号線6の容置成分となるn
型拡散層22とP一層27の接合部量と、光ダイオード
を形成するn型拡散層21とP型半導体基板24の接合
部tは互いに分離されているため、各々の容量は自由に
設定可能となる。また水平信号線7の容量についても垂
直信号線6と同様のことがいえる。〔第1図(b)〕 光ダイオードの接合容量と当直スイッチ用MOSトラン
ジスタのドレイ/の接合容管のちがいは、n型拡散層2
1及び22の接合部の面積及び不純物濃度を同一と仮定
すると、n型拡散ノーと接合している導電体の不純物濃
度の差ということになる。
In other words, this means that n is the vertical component of the page signal line 6.
Since the amount of the junction between the type diffusion layer 22 and the P layer 27 and the junction t between the n-type diffusion layer 21 and the P-type semiconductor substrate 24 that form the photodiode are separated from each other, the capacitance of each can be set freely. becomes. The same can be said about the capacitance of the horizontal signal line 7 as that of the vertical signal line 6. [Figure 1(b)] The difference between the junction capacitance of the photodiode and the drain/junction capacitance of the duty switch MOS transistor is that the n-type diffusion layer 2
Assuming that the area and impurity concentration of the junctions 1 and 22 are the same, this is the difference in the impurity concentration of the conductor connected to the n-type diffusion node.

すなわち接合容量はn型拡散層21及び22と接合して
いるP型半導体24の不純物*i及びP一層の不純物濃
度のA乗に比例するため、PW半導体基板24の不純物
濃度がP−/−の不純物4度より大きくしであることか
ら、光ダイオードの単位面積当りの接合容量の方が、岳
直スインテ用MOSトランジスタのドレインの単位面積
当りの接合部量より大きい。
That is, since the junction capacitance is proportional to the A power of the impurity concentration of the P-type semiconductor 24 which is in contact with the n-type diffusion layers 21 and 22 and the impurity concentration of the P layer, the impurity concentration of the PW semiconductor substrate 24 is P-/- Since the impurity is larger than 4 degrees, the junction capacitance per unit area of the photodiode is larger than the junction amount per unit area of the drain of the MOS transistor for direct integration.

このようなことから光ダイオード及び垂直信号線と水平
信号線の容量を各々分離して設定可能となる。
For this reason, it becomes possible to separately set the capacitance of the photodiode, the vertical signal line, and the horizontal signal line.

〔発明の効果〕〔Effect of the invention〕

本発明は固体撮像装置の単位画素の垂直走査スイッチ用
MOSトランジスタのドレインであるn型拡散層の下も
しくは横方向にP一層を形成する構成としたので、元ダ
イオードを形成するn型拡散層とP型半導体基板の接合
部量を大きくでき、また同時に垂直信号線及び水平信号
線の容量を小さくすることが可能となり、従って最大信
号′笹荷量の増加、電気的雑音の低下が可能となり、こ
れらによりダイナミックレンジの拡大が容易になり固体
撮像装置の撮像特性の向上を計ることが可・1ヒになる
という効果が得られる。また解像度を向上させるため単
位1面素の数を大きくし、それに伴なって単位画素のサ
イズが小さくなっても、以上説明した如く撮像特性を悪
化することなく、解像度の向上を計ることが可能である
という効果が得られる。
The present invention has a structure in which a single P layer is formed below or in the lateral direction of the n-type diffusion layer which is the drain of the vertical scanning switch MOS transistor of the unit pixel of the solid-state imaging device. It is possible to increase the amount of joints on the P-type semiconductor substrate, and at the same time, it is possible to reduce the capacitance of the vertical and horizontal signal lines, thereby increasing the maximum signal load and reducing electrical noise. As a result, it is easy to expand the dynamic range, and it is possible to improve the imaging characteristics of the solid-state imaging device. Furthermore, even if the number of pixels per unit pixel is increased in order to improve the resolution, and the size of the unit pixel is accordingly reduced, it is possible to improve the resolution without deteriorating the imaging characteristics as explained above. The effect is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(、)は本発明による固体撮1象装置の単位画素
のIfr面図であり、第1図(b)は固体撮像装置のス
インチ用MOSトランジスタの断面図であり、第2図(
、)は従来の固体撮像装置の回路図であり、第2図(b
)は従来の固体撮像装置の単位画素の断面図であ゛る。 1・・・・・・光ダイオード 2・・・・・・垂直走査スイッチ用MOSトランジスタ 3・・・・・・水平走置スイッチ用MOSトランジスタ 4・・・・・・垂直走査ゲート及び配線5・・・・・・
水平走査ゲート及び配線6・・・・・・垂直信号線 7・・・・・・水平信号線 8・・・・・・出力端 9・・・・・・垂直走査回路 10・・・・・水平走査回路 11・・・・・・n型拡散層(ソース)12・・・・・
・n型拡散層(ドレイン)16・・・・・・ゲート電極
(垂直走査ゲート及び配線)14・・・・・・P型半導
体基板 15・・・・・・配線(垂直信号線) 18・・・・・・層間膜 21・・・・・・n型拡散層(ノース)22・・・・・
・n型拡散1d (ドレイン)25・・・・・・ゲート
(垂直走置ゲート及び配、!Iり24・・・・・・P型
半導体基板 25・・・・・・配線(垂直信号線) 26・・・・・・酸化膜 27・・・・・・P一層 28・・・・・・層間膜 31・・・・・・n型拡散1−(ソース)32・・・・
・・n型拡赦f−(ドレイン)33・・・・・・ゲート
(水平走査ゲート及び配線)54・・・・・・P型半導
体基板 35・・・・・・配線(水平信号線) 36・・・・・・酸化膜 37・・・・・・P−・讐 38・・・・・・層間膜 40・・・・・・配線(垂IM信号線)0以上 メl雪 (1>) 舅フ」(b)
FIG. 1(,) is an Ifr plane view of a unit pixel of a solid-state imaging device according to the present invention, FIG.
) is a circuit diagram of a conventional solid-state imaging device, and Fig. 2(b) is a circuit diagram of a conventional solid-state imaging device.
) is a cross-sectional view of a unit pixel of a conventional solid-state imaging device. 1... Photodiode 2... MOS transistor for vertical scanning switch 3... MOS transistor for horizontal scanning switch 4... Vertical scanning gate and wiring 5.・・・・・・
Horizontal scanning gate and wiring 6... Vertical signal line 7... Horizontal signal line 8... Output end 9... Vertical scanning circuit 10... Horizontal scanning circuit 11...N-type diffusion layer (source) 12...
・N-type diffusion layer (drain) 16...Gate electrode (vertical scanning gate and wiring) 14...P-type semiconductor substrate 15...Wiring (vertical signal line) 18. ...Interlayer film 21...N-type diffusion layer (north) 22...
・N-type diffusion 1d (drain) 25...Gate (vertical scanning gate and wiring, !Iri 24...P-type semiconductor substrate 25...Wiring (vertical signal line) ) 26...Oxide film 27...P layer 28...Interlayer film 31...N-type diffusion 1-(source) 32...
...N-type expanded f- (drain) 33...Gate (horizontal scanning gate and wiring) 54...P-type semiconductor substrate 35...Wiring (horizontal signal line) 36...Oxide film 37...P-, 38...Interlayer film 40...Wiring (vertical IM signal line) 0 or more (1 >) “Father-in-law” (b)

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基板と、該半導体基板の1主表面に
1次元あるいは2次元状に配置された上記半導体基板と
逆の導電型を有する複数個の拡散層と、からなる複数個
の光電変換素子と、該光電変換素子の光の情報を順次読
み出す上記半導体の上記1主表面に設けられたスイッチ
用MOSトランジスタと走査回路を備えた固体撮像装置
において、上記スイッチ用MOSトランジスタのドレイ
ンの拡散層の下および横方向に、上記半導体基板と同一
の導電型の不純物の濃度が低い低濃度不純物層を設けた
ことを特徴とする固体撮像装置。
A plurality of photoconductors each comprising a semiconductor substrate of a first conductivity type, and a plurality of diffusion layers having a conductivity type opposite to that of the semiconductor substrate arranged one-dimensionally or two-dimensionally on one main surface of the semiconductor substrate. In a solid-state imaging device comprising a conversion element, a switching MOS transistor provided on the first main surface of the semiconductor for sequentially reading light information of the photoelectric conversion element, and a scanning circuit, diffusion of the drain of the switching MOS transistor is provided. A solid-state imaging device characterized in that a low concentration impurity layer having a low concentration of impurities of the same conductivity type as the semiconductor substrate is provided below the layer and in the lateral direction.
JP60217261A 1985-09-30 1985-09-30 Solid state image pickup device Pending JPS6276766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60217261A JPS6276766A (en) 1985-09-30 1985-09-30 Solid state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60217261A JPS6276766A (en) 1985-09-30 1985-09-30 Solid state image pickup device

Publications (1)

Publication Number Publication Date
JPS6276766A true JPS6276766A (en) 1987-04-08

Family

ID=16701367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60217261A Pending JPS6276766A (en) 1985-09-30 1985-09-30 Solid state image pickup device

Country Status (1)

Country Link
JP (1) JPS6276766A (en)

Similar Documents

Publication Publication Date Title
US9543350B2 (en) Solid-state imaging device and camera including discrete trench isolation structure
US20110122307A1 (en) Reduced pixel area image sensor
JPH09246514A (en) Amplification type solid-state image sensing device
US4748486A (en) Solid-state image sensor
JP2504504B2 (en) Photoelectric conversion device
US4980735A (en) Solid state imaging element
US6642561B2 (en) Solid imaging device and method for manufacturing the same
JPH08250697A (en) Amplifying type photoelectric converter and amplifying type solid-state image sensor using the same
JPH01243462A (en) Solid-state image sensor
JPH05235317A (en) Solid-state image pickup element
JPS60254886A (en) Solid-state image pickup device
JPS59178769A (en) Solid-state image pickup device
JPS6242426B2 (en)
JPS6276766A (en) Solid state image pickup device
KR100769563B1 (en) Image sensor for reducing current leakage
JP2517075B2 (en) Infrared detector
JPS6160592B2 (en)
JPS62206878A (en) Solid-state image pickup element
JPH069236B2 (en) Solid-state imaging device and manufacturing method thereof
JP2848435B2 (en) Solid-state imaging device
JPS6373658A (en) Solid-state image sensing device
JPS61226955A (en) Solid-state image pickup device
JPS62200762A (en) Solid-state image pickup device
JPS61248553A (en) Solid-state image pickup device
JPH08293592A (en) Solid state imaging apparatus