JPS6276478A - Two-dimensional radiation detector - Google Patents

Two-dimensional radiation detector

Info

Publication number
JPS6276478A
JPS6276478A JP60218774A JP21877485A JPS6276478A JP S6276478 A JPS6276478 A JP S6276478A JP 60218774 A JP60218774 A JP 60218774A JP 21877485 A JP21877485 A JP 21877485A JP S6276478 A JPS6276478 A JP S6276478A
Authority
JP
Japan
Prior art keywords
groove
photodiode
unit
unit body
silicon wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60218774A
Other languages
Japanese (ja)
Inventor
Ryoichi Sawada
澤田 良一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP60218774A priority Critical patent/JPS6276478A/en
Publication of JPS6276478A publication Critical patent/JPS6276478A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To facilitate production and to scale down a detector by overlapping unit bodies so that each scintillator on the back of one unit body can coincide with each photodetecting element of the next unit body and making a radial ray X to be detected incident. CONSTITUTION:A Si3N4 film 7 is formed by means of CVD technique, etc., on both surfaces of a silicon wafer forming a photodiode 2. Then the Si3N4 film in a groove is removed by lithographic technique so that a groove can be formed on the back of the wafer 1 (surface where no photodiode is formed), and aisotropic etching is executed with an etching solution such as KOH and APW, whereby the groove 3 is formed on a part equivalent to the back of each photodiode 2 on the surface of the silicon wafer. Then the Si3 N4 film is removed, the silicon wafer 1 is cut into the unit body, and a scintillation substance 4 is packed in the groove 3. After the scintillation substance 4 is packed, the unit body U is completed, and four unit bodies adhere to complete one block.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明はX線、γ線等の放射線を高い位置分解能で検出
することのできる2次元的放射線検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a two-dimensional radiation detector capable of detecting radiation such as X-rays and γ-rays with high positional resolution.

口、従来の技術 放射線によって検出形成される透視像とか回折像等を記
録する手段として古(から用いられている方法はX線フ
ィルムを用いる銀塩式写真法であるが可視記録が得られ
る迄に大へん時間がか\ると云う大きな欠点があった。
Conventional technology The method used since ancient times as a means of recording fluoroscopic images, diffraction images, etc. detected and formed by radiation is silver halide photography using X-ray film, but it was not used until visible records were obtained. The big drawback was that it took a lot of time.

近年になってX線イメージインテンシファイアとビデオ
録画装置を組合わせた方法が用いられるようになり、こ
れは解像力、迅速性の面で一応満足できるものであるが
、装置が大型となりかつ大へん高価であると云う問題が
ある。この他に一応位置解像力のある放射線検出法とし
て、シンチレータ七複数のホトマルチプライヤを用いる
方法があるが、個々−のホトマルチプライヤが場所をと
るため位置解像力は低い。又、X線CTに一般的に用い
られている方法として一つの電離箱内に複数の電極板を
並べたものがあるが、これは走査してデータ収集後コン
ピュータ処理しなければ二次元画像が得られず、分解能
も1mmが限度であり走査時の振動によるノイズの問題
もある。またホトダイオードとシンチレータを組合わせ
たものを一画素分の放射線検出語として、これを−列に
配列したものが提案されているが、一画素0.5mm角
程度が限度であり、各ホトダイオードの結線を考えると
、2次元的な配列を構成することは困難であり、一画素
分ずつの単位素子を一々接着するので、制作が大へん面
倒である。
In recent years, a method that combines an X-ray image intensifier and a video recording device has been used, and although this method is somewhat satisfactory in terms of resolution and speed, the device is large and requires a lot of effort. The problem is that it is expensive. In addition to this, there is a method of using a photomultiplier with seven scintillators as a radiation detection method that has a certain degree of positional resolution, but the positional resolution is low because each photomultiplier takes up space. In addition, a method commonly used for X-ray CT is to arrange multiple electrode plates in one ionization chamber, but this method requires scanning and computer processing after data collection to produce a two-dimensional image. The resolution is limited to 1 mm, and there is also the problem of noise due to vibrations during scanning. Furthermore, it has been proposed that a combination of a photodiode and a scintillator is used as a radiation detection word for one pixel, and these are arranged in a - column, but the limit is that one pixel is about 0.5 mm square, and the wiring of each photodiode is Considering this, it is difficult to construct a two-dimensional array, and the production is very troublesome because unit elements for each pixel are glued one by one.

近年、医療方面、材料、製品の検査、オートラジオグラ
フィ等色々な方面で高解像力、迅速性でかつ小型安価な
2次元的放射線検出器が求められているが、上述したよ
うに満足できるものは提案されていない。
In recent years, there has been a demand for high-resolution, quick, small, and inexpensive two-dimensional radiation detectors in various fields such as medical care, material and product inspection, and autoradiography. Not proposed.

ハ6発明が解決しようとする問題点 上述した状況に鑑み、本発明は制作が容易で小型にでき
、従って安価でかつ解像力の優れた2次元的な放射線検
出器を提供するものである。
C.6 Problems to be Solved by the Invention In view of the above-mentioned circumstances, the present invention provides a two-dimensional radiation detector that is easy to produce, can be made compact, and therefore inexpensive and has excellent resolution.

二9問題点解決のための手段 第1図に示すように半導体基板1の表面に基板の一辺に
沿ってアレー状に複数の受光素子2を配列形成し、同基
板の裏面に各受光素子2に対応させて溝3を形成して、
その溝にシンチレーション物質4を充填してシンチレー
タを形成したものを一単位体Uとし、このような単位体
Uを一つの単位体の裏面の各シンチレータが次の単位体
の各受光素子と一致するように重ね合せ、各単位体の受
光素子配列に沿う端縁に垂直の方向から検出すべき放射
線Xを入射させるようにした。
29 Means for Solving Problems As shown in FIG. 1, a plurality of light receiving elements 2 are formed on the surface of a semiconductor substrate 1 in an array along one side of the substrate, and each light receiving element 2 is formed on the back surface of the substrate. A groove 3 is formed corresponding to the
The groove is filled with scintillation material 4 to form a scintillator, and this is referred to as one unit U, and each scintillator on the back side of one unit U matches each light receiving element of the next unit. The radiation X to be detected is made to enter the edge of each unit along the light-receiving element array from a direction perpendicular to the edge of each unit.

ホ1作用 単位体Uの溝3が開口している端縁は単位体を多数重ね
ると、集合して一つの面を構成し、この面が放射線の入
射面Fとなる。この面で各溝3内に形成されたシンチレ
ータは溝壁及び隣の単位体−の受光素子に囲まれて、そ
の囲まれた中で放射されたシンチレーション光は、その
溝に面した受光素子にのみ受光れさるので、溝3によっ
て区画された各シンチレータが放射線入射面の一画素を
構成する。溝3は基板1の端縁に開口しているので、シ
ンチレータは放射線入射面Fにおいて露出しており、放
射線Xがシンチレータ内に入射できるようになっている
When a large number of units are stacked, the edges of the active units U where the grooves 3 are opened collectively form one surface, and this surface becomes the radiation incident surface F. The scintillator formed in each groove 3 on this surface is surrounded by the groove wall and the light receiving element of the adjacent unit, and the scintillation light emitted within the surroundings is directed to the light receiving element facing the groove. Each scintillator defined by the groove 3 constitutes one pixel on the radiation incident surface. Since the groove 3 is open at the edge of the substrate 1, the scintillator is exposed at the radiation entrance surface F, and the radiation X can enter the scintillator.

へ、実施例 第2図は本発明の一実施例の2次元的放射線検出器の制
作過程を示す。この実施例は一枚のシリi      
コンチップの表面に4個のホトダイオードを形成し、裏
面に各ホトダイオードに合わせて4本の溝を形成してシ
ンチレーション物質を充填した単位1      体を
4枚重ねて接着して、−個の検出器ブロック□ を構成したもので、第2図eが完成品の正面図である。
Embodiment FIG. 2 shows the manufacturing process of a two-dimensional radiation detector according to an embodiment of the present invention. This example consists of one sheet of series i.
Four photodiodes are formed on the front surface of a conchip, four grooves are formed on the back surface to match each photodiode, and four grooves are filled with scintillation material.Four pieces are stacked and glued together to form - detector blocks. □ Figure 2e is a front view of the completed product.

このようなブロックを縦横に任意個数並べて所要面積の
放射線像撮像面を構成する。シリコンチップの厚さは0
.3〜0.6mm5この厚さに合わせてホトダイオード
の配列ピッチも0.3’       −0,6mmに
とる。
Arbitrary numbers of such blocks are arranged vertically and horizontally to configure a radiographic imaging surface of a required area. The thickness of the silicon chip is 0
.. 3 to 0.6 mm5 In accordance with this thickness, the arrangement pitch of the photodiodes is set to 0.3'-0.6 mm.

第2図a(こ通常の半導体技術で作成したフォトダイオ
□−ドを示す。これは面方位(100)のn、    
 t (P ) We ′/ ’)°yJi;&1i:
:Pt (nt) jJj、*“1     2を形成
したものである。個別受光素子のクロストークをなくす
ため、素子間にn (p )層11を形成している。5
はアルミニウム電極であり、6は5i02絶縁層である
。ホトダイオード2を形成したシリコンウェーハは第2
図すに示すように両面にSi3N4膜7をCVD技術等
で形成する。この場合既に形成しであるホトダイオード
2を損傷しないため、CvD反応はなるべ(低温で行う
のが好ましく、プラズマCVDが適している。つ工、−
ハ両面にSi3N4膜を形成したら、リソグラフィ技術
により、ウェーハ1の裏面(図で下側。
Figure 2a (shows a photodiode made using conventional semiconductor technology).
t (P) We ′/′)°yJi;&1i:
:Pt (nt) jJj, *"1 2. In order to eliminate crosstalk between the individual light receiving elements, an n (p) layer 11 is formed between the elements.5
is an aluminum electrode, and 6 is a 5i02 insulating layer. The silicon wafer on which photodiode 2 was formed is the second silicon wafer.
As shown in the figure, a Si3N4 film 7 is formed on both sides by CVD technology or the like. In this case, in order not to damage the photodiode 2 that has already been formed, the CvD reaction is preferably carried out at a low temperature, and plasma CVD is suitable.
After forming the Si3N4 film on both sides of the wafer 1, lithography is applied to the back side of the wafer 1 (lower side in the figure).

ホトダイオードを形成してない面)に溝を形成すべ(、
溝の部分のSi3N4膜を除去し、KOH。
A groove should be formed on the surface (on which no photodiode is formed).
Remove the Si3N4 film in the groove area and apply KOH.

APW等のエツチング液を用いて異方性エツチングを行
い、第2図Cに示すように、シリコンウェーハの表面の
各ホトタイオード2の裏側に当たる部分に溝3を形成す
る。その後Si3N4膜−を除去し、シリコンウェーハ
1を単位体に切断し、第2図dに示すように形成した溝
3にシンチレーション物質4を充填する。シンチレーシ
ョン物質としてはZnS (Ag)、ZnS (Cu)
、GdzO2S (P r、Ce、F)、CaWO3等
の粉末蛍光物質が適しているがCdWO4,B 14G
e3Q12等の結晶物質を用いてもかまわない。シンチ
レーション物質4を充填すれば単位体Uが完成し、この
単位体Uを第2図eに示すように4枚接着して一ブロッ
クを完成する。
Anisotropic etching is performed using an etching solution such as APW to form grooves 3 on the surface of the silicon wafer at a portion corresponding to the back side of each photodiode 2, as shown in FIG. 2C. Thereafter, the Si3N4 film is removed, the silicon wafer 1 is cut into units, and the grooves 3 formed as shown in FIG. 2d are filled with scintillation material 4. Scintillation substances include ZnS (Ag) and ZnS (Cu).
, GdzO2S (P r, Ce, F), CaWO3, etc. are suitable, but CdWO4, B 14G
A crystalline substance such as e3Q12 may also be used. When filled with scintillation substance 4, unit body U is completed, and as shown in FIG. 2e, four pieces of unit body U are glued together to complete one block.

第3図は上述実施例の単位体のU斜視図である。溝3の
長さは2mmで第1図に見られるように溝の後方2mm
の部分はホトダイオード2へ0リ一ド線接続部で、アル
ミニウム電極5が延長され、その延長端にCr−Cu−
Au等の電極パッド10が形成されており各単位体Uの
裏面には溝3の延長線上に別の溝8が形成されて、一つ
の単位体の下側になる単位体表面の各ダイオードに接続
されるリード線に対する逃げになっている。
FIG. 3 is a U perspective view of the unit of the above-mentioned embodiment. The length of groove 3 is 2 mm, and as seen in Figure 1, the length is 2 mm behind the groove.
The part marked with is a 0 lead wire connection part to the photodiode 2, and the aluminum electrode 5 is extended, and a Cr-Cu-
An electrode pad 10 made of Au or the like is formed, and another groove 8 is formed on the back side of each unit U on the extension line of the groove 3, and is connected to each diode on the surface of the unit body on the lower side of one unit U. It serves as an escape for the lead wire to be connected.

第4図は本発明の他の実施例で、溝3の内面にアルミニ
ウムの反射膜11を蒸着してシンチレーション光の集取
効率を高めたものであり、その他は第2図の実施例と同
じである。
FIG. 4 shows another embodiment of the present invention, in which an aluminum reflective film 11 is deposited on the inner surface of the groove 3 to increase the collection efficiency of scintillation light, and other aspects are the same as the embodiment shown in FIG. 2. It is.

第5図は更に他の実施例で、第2図の実施例と同じ構成
で、放射線の入射端面にBe、AI、AU等の膜12を
設けて、X線等の放射線は透過できるが、外光は入り込
めないようにすると共に、シンチレーション光はこの膜
で反射されるようにして集光効率を高めるとともに外部
光を遮断した。もちろんこの実施例で溝3の内面全体に
反射膜を形成してもよいことは云うまでもない。
FIG. 5 shows still another embodiment, which has the same configuration as the embodiment shown in FIG. 2, but has a film 12 of Be, AI, AU, etc. on the radiation incident end face, allowing radiation such as X-rays to pass through. In addition to preventing outside light from entering, scintillation light was reflected by this film, increasing light collection efficiency and blocking outside light. Of course, in this embodiment, a reflective film may be formed on the entire inner surface of the groove 3.

第6図の実施例は上側における反射膜12の代りに溝3
をウェーハ1の端縁に開口しないように形成して外光の
入射を防いだものである。
The embodiment of FIG. 6 has grooves 3 instead of the reflective film 12 on the upper side.
is formed so as not to open at the edge of the wafer 1 to prevent external light from entering.

上述した実施例では、単位体は4個の受光素子を有する
が、これは単なる一例で、もっと多数でもよいことは云
うまでもない。受光素子の型も任意で、受光素子のアレ
ー状配列であっても、ccD型、MOS型、PCD型、
SIT型等の自己走査型−次元固体撮像素子であっても
よい。また製造過程で、溝3等を形成するためのマスク
となるSi3N4膜は低温プロセスで形成したSi3N
4膜にしてもよい。溝3の形成はRIE等のドライエツ
チングを用いれば方向性の良い溝が得られる。この場合
、シリコンウェーハの面方位は(100)のものに限ら
れず、溝を形成する側の面だけマスク層を形成すればよ
い。
In the embodiment described above, the unit body has four light receiving elements, but this is just an example, and it goes without saying that a larger number may be used. The type of light receiving element is also arbitrary, and even if the light receiving element is arranged in an array, it may be CCD type, MOS type, PCD type,
It may also be a self-scanning type -dimensional solid-state imaging device such as an SIT type. In addition, during the manufacturing process, the Si3N4 film that serves as a mask for forming the grooves 3, etc. is a Si3N4 film formed in a low-temperature process.
There may be four films. When forming the grooves 3, a groove with good directionality can be obtained by using dry etching such as RIE. In this case, the plane orientation of the silicon wafer is not limited to (100), and it is sufficient to form a mask layer only on the side on which the groove is to be formed.

ト、効果 本発明放射線検出器は基板を厚さ方向に積重ねたとき基
板端縁の集合によって形成される面が撮像面になるので
、位置の分解能は基板の厚さまで高めることができ、基
板に用いられるシリコンウェーハの厚さは0.3〜0.
6の範囲であるから、分解能もこの範囲であり、基板を
重ねて撮像面を形成するので、任意の広さの撮像面を作
ることが可能である。またシンチレータは基板面に沿う
溝に充填構成され、放射線は基板端縁がら溝方向にシン
チレータ内に進入するので、シンチレータの有効長は任
意に長く作ることができ、高エネルギーのX線、γ線な
ど透過性の高い放射線に対しても容易に感度の高い撮像
素子を構成することができる。またシンチレータは溝に
充填されているので、クロストークが少<、得られる映
像の画質が良好となる。シンチレータの選択により、X
線、γ線、中性子線等幅広(、夫々の放射線に適した撮
像素子を得ることが可能である。
Effects In the radiation detector of the present invention, when the substrates are stacked in the thickness direction, the surface formed by the set of substrate edges becomes the imaging surface, so the positional resolution can be increased to the thickness of the substrate, and The thickness of the silicon wafer used is 0.3-0.
6, the resolution is also within this range, and since the imaging surface is formed by overlapping the substrates, it is possible to create an imaging surface of any size. In addition, the scintillator is constructed by filling a groove along the substrate surface, and radiation enters the scintillator from the edge of the substrate in the direction of the groove, so the effective length of the scintillator can be made arbitrarily long, allowing high-energy X-rays, gamma rays, etc. It is possible to easily construct an image sensor with high sensitivity even to highly transparent radiation such as. Furthermore, since the scintillator is filled in the groove, there is less crosstalk and the image quality of the obtained image is good. Depending on the selection of scintillator,
It is possible to obtain an imaging device suitable for a wide range of radiation such as rays, gamma rays, and neutron rays.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明放射線検出器の概念を示す分解斜視図、
第2図は本発明の一実施例をa、b。 c、d、eの順に製造過程の各段階に分けて示す図、第
3図は上記実施例の分解斜視図、第4図は本発明の他の
実施例の単位体の断面図、第5図は更に他の実施例の斜
視図、第6図は更に別の実施例の単位体の裏面斜視図で
ある。 代理人  弁理士 縣  浩 介 1U 第4図 第2図
FIG. 1 is an exploded perspective view showing the concept of the radiation detector of the present invention;
Figures 2a and 2b show an embodiment of the present invention. Figure 3 is an exploded perspective view of the above embodiment; Figure 4 is a cross-sectional view of a unit of another embodiment of the present invention; The figure is a perspective view of still another embodiment, and FIG. 6 is a rear perspective view of the unit body of still another embodiment. Agent Patent Attorney Hiroshi Agata 1U Figure 4 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の表面に同基板の一辺に沿わせて複数の受光
素子を配列形成し、同基板の裏面に表側の各受光素子に
対応させて溝を形成して、この溝にシンチレーション物
質を充填して単位体を構成し、このような単位体を、一
つの単位体の裏面の各シンチレータがもう一つの単位体
の表面の各受光素子と一致するようにして、複数枚重ね
合せ、これら各単位素子の基板の受光素子配列に沿う端
縁の集まりによって形成される面を検出すべき放射線の
入射面とした2次元的放射線検出器。
A plurality of light-receiving elements are formed on the surface of a semiconductor substrate in an array along one side of the substrate, grooves are formed on the back surface of the substrate corresponding to each light-receiving element on the front side, and these grooves are filled with a scintillation substance. A plurality of such units are stacked so that each scintillator on the back side of one unit matches each light-receiving element on the front side of the other unit, and each of these units is A two-dimensional radiation detector in which a surface formed by a collection of edges along an array of light-receiving elements of a substrate of an element is an incident surface of radiation to be detected.
JP60218774A 1985-09-30 1985-09-30 Two-dimensional radiation detector Pending JPS6276478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60218774A JPS6276478A (en) 1985-09-30 1985-09-30 Two-dimensional radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60218774A JPS6276478A (en) 1985-09-30 1985-09-30 Two-dimensional radiation detector

Publications (1)

Publication Number Publication Date
JPS6276478A true JPS6276478A (en) 1987-04-08

Family

ID=16725171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60218774A Pending JPS6276478A (en) 1985-09-30 1985-09-30 Two-dimensional radiation detector

Country Status (1)

Country Link
JP (1) JPS6276478A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4914301A (en) * 1987-04-21 1990-04-03 Kabushiki Kaisha Toshiba X-ray detector
JPH05188148A (en) * 1992-01-13 1993-07-30 Hamamatsu Photonics Kk Radiation detecting element
US5440129A (en) * 1993-10-11 1995-08-08 Siemens Aktiengesellschaft Detector for high-energy radiation
JP2006343247A (en) * 2005-06-09 2006-12-21 Nippon Kessho Kogaku Kk Component for radiation detector, and radiation detector
JP2007147598A (en) * 2005-10-24 2007-06-14 General Electric Co <Ge> Time-of-flight type competent detector for high-resolution pet
JP2009093866A (en) * 2007-10-05 2009-04-30 Fujikura Ltd Connection structure between flexible circuit board and terminal fitting
JP2009093865A (en) * 2007-10-05 2009-04-30 Fujikura Ltd Connection structure between flexible circuit board and terminal fitting

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4914301A (en) * 1987-04-21 1990-04-03 Kabushiki Kaisha Toshiba X-ray detector
JPH05188148A (en) * 1992-01-13 1993-07-30 Hamamatsu Photonics Kk Radiation detecting element
US5440129A (en) * 1993-10-11 1995-08-08 Siemens Aktiengesellschaft Detector for high-energy radiation
JP2006343247A (en) * 2005-06-09 2006-12-21 Nippon Kessho Kogaku Kk Component for radiation detector, and radiation detector
JP4603425B2 (en) * 2005-06-09 2010-12-22 日本結晶光学株式会社 Radiation detector parts and radiation detectors
JP2007147598A (en) * 2005-10-24 2007-06-14 General Electric Co <Ge> Time-of-flight type competent detector for high-resolution pet
JP2009093866A (en) * 2007-10-05 2009-04-30 Fujikura Ltd Connection structure between flexible circuit board and terminal fitting
JP2009093865A (en) * 2007-10-05 2009-04-30 Fujikura Ltd Connection structure between flexible circuit board and terminal fitting

Similar Documents

Publication Publication Date Title
US7019303B2 (en) Radiation ray detector and method of manufacturing the detector
US5773829A (en) Radiation imaging detector
TWI408828B (en) Radiation photography device
US7019302B2 (en) Radiation detector, scintillator panel, and methods for manufacturing same
US20050253073A1 (en) Gamma ray detector for positron emission tomography (pet) and single photon emisson computed tomography (spect)
EP1116048A1 (en) Semiconductor radiation detector with downconversion element
JP2002528728A (en) Computer tomograph detector
JPS61110079A (en) Radiation detector
JP2004271333A (en) Scintillator panel, image sensor and energy discriminator
JPS60236632A (en) Fourth generation ct apparatus
JPH0252995B2 (en)
US20050258369A1 (en) Radiation detector
JP2002350546A (en) X-ray detector array and its manufacturing method
EP0745869B1 (en) Apparatus for picking up image by electromagnetic wave ray
JPS6276478A (en) Two-dimensional radiation detector
JP2001153960A (en) Two-dimensional array type radiation detector
US7608836B2 (en) X-ray detector with CsI:T1 conversion layer
JPH0425513B2 (en)
JPH11295432A (en) Solid detector for ct
US4418452A (en) X-Ray detector
JPH11174156A (en) Radiation detector
JP2840941B2 (en) Multi-element radiation detector and manufacturing method thereof
JPH0442640B2 (en)
JPH1172566A (en) Gamma camera system
JPH0463555B2 (en)