JPS6273439A - Optical information recording member - Google Patents

Optical information recording member

Info

Publication number
JPS6273439A
JPS6273439A JP60211471A JP21147185A JPS6273439A JP S6273439 A JPS6273439 A JP S6273439A JP 60211471 A JP60211471 A JP 60211471A JP 21147185 A JP21147185 A JP 21147185A JP S6273439 A JPS6273439 A JP S6273439A
Authority
JP
Japan
Prior art keywords
recording
film
crystallization
composition
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60211471A
Other languages
Japanese (ja)
Other versions
JPH0453192B2 (en
Inventor
Kunio Kimura
邦夫 木村
Noboru Yamada
昇 山田
Masatoshi Takao
高尾 正敏
Susumu Sanai
佐内 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60211471A priority Critical patent/JPS6273439A/en
Priority to CN86107003A priority patent/CN1010519B/en
Priority to KR1019860007937A priority patent/KR900009187B1/en
Priority to DE3689815T priority patent/DE3689815T2/en
Priority to DE3689886T priority patent/DE3689886T2/en
Priority to EP89118260A priority patent/EP0355865B1/en
Priority to EP86113211A priority patent/EP0217293B1/en
Publication of JPS6273439A publication Critical patent/JPS6273439A/en
Publication of JPH0453192B2 publication Critical patent/JPH0453192B2/ja
Priority to US08/053,346 priority patent/US5278011A/en
Priority to US08/053,343 priority patent/US6268107B1/en
Priority to US09/765,677 priority patent/US20010019810A1/en
Priority to US10/389,615 priority patent/USRE42222E1/en
Granted legal-status Critical Current

Links

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain the titled member having excellent resistance to heat and humidity and wherein a film is not broken even when recording and erasing are repeated by forming a thin film wherein the ratio in the number of atoms of the essential components, Te, Ge and Se, and the concn. of Bi are specified. CONSTITUTION:The recording layer consists of a Te-Ge-Se-Bi composition, the ratio in the number of atoms of Te, Ge and Se are regulated within the region connecting points A1, B1, C1, D1 and E1 in the figure and the layer is formed with a material contg. 15-35at% Bi. Namely, Bi is added to the Te-Ge- Se system having a high crystallization transition temp. to fix an excess of Te. Bi forms a compd. (Bi2Te3) with Te and the m.p. of the (Bi2Te3) is at 585 deg.C at the highest in the Bi-Te system contg. >=50% Te. The m.p. is lower than those of Te-Ge and Te-Sn by about 200 deg.C. Accordingly, the addition of Bi enables the fixation of an excess of Te without raising the m.p. of the film with Te as the base material.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光、熱などを用いて高速かつ、高密度に情報
を記録、消去、再生可能な光学情報記録部材に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical information recording member capable of recording, erasing, and reproducing information at high speed and with high density using light, heat, or the like.

従来の技術 近年、情報量の増大化、記録、再生の高速化、高密度化
に伴ない、レーザ光線を利用した光ディスクが注目され
ている。光ディスクには、一度のみ記録可能な追記型と
、記録した信号を消去し何度も使用可能な書き換え可能
なものがある。追記型光ディスクには、記録信号を穴あ
き状態として、再生するものや、凹凸を生成させて再生
するものがある。書き換え可能なものとしてはカルコゲ
ン化物を用いる試みがあり、Te−Go  を初めとし
て、これにAs 、 S 、Si、Se、Sb、Biな
どを添加した列が知られている。
BACKGROUND OF THE INVENTION In recent years, optical discs using laser beams have been attracting attention as the amount of information increases, recording and reproducing speeds increase, and densities increase. Optical discs include write-once types that can be recorded only once, and rewritable types that can be used many times by erasing recorded signals. Some write-once optical discs reproduce recorded signals in a perforated state, and others reproduce them by generating unevenness. Attempts have been made to use chalcogenides as rewritable materials, including Te-Go, and systems in which As, S, Si, Se, Sb, Bi, and the like are added thereto are known.

これに対し、本発明者らは先に、To−Te02のよう
な酸化物を含んだ系の相転移による反射率変化を信号と
する方式を提案した。さらに、相転移を利用した書き換
え可能な光ディスクとして、Te−Te02に対し各種
添加物を添加(Sn、Go。
In contrast, the present inventors previously proposed a method in which a change in reflectance due to a phase transition of a system containing an oxide such as To-Te02 is used as a signal. Furthermore, various additives (Sn, Go, etc.) are added to Te-Te02 to create a rewritable optical disc using phase transition.

Bi、In、Pb、Te、Se  など)した列がある
。これらの記録部材の特徴は、C/Nが高く、耐湿性に
対しても優れるという特徴を有している。
(Bi, In, Pb, Te, Se, etc.). These recording members are characterized by a high C/N ratio and excellent moisture resistance.

発明が解決しようとする問題点 カルコゲン化物よシなる書き換え可能な情報記録部材は
、一般的に、記録、消去の繰シ返しに対する安定性が悪
いといった%徴を有する。ごの理由は、Te、Goとそ
の他の添加成分が、数度のくり返しによって、膜が相分
離を生じてしまい、初期とくシ返し後では膜の構成成分
が異なることに帰因すると思われる。消去可能な光ディ
スクで相転移を利用する場合、通常は、未記録、消去状
態を結晶質とし、記録状態を非晶質とする方法がとられ
る。この場合、記録はレーザ光で、一旦、膜を溶融させ
急冷によって非晶質にする訳であるが、現在の半導体レ
ーザにはパワーの限界があシ、できるだけ融点の低い膜
が、記録感度が高いことになる。このために、上述した
カルコゲン化物よりなる膜は、記録感度を向上させるた
めに、できるだけ融点の低い組成、すなわち、Toが多
い膜組成となっている。Toが、他の添加成分より多い
ということは、〈シ返し特性においてそれだけ相分離が
起こし易いことを意味する。したがって融点を下げるた
めに添加した過剰のToをいかに固定して動きにくい組
成にするがが、くシ返し特性や、CNR,消去率の経時
変動に大きな影響を及ぼすことになる。
Problems to be Solved by the Invention Rewritable information recording members such as chalcogenides generally have poor stability against repeated recording and erasing. The reason for this is thought to be that Te, Go, and other additive components cause phase separation in the membrane when repeated several times, and the constituent components of the membrane are different at the initial stage and after the cycling. When utilizing phase transition in an erasable optical disc, a method is usually used in which the unrecorded and erased state is crystalline and the recorded state is amorphous. In this case, recording is performed using a laser beam, which melts the film and then rapidly cools it to make it amorphous.However, current semiconductor lasers have power limitations, so a film with as low a melting point as possible has the lowest possible recording sensitivity. It will be expensive. For this reason, the film made of the chalcogenide mentioned above has a composition with a melting point as low as possible, that is, a film composition with a large amount of To, in order to improve recording sensitivity. The fact that To is present in a larger amount than other additive components means that phase separation is more likely to occur in the reversing characteristics. Therefore, no matter how to fix the excess To added to lower the melting point to make the composition difficult to move, this will have a large effect on the cycling characteristics, CNR, and fluctuations over time in the erasure rate.

酸化物を含んだ記録部材にも、以下に記述する欠点があ
る。すなわち、消去率が録再消去のくシ返しによって低
下することである。
Recording members containing oxides also have drawbacks as described below. In other words, the erasure rate decreases due to repeated recording and re-erasing.

書き換え可能な光ディスクは、通常、初期状態を結晶状
態とし、記録状態を非晶質として記録を行なう。消去は
初期状態と同様に結晶質とする。
A rewritable optical disc usually records in a crystalline initial state and an amorphous recording state. The erasure is made crystalline like the initial state.

この記録部材の結晶質−非晶質間の相転移は、レーザの
徐冷−急冷の条件変化によって達成される。
This crystalline-amorphous phase transition of the recording member is achieved by changing the conditions of slow cooling and rapid cooling using a laser.

すなわち、レーザ光による加熱後、徐冷によって結晶質
となp急冷によって非晶質となる。したがって記録、消
去のくり返しKよって、膜は何度も結晶質1非晶質状態
を経ることになる。この場合、膜に酸化物が存在すると
、膜の粘性が高いので、カルコゲン化物の泳動性が少な
くなり、膜組成の偏析が生じやすくなる。さらに、酸化
物の存在は膜自身の熱伝導が悪くするので、レーザ光の
入射側と反対側の膜厚間で温度分布差を生じ、膜組成の
偏析ばやはシ生ずる。こうした理由によシ、酸化物を含
んだ膜は、記録、消去のくり返しによって次第に特性が
変化するなどの欠点を有していた。
That is, after heating with laser light, it becomes crystalline by slow cooling and becomes amorphous by rapid cooling. Therefore, due to the repetition of recording and erasing, the film passes through the crystalline and amorphous states many times. In this case, if an oxide is present in the film, the viscosity of the film is high, so the migration of chalcogenide is reduced, and segregation of the film composition is likely to occur. Furthermore, the presence of oxides impairs the thermal conductivity of the film itself, resulting in a difference in temperature distribution between the thickness of the film on the laser beam incident side and the opposite side, resulting in segregation of the film composition. For these reasons, films containing oxides have the disadvantage that their characteristics gradually change due to repeated recording and erasing.

本発明は、上述した酸化物を含む膜のくシ返し特性を向
上させることを目的とし、さらに、カルコゲン化物よシ
なる従来組成の欠点(Cj/Nが低い、消去率が充分で
はない、耐湿性、耐熱性が悪い、くり返し特性が充分で
はない)を克服したものである。
The purpose of the present invention is to improve the cycling characteristics of films containing the above-mentioned oxides, and also address the drawbacks of conventional compositions such as chalcogenides (low Cj/N, insufficient erasing rate, moisture resistance, etc.). It overcomes the following problems: poor durability, poor heat resistance, and insufficient repeatability.

問題点を解決するための手段 本発明における記録層は、Te −Ge −Se −B
i系の組成物であって、’re、cθ、Seの原子数比
が第1図の’I IB+ +01.p、 +Elの点を
結んだ領域内にあるとともに、Biの謡度が16〜35
at%である材料によシ構成される。
Means for Solving the Problems The recording layer in the present invention is composed of Te-Ge-Se-B
It is an i-based composition in which the atomic ratio of 're, cθ, and Se is 'I IB+ +01. It is within the area connecting the points of p and +El, and the singing level of Bi is 16 to 35.
% of the material.

作用 本発明の特徴は、結晶化転移温度が高いTo −Ge−
3s系にBiを添加して過剰のTeを固定することであ
る。BiはTe と化合物(Bi、2Tes)を形成し
、T8濃度が50チ以上のBi−Te系では、融点が最
も高い場合、(Bi2Tj3)fも585°Cである。
Function The feature of the present invention is that To-Ge- has a high crystallization transition temperature.
This method involves adding Bi to the 3s system to fix excess Te. Bi forms a compound (Bi, 2Tes) with Te, and in a Bi-Te system with a T8 concentration of 50 Ti or more, when the melting point is the highest, (Bi2Tj3)f is also 585°C.

この温度は他のTe−Ge 、 Te−8n 。This temperature is for other Te-Ge and Te-8n.

などと比較しても200’C近くも低い。したがって、
Biの添加は、Teを母材とする膜の融点を上昇させる
ことなしに、過剰なTOを固定することが可能となる。
Even compared to other countries, it is nearly 200'C lower. therefore,
Addition of Bi makes it possible to fix excess TO without increasing the melting point of the film containing Te as a base material.

実施例 本発明は、TO−Ge−3s−Biによシ構成される。Example The present invention is composed of TO-Ge-3s-Bi.

本発明においてToは、Bi、あるいはG。In the present invention, To is Bi or G.

と結合した状態で、記録前後によって光学的濃度変化を
呈する母材である。Seは単独でも、またTeとの化合
物状態でも非晶質膜を作成することが容易である特徴を
有するものの、逆に結晶化速度が遅いこと、結晶転移温
度が低い(==100°C)ことなどの欠点を持つ。T
o−3sにGOを添加することによシ、結晶転移温度は
上昇するが、結晶化速度は改善されず、光ディスクの実
用上必要な結晶化速度(数百ns  )は得られない。
This is a base material that exhibits a change in optical density depending on whether it is recorded before or after recording. Although Se has the characteristic that it is easy to form an amorphous film either alone or in a compound state with Te, it has a slow crystallization rate and a low crystal transition temperature (==100°C). It has drawbacks such as: T
By adding GO to o-3s, the crystal transition temperature increases, but the crystallization rate is not improved, and the crystallization rate (several hundred ns) required for practical use in optical discs cannot be obtained.

本発明はTe−Ge−3θで構成される、上述した特長
、すなわち、結晶化転移温度が高いことを活かし、しか
も欠点である結晶化速度が遅いことをBiを添加するこ
とによシ、大巾に改善し、実用可能な書き換え可能な記
録膜を提供しようとするものである。
The present invention takes advantage of the above-mentioned feature of Te-Ge-3θ, that is, its high crystallization transition temperature, and also significantly overcomes the drawback of slow crystallization speed by adding Bi. The aim is to provide a practically usable rewritable recording film that has been greatly improved.

本発明において、Te、Ge、Se、Biは結晶状態に
おいて、GeTe 、GeSe2.Bi2Te3 など
の結晶状態をとるものと思われる。この中で、Ge5a
2は非晶質状態が安定で、結晶化湿度は470°C程度
であシ、しかも結晶化速度は遅い。このため、膜中にあ
っては、主に結晶化転移温度を高め、非晶質化を容易に
する役割を担っているものと思われる。Ge−Teは、
GeとTeの比によって、結晶化が容易な領域と、困難
な領域に別れる。すなわちGo−TO系で、非晶質状態
が最も安定な領域は、Tea度が70%程度のGeTa
2が生成される領域である。この点を境にしてG6が増
えると、(量論に近いGeTe6度が増すと)、結晶化
速度は速くなる。本発明においてGeはGem52とし
ての他、GeTeを形成しておシ、To −Ge−3e
 系においてG e TOは結晶化速度を向上させるこ
とに寄与しているものと思われる。しかしながら、TO
−46−3sで構成される系では、実用可能な結晶化速
度の速い組成は、Se量が少なく、GeTeの量論に近
い領域となる。この領域の特徴は、結晶化速度は速いも
のの、GeTeの融点が725°Cと高いため、非晶質
化が困難なことである。したがって、実用可能な領域で
、結晶化、非晶質化を可能にするのはG6濃度が低く、
Se濃度が高い領域である。
In the present invention, Te, Ge, Se, and Bi are in a crystalline state, and GeTe, GeSe2. It is thought to take a crystalline state such as Bi2Te3. Among these, Ge5a
No. 2 is stable in an amorphous state, the crystallization humidity is about 470°C, and the crystallization speed is slow. Therefore, in the film, it seems to play a role mainly in increasing the crystallization transition temperature and facilitating amorphization. Ge-Te is
Depending on the ratio of Ge and Te, crystallization is divided into regions where crystallization is easy and regions where it is difficult. In other words, in the Go-TO system, the region where the amorphous state is most stable is GeTa with a Tea degree of about 70%.
2 is the area to be generated. As G6 increases beyond this point (as GeTe6 degree, which is close to stoichiometry, increases), the crystallization rate increases. In the present invention, Ge may form GeTe in addition to Gem52, To -Ge-3e
It seems that G e TO contributes to improving the crystallization rate in the system. However, T.O.
In the system composed of -46-3s, a composition with a practically high crystallization rate has a small amount of Se and is in a region close to the stoichiometry of GeTe. A feature of this region is that although the crystallization rate is fast, it is difficult to make it amorphous because the melting point of GeTe is as high as 725°C. Therefore, in a practical range, it is the low G6 concentration that makes crystallization and amorphization possible.
This is a region with a high Se concentration.

この領域の特徴は、結晶化温度は高いが、結晶化速度が
遅いことである。B1の添加により、膜中で過剰なでθ
とBi2T13を形成し、結晶化を促進させることがで
きる。TOとの化合物で、結晶化を促進する元素は、上
述したBiに限らず、Sn。
This region is characterized by a high crystallization temperature but a slow crystallization rate. By adding B1, an excess of θ is created in the film.
and Bi2T13 can be formed to promote crystallization. Elements that promote crystallization in compounds with TO are not limited to the above-mentioned Bi, but include Sn.

Pb 、 Pd 、 Ni 、 Go 、 Or など
種々ノ材料がある。
There are various materials such as Pb, Pd, Ni, Go, and Or.

こうした材料は、確かに、結晶化速度が速いという特徴
を有し、添加量を限定することにより、追記型材料(W
10材料)となシ得るが、書き換え可能な光デイスク材
料としては適さない。その理由は、上述した元素と’r
e とで構成される合金の融点が高いことによる。
These materials certainly have the feature of high crystallization speed, and by limiting the amount added, write-once materials (W
However, it is not suitable as a rewritable optical disk material. The reason is that the elements mentioned above and 'r
This is due to the high melting point of the alloy composed of e.

しかし、こうした材料でもレーザパワーが強く、膜を充
分に溶融させることが可能であれば、消去可能なディス
クとして使用することは可能である。
However, even such materials can be used as erasable disks if the laser power is strong and the film can be sufficiently melted.

現在、我々が実用上入手できる半導体レーザは、波長が
83Onl!lでパワーは30 mW程度であり、Te
 、Ge、Seの量論に近い組成(TaGa 、Ge5
e2)を溶融させることは困難である。(融点が800
°C程度)TO−Go−B6で記録、消去可能な領域は
、TOが非常に多い領域(5oat%以上)にあるが、
こつ領域の組成は転移温度が低く、熱的に不安定である
こと、Teが過剰なため、くり返しによって、ToとT
eGeあるいはGeSe2に膜が相分離を起こしやすい
ことなどの欠点を有している。
Currently, the semiconductor laser that we can practically obtain has a wavelength of 83 Onl! The power is about 30 mW at Te
, Ge, Se near stoichiometric composition (TaGa, Ge5
e2) is difficult to melt. (Melting point is 800
°C) The area that can be recorded and erased with TO-Go-B6 is in an area where there is a very large amount of TO (more than 5 oat%),
The composition of the trick region has a low transition temperature, is thermally unstable, and has an excess of Te.
eGe or GeSe2 has the disadvantage that the film tends to undergo phase separation.

本発明のBiは、この過剰のTeをB12Tθ3 とし
て安定化させる働きを有する。B1ばTo との合金系
ではTOが50at%以上では、融点が585°C以下
で、Biを添加してもTeの融点が451°Cなので、
融点をそれ程上昇させることはない。そのため、Biを
添加した膜は現行の半導体レーザパワーでも充分に溶融
させることが可能である。
Bi of the present invention has the function of stabilizing this excess Te as B12Tθ3. In an alloy system with B1 and To, when TO is 50 at% or more, the melting point is 585 °C or less, and even if Bi is added, the melting point of Te is 451 °C.
It does not raise the melting point appreciably. Therefore, the Bi-doped film can be sufficiently melted even with the current semiconductor laser power.

しかも熱的に不安定な過剰T6をBi2Te3として結
合させているため、熱的に安定で、かつ、記録。
Moreover, since the thermally unstable excess T6 is combined as Bi2Te3, it is thermally stable and records.

消去のくり返しによ−〕でも相分離を生ずることなく、
長期に亘って安定な膜となる。
Even with repeated elimination, phase separation does not occur.
The film becomes stable over a long period of time.

B1の添加量は、Ge、Seと結合した残りの過剰Te
を固定化するので、必要なり+79度はTθ/(Gθ+
Se)の量に支配される。
The amount of B1 added is the remaining excess Te combined with Ge and Se.
Since it is fixed, the required +79 degrees is Tθ/(Gθ+
Se).

すなわち、Biの添加量は、Ge−Te−3s系の組成
比により異なる。例えば、比較的Se酸成分多い領域(
Sθ〉25at%)においては、非晶質として安定なの
で、結晶化を促進させるB1の添加量は多くなる。(2
5〜35at%)、逆にSθ酸成分少ない領域(Se≦
152Lt%)では、比較的結晶化速度が速いので、少
ないBifi度(10〜251Lt%)で充分である。
That is, the amount of Bi added varies depending on the composition ratio of the Ge-Te-3s system. For example, a region with a relatively large amount of Se acid components (
Sθ>25at%), it is stable as an amorphous state, so the amount of B1 added to promote crystallization increases. (2
5 to 35 at%), and conversely a region with low Sθ acid component (Se≦
152 Lt%), the crystallization rate is relatively fast, so a small Bifi degree (10 to 251 Lt%) is sufficient.

同様に、GO濃度の多い領域(Go〉25at%)は、
結晶化速度は速いので、Bi濃度は低((1o−2sa
t%)Ge成分の少ない領域(eeく10at%)では
結晶化構成される記録部材の適正範囲を示した。図はT
e−G5−8θ より構成されているが、Bi量度は第
1図に示されたTe−Ge−8o組成に対し、15〜3
5at%である。
Similarly, the region with high GO concentration (Go>25at%) is
Since the crystallization rate is fast, the Bi concentration is low ((1o-2sa
t%) In the region with a small Ge component (ee: 10 at%), an appropriate range for a recording member having a crystallized structure was shown. The figure is T
It is composed of e-G5-8θ, but the Bi content is 15 to 3 compared to the Te-Ge-8o composition shown in FIG.
It is 5at%.

’(Bi量1度は(T8xGeySnz)+00−mB
imで示した場合のmに相当、ただし、x+y−1−z
==100)第1図において各点は以下の組成である。
'(Bi amount 1 degree is (T8xGeySnz)+00-mB
Corresponds to m when indicated by im, however, x+y-1-z
==100) In FIG. 1, each point has the following composition.

人1点 :  Te9.)Ge5Se581点 :  
Te6oGo5Se55C1点 = To40Gθ25
”e55D1点 : Te4oGe4oSe2゜81点
 :  To55Go4oSe5本発明は上記、Ta−
Ge−3eの三元系のA、B、C。
Person 1 point: Te9. )Ge5Se581 points:
Te6oGo5Se55C1 point = To40Gθ25
"e55D1 point: Te4oGe4oSe2゜81 point: To55Go4oSe5The present invention is directed to the above, Ta-
A, B, C of the ternary system of Ge-3e.

D、!、点で囲まれた範囲内であって、がっ、B1濃度
が式(re)(GaySez ) Too mB’m 
 で表わした場合、mの値として15〜35at%の範
囲内にある。線ム+Btより06が少ない場合、膜はT
e−8sが過剰となシ、結晶化転移温度は低く(<12
0°C)、実用上安定な記録膜を得ることが困難である
。線B1G、よ5sθが多い場合は、Teas、GeS
e2の形成量が多くなシ、安定な非晶質膜となり、結晶
化が困難となる。線CIDI  よシTθが少ない場合
、結晶化に必要なりi 2Tθ、の量も少なくなるので
、記録部と未記録部の信号のコントラスト比が低く、充
分な記録特性が得られない。線り、E、よりGoが多い
場合、この領域は、量論的なGeTeが生成する領域で
、結晶化速度は上昇するが、融点の高いGeTeが多量
に存在するので、非晶質化が困難となる。線入jE+よ
りS8量が少ない場合は、GeSe2量が少なくなるた
め、非晶化が困難となる。しかし同じA、1!:、線上
でもG。
D,! , within the range surrounded by points, the B1 concentration is expressed by the formula (re) (GaySez ) Too mB'm
When expressed as , the value of m is within the range of 15 to 35 at%. If 06 is less than line + Bt, the film is T
If e-8s is in excess, the crystallization transition temperature is low (<12
0°C), it is difficult to obtain a practically stable recording film. If there are many lines B1G and 5sθ, Teas, GeS
If the amount of e2 formed is large, the film becomes stable and amorphous, making crystallization difficult. When the line CIDI and Tθ are small, the amount of i 2Tθ required for crystallization is also small, so the contrast ratio between the signals of the recorded area and the unrecorded area is low, and sufficient recording characteristics cannot be obtained. When there is more Go than linear, E, this region is a region where stoichiometric GeTe is generated, and the crystallization rate increases, but since there is a large amount of GeTe with a high melting point, amorphization will not occur. It becomes difficult. If the amount of S8 is smaller than that of the wire-filled jE+, the amount of GeSe2 will be smaller, making it difficult to amorphize. But the same A, 1! :, G on the line.

が少ない場合はGeTa量が少ないため、非晶質化は比
較的容易であるが、結晶化転移温度が低くなる。
When the amount of GeTa is small, it is relatively easy to make it amorphous, but the crystallization transition temperature becomes low.

上述した傾向は、当然ながら、添加するBi量によって
異なってぐる。Te−Ge−8eからなる組成を限定し
Bi、量を変化させると、Bi量が少ない場合は非晶質
化が容易で、Bi量が増えるに従って結晶化が容易とな
る。この適正なりi量はTe、Ga、Sθ によって構
成される膜の特性によって異なるが、本発明の範囲内で
は15〜351鳴で、実用的な書き換え可能な記録膜が
得られる。
The above-mentioned tendency naturally varies depending on the amount of Bi added. When the composition consisting of Te-Ge-8e is limited and the amount of Bi is varied, when the amount of Bi is small, it becomes easy to become amorphous, and as the amount of Bi increases, crystallization becomes easier. This appropriate i amount varies depending on the characteristics of the film composed of Te, Ga, and Sθ, but within the scope of the present invention, a practical rewritable recording film can be obtained with a recording film of 15 to 351 sounds.

以上述べた理由によシ、本発明は、第1図において、点
ム+  B+  C+  Dl  11で囲まれた範囲
内に限定される。すなわち、この領域内のTe−Ge−
8θにBiを16〜35at%添加した場合、実用上、
結晶質と非晶質の可逆性を利用して、情報の記録、消去
が可能となる。
For the reasons stated above, the present invention is limited to the range surrounded by the point M+B+C+Dl 11 in FIG. That is, Te-Ge- in this region
When adding 16 to 35 at% of Bi to 8θ, practically,
Recording and erasing of information becomes possible by utilizing the reversibility of crystalline and amorphous states.

次に第1図のA2−82−02−02− B2あるいは
A5−B r C10B5− B5によって囲まれた領
域【ついて述べる。この領域は、第1図のA1−B1−
C1D+  E+で囲まれた範囲より、より実用的な組
成範囲を未しである。
Next, the area surrounded by A2-82-02-02-B2 or A5-Br C10B5-B5 in FIG. 1 will be described. This area is A1-B1- in FIG.
There is no more practical composition range than the range surrounded by C1D+E+.

第1図においてA2−82−02− B2− B2各点
の組成を以下に示す。
The composition of each point A2-82-02-B2-B2 in FIG. 1 is shown below.

A2  :  TeHGe7Se、。A2: TeHGe7Se.

B2  :  Te6sGe7Sasa02  :  
’r645ee50s625D2  :  Taa5G
e358e2(。
B2: Te6sGe7Sasa02:
'r645ee50s625D2: Taa5G
e358e2(.

B2  :  Te55Ge35SeB)この各点で囲
まれた領域におけるBi量度は16〜30at%である
。(ただし、(76X067S6Z )+oo−mBi
m におけるmのイ直で、X十Y十Z=100とする。
B2: Te55Ge35SeB) The Bi content in the region surrounded by these points is 16 to 30 at%. (However, (76X067S6Z)+oo-mBi
Let's say that m is straight in m and that X0Y0Z=100.

) この領域の非晶質から結晶質への転移温度は130〜1
70°C以内である。転移温度は人2が最も低く、線C
2D2の方向にSe、G61度が増えるに従って温度は
上昇する。結晶化を促進する上で必要なりi g度は、
A誌に近い領域では少なく、線C2D2に近い領域では
多くなる。すなわち、A1に近い領域では、過剰のTe
が多く箋結晶化速度は速いので多くのBi量を必要とせ
ず、C2D2に近い領域は結晶化が困難なため、多くの
Bi量を必要とする。
) The transition temperature from amorphous to crystalline in this region is 130-1
Within 70°C. The transition temperature is the lowest for person 2, line C
As Se and G61 degrees increase in the direction of 2D2, the temperature increases. The degree of concentration necessary to promote crystallization is
It is small in the area near the A magazine, and large in the area near the line C2D2. That is, in the region close to A1, excessive Te
However, since the crystallization speed is fast, a large amount of Bi is not required, whereas a region close to C2D2 is difficult to crystallize, so a large amount of Bi is required.

その結果、点A1ではG6T6 、 GeSe2  の
量が少なく過剰Toも残存しているので安定な非晶質状
態が形成されず、結晶転移温度は低くなる。ム2点より
Setが多くなると(82点)転移温度は上昇するが、
結晶化速度は遅くなる。人2点よりGoが多くなると、
転移温度は上昇し、結晶化温度も高くなるが、非晶質化
が困難となる。すなわち、点A2−82−02−02−
 B2で囲まれた点で、Bi量が16〜30 at%で
ある場合は、用途、目的に応じて、結晶化転移温度、結
晶化速度の適正値を選択することが可能である。しかし
、このA2−82−02−B2−B2点で囲まnた領域
内であっても・現在・市販されている半導体レーザ出力
(25mW程度)で、全ての点で、録再が可能とは限ら
ない。点A5− B5− C,−B3− K、で囲まれ
た領域は、現行の半導体レーザパワーの範囲で録再が可
能で、結晶化速度が速く、かつ熱的安定性を示す結晶化
転移温度も高((150〜180’C)より実用的な領
域である。この領域における必要なり1量は15〜25
at%である。Biの添加はTe−Go−3eだけより
なる系に比べ、結晶への転移温度を10〜30℃高める
働きを有する。しかもB1の添加によって膜の融点は下
がるため、非晶質化に対しては都合がよい。この理由は
、BiはTe a度に対して40係以下である場合、最
大でも、融点が622°C以下であることに起因する1
、、一方、Ge、Snなどの場合は、Te濃度に対し、
60 a t%以下の場合、各々、最大で726°C,
7900となる。それ故、B1の添加は、熱的安定性を
示す転移温度を上昇させる効果と、膜の融点を下げ、非
晶質化を容易にするといった利点を有する。
As a result, at point A1, since the amounts of G6T6 and GeSe2 are small and excess To remains, a stable amorphous state is not formed and the crystal transition temperature becomes low. When Set increases from 2 points to 2 points (82 points), the transition temperature increases, but
Crystallization rate slows down. When there are more Go points than a person with 2 points,
The transition temperature increases and the crystallization temperature also increases, but it becomes difficult to make it amorphous. That is, point A2-82-02-02-
When the amount of Bi is 16 to 30 at% at the point surrounded by B2, it is possible to select appropriate values for the crystallization transition temperature and crystallization rate depending on the use and purpose. However, even within the area surrounded by the points A2-82-02-B2-B2, recording and playback is not possible at all points with the current commercially available semiconductor laser output (approximately 25 mW). Not exclusively. The region surrounded by points A5-B5-C and -B3-K is a crystallization transition temperature that allows recording and playback within the current semiconductor laser power range, has a fast crystallization rate, and exhibits thermal stability. This is also a more practical range ((150-180'C). The required amount in this range is 15-25
It is at%. The addition of Bi has the effect of increasing the crystal transition temperature by 10 to 30°C compared to a system consisting only of Te-Go-3e. Moreover, addition of B1 lowers the melting point of the film, which is advantageous for making it amorphous. The reason for this is that when Bi has a coefficient of 40 or less with respect to Te a degree, the melting point is at most 622°C or less.
,,On the other hand, in the case of Ge, Sn, etc., the Te concentration is
In the case of 60 at% or less, the maximum temperature is 726°C, respectively.
It becomes 7900. Therefore, the addition of B1 has the advantage of increasing the transition temperature indicating thermal stability, lowering the melting point of the film, and facilitating amorphization.

以上述べた理由によシ、本発明のTe−Ge−5s−B
iの最適組成は限定される。
For the reasons stated above, Te-Ge-5s-B of the present invention
The optimal composition of i is limited.

次に本発明による光学情報記録部材の製法について述べ
る。
Next, a method for manufacturing an optical information recording member according to the present invention will be described.

第2図は、本発明の記録層を用いて構成した光ディスク
の断面の模式図である。図において、1゜εは基板を表
わしており、材質は、ポリカーボネート、アクリル樹脂
、ガラス、ポリエステル等の透明な基材を用いることが
可能である。2.4は保護層で、種々の酸化物、硫化物
、炭化物を用いることができる。この保護層2.4は記
録膜3の記録、消去の操り返しによる基材の熱劣化を防
ぐものであシ、さらに、記録膜3を湿度よシ保護するも
のである。したがって、保護層の材質、膜厚は、上述し
た観点より決定される。記録膜3は、蒸着、スパッタリ
ング等によって形成される。蒸着で行なう場合は各組成
を単独に蒸着可能な4ソ一ス蒸着機を用いるのが、均一
膜を作成できるので望ましい。
FIG. 2 is a schematic cross-sectional view of an optical disc constructed using the recording layer of the present invention. In the figure, 1°ε represents a substrate, which can be made of a transparent base material such as polycarbonate, acrylic resin, glass, or polyester. 2.4 is a protective layer, and various oxides, sulfides, and carbides can be used. This protective layer 2.4 prevents thermal deterioration of the base material due to repeated recording and erasing operations on the recording film 3, and further protects the recording film 3 from humidity. Therefore, the material and thickness of the protective layer are determined from the above-mentioned viewpoints. The recording film 3 is formed by vapor deposition, sputtering, or the like. In the case of vapor deposition, it is preferable to use a four-source vapor deposition machine capable of individually vapor depositing each composition, since a uniform film can be formed.

本発明の記録膜3の膜厚は、保護層2.4の光学特性と
のマツチング、すなわち、記録部と未記録との反射率の
差が大きくとれる値とする。
The film thickness of the recording film 3 of the present invention is set to a value that matches the optical characteristics of the protective layer 2.4, that is, a value that allows a large difference in reflectance between the recorded portion and the unrecorded portion.

以下、具体的な例で本発明を詳述する。The present invention will be explained in detail below using specific examples.

実施列1 4源蒸着が可能な電子ビーム蒸着機を用いてTo。Implementation row 1 To using an electron beam evaporator capable of four-source evaporation.

Ge、Se、B1をそれぞれのソースから基材上に同時
に蒸着した。用いえ基材はφ8朋のガラスで、蒸着は真
空度が1×10〜5Torr、  基材の回転速度1s
orpmで行ない、膜厚は1000人とした。。
Ge, Se, and B1 were simultaneously deposited onto the substrate from their respective sources. The base material that can be used is glass with a diameter of 8 mm, the degree of vacuum for vapor deposition is 1 x 10 to 5 Torr, and the rotation speed of the base material is 1 s.
ORPM, and the film thickness was 1000. .

各ソースからの蒸着速度は記録膜中のTe 、 Cxe
 。
The deposition rate from each source is Te, Cxe in the recording film.
.

Se 、Biの原子数の割合を調整するため、変化させ
た。第1表の組成の割合は、この蒸着の速度よシ換算し
た値であるが、代表的な組成をX線マイクロアナライザ
ー(XMA)で行なったところ、仕込値とほぼ同様の定
量結果が得られた。したがって、表中の仕込み組成は、
膜中でも同じと思われる。
The ratio of the number of atoms of Se and Bi was changed in order to adjust the ratio. The composition ratios in Table 1 are values calculated based on the rate of vapor deposition, but when representative compositions were analyzed using an X-ray microanalyzer (XMA), quantitative results almost the same as the starting values were obtained. Ta. Therefore, the preparation composition in the table is
It seems to be the same in the membrane.

上記製法によって作成された試験片の評価方法を以下に
記す。
The evaluation method of the test piece produced by the above manufacturing method is described below.

〔転移温度〕[Transition temperature]

転移温度とは、蒸着直後の非晶質状態の膜が熱によって
結晶状態になる開始温度を意味する。
The term "transition temperature" refers to the starting temperature at which a film in an amorphous state immediately after vapor deposition changes to a crystalline state due to heat.

測定は、膜の透過率の測定が可能な装置を用い、ヒータ
ーにより試験片の温度を昇温速度1°C/東で上昇させ
た場合の透過率が減少を開始する湿度とした。
The measurement was carried out using a device capable of measuring the transmittance of the membrane, and the humidity was set at which the transmittance started to decrease when the temperature of the test piece was raised by a heater at a heating rate of 1° C./east.

転移温度が高いことは、膜が熱的に安定であることを意
味する。
A high transition temperature means that the film is thermally stable.

〔黒化、白化特性〕[Blackening, whitening properties]

黒化特性とは、非晶質から結晶質への変態に対しての転
移速度を示したもので、白化特性は結晶質から非晶質の
転移速度を示したものである。
The blackening property indicates the rate of transformation from amorphous to crystalline, and the whitening property indicates the rate of transition from crystalline to amorphous.

測定は、φ8MMのガラス片上の記録膜に、レンズを用
いて、レーザ光を集光させ、サンプル片を上下、左右移
動可能とした装置を用いて行なった。
The measurement was carried out using a device that focused laser light on a recording film on a glass piece of φ8 MM using a lens, and was able to move the sample piece vertically and horizontally.

’ヤーー++’光のスポットは45 X O,4μm、
パルス巾200ns、パワー密度10.6mW/μm 
 波長は900nmとした。黒化特性は、試験片を比較
的、緩かに移動させた場合の変態(非晶質から結晶質)
の速度を観察し、速度が充分早く、かつ未記録部分と記
録部分のコントラスト比が充分大きいものを◎とした。
'Yah++' light spot is 45 x O, 4μm,
Pulse width 200ns, power density 10.6mW/μm
The wavelength was 900 nm. The blackening property is the transformation (from amorphous to crystalline) when the specimen is moved relatively slowly.
The speed was observed, and those where the speed was sufficiently fast and the contrast ratio between the unrecorded area and the recorded area were sufficiently large were rated ◎.

×は緩やかに移動させても、黒化しないもの、あるいは
、コントラスト比が小さいものを示す。○、△は◎と×
の中間に位置する。この定性的な表現において、実用可
能な黒化特性は0以上である。
× indicates that the image does not turn black even when moved slowly, or that the contrast ratio is small. ○, △ are ◎ and ×
Located in the middle. In this qualitative expression, the practical blackening characteristic is 0 or more.

次に白化特性について述べる。白化特性を観る場合は、
まず、一旦、黒化し、その上を試験片を速やかに移動さ
せ、急冷状態を作シ、白化(結晶質から非晶質)させる
。白化状態が◎のものは、移動速度が比較的緩やかでも
、白化し、しかも非晶質部分と結晶質部分のコントラス
ト比が大きいものを示し、×は全く白化しないものを示
している。○と△は、◎と×の中間に位1“、童する。
Next, we will discuss the whitening properties. When looking at whitening properties,
First, the test piece is once blackened, and the test piece is quickly moved over it to create a rapid cooling state, resulting in whitening (from crystalline to amorphous). A whitening state of ◎ indicates that whitening occurs even if the moving speed is relatively slow, and the contrast ratio between the amorphous portion and the crystalline portion is large, and × indicates that there is no whitening at all. ○ and △ are placed 1" between ◎ and ×.

上述した表現によれば、黒化、白化特性とも非常にすぐ
れている場合は、◎、◎となるが、実際問題としては同
じ移動速度で、どちらも◎となることはあり得す、望ま
しい材料としては、◎、○あるいは◎、△と、多少黒化
特性が優れているものである。
According to the above expression, if both blackening and whitening properties are very good, it will be ◎ or ◎, but in reality, it is possible for both to be ◎ at the same moving speed, so it is a desirable material. ◎, ◎, ◎, △, meaning that the blackening properties are somewhat excellent.

第1表に、本発明の範囲でB工濃度を30 at%とし
て作成した膜の転移温度と、黒化、白化特性の結果を示
す。
Table 1 shows the results of the transition temperature, blackening, and whitening properties of a film prepared within the scope of the present invention with a boron concentration of 30 at%.

(以下余白) 第1表 第1表の結果より明らかなように、本発明の範囲にある
Te−Ge−3s−Bi系記録薄膜は、黒化及び白化が
、それぞれ可能である。即ちこの範囲内にある記録部材
は、加熱条件、例えば照射するレーザー光線の照射強度
、照射時間を適蟲に選ぶことで非晶質状態と結晶状態の
いずれの状態も、とることが可能であり、光学的に情報
を記録し、かつ消去することが可能である。
(Left below) Table 1 As is clear from the results in Table 1, the Te-Ge-3s-Bi recording thin film within the scope of the present invention can be blackened and whitened. That is, a recording member within this range can be in either an amorphous state or a crystalline state by appropriately selecting the heating conditions, for example, the irradiation intensity and irradiation time of the laser beam to be irradiated. It is possible to record and erase information optically.

本実施11FIJにおいてはB工の濃度を20at% 
とじたが、上述の黒化白化特性は、B1の濃度に強く依
存する。一方、転移温度も又、それほど強くはないがB
i濃度に依存する。
In this 11th FIJ, the concentration of B process was 20at%.
However, the blackening and whitening characteristics described above strongly depend on the concentration of B1. On the other hand, the transition temperature is also not so strong, but B
i depends on concentration.

実施例2 実施列1と同様の作成法、評価法を用い、T。Example 2 Using the same preparation method and evaluation method as in Example 1, T.

−Go−5e系にBiを添加した場合の濃度依存性につ
いて調べた結果を第2表に示す。−レリとしてTo 6
0G+5203620組成を選び、B1濃度を10〜4
0at%の範囲で変化させる。
Table 2 shows the results of investigating the concentration dependence when Bi was added to the -Go-5e system. -To 6 as Leli
Select 0G+5203620 composition and set B1 concentration to 10-4
It is varied within a range of 0 at%.

(以下余白) 第2表の結果から明らかなように、Te6oGθ20S
θ20に、B1を添加した場合、Bi濃度が16〜35
at係にある場合、レーザー光線によって、結晶化、非
晶質化のいずれも可能であり、光学記録部材として有効
である。
(Left below) As is clear from the results in Table 2, Te6oGθ20S
When B1 is added to θ20, the Bi concentration is 16 to 35
When the material is in the AT state, it can be crystallized or amorphized by a laser beam, and is effective as an optical recording member.

結晶−非晶質の相変態を記録原理として用いる場合、記
録(非晶質化)速度は、照射部が溶融するまでの時間、
消去(結晶化)速度は、原子配列の秩序が回復する時間
に依存し、一般に前者は後者に比べて十分速い。従って
本発明の組成領域を[3’llえば光ディスつて適用す
る場合、主としてその消去速度がデバイスとしてのスペ
ックを決定する。
When crystal-amorphous phase transformation is used as the recording principle, the recording (amorphization) speed is determined by the time it takes for the irradiated area to melt;
The erasure (crystallization) rate depends on the time it takes for the order of the atomic arrangement to be restored, and the former is generally much faster than the latter. Therefore, when the composition range of the present invention is applied to an optical disk, the erase speed mainly determines the specifications of the device.

即ち、デバイスとしての使用条件、例えば光ディスクの
場合には、その回転速度記録半径(線速度)に応じて組
成を選べば浪い。即ち、B1濃度の低い組成の場合には
記録感度(白化感度)は高いが、消去感度(黒化速度)
が低い。従って、回転速度が比較的遅い場合に有効であ
る。逆に、Bi濃度の高い組成の場合には、消去感度(
黒化速度)は十分であるので高速回転に適用可能である
。ただし、この場合は、やや大きい記録パワーを必要と
する。
That is, in the case of an optical disk, for example, the composition should be selected depending on the usage conditions as a device, such as the rotational speed and recording radius (linear velocity). That is, in the case of a composition with a low B1 concentration, the recording sensitivity (whitening sensitivity) is high, but the erasing sensitivity (blackening speed) is high.
is low. Therefore, it is effective when the rotation speed is relatively slow. Conversely, in the case of a composition with a high Bi concentration, the erasure sensitivity (
Since the blackening speed) is sufficient, it can be applied to high-speed rotation. However, in this case, slightly higher recording power is required.

B1の添加効果は、ce−Te−36系の組成比によシ
やや異なっている。ff1lえば、比較的Se成分の多
い領域(Se〉26 a t%)においては比較的Bi
a度の高い領域20〜35Δt%が良好な特性を示し、
比較的Se成分の少ない領域(Seく15at%)にお
いては比較的Bia度の低い領域1o〜25 at%が
良好な特性を示した。同様に、比較的G6成分の多い領
域(Gθ’>25at%)においては比較的B i a
度の低い領域(10〜2Sat乃)。
The effect of adding B1 differs slightly depending on the composition ratio of the ce-Te-36 system. For example, in a region with a relatively large amount of Se (Se>26 a t%), Bi
A region with a high degree of a of 20 to 35 Δt% exhibits good characteristics,
In a region with a relatively low Se component (Se 15 at%), a region with a relatively low Bia degree of 10 to 25 at% showed good characteristics. Similarly, in a region with a relatively large amount of G6 component (Gθ'>25at%), B i a
Low degree area (10-2 Sat).

GO成分の少ない領域(G8二10at%)においては
比較的3 la度の高い領域(20〜36at%)が良
好な特性を示した。
In the region with a small amount of GO component (G82 10 at%), the region with a relatively high 3 la degree (20 to 36 at%) showed good characteristics.

実施列3 基材として光ガイド用のトラックを備えた1、2オメφ
2001RMのポリカーボネイト樹脂基材を用い、記録
膜として、(Te60Ge20Se20 )80Bi2
0の薄膜を用いて光ディスクを試作した。
Implementation row 3: 1 and 2 diameters with tracks for light guide as base material
Using a 2001RM polycarbonate resin base material, (Te60Ge20Se20)80Bi2 was used as a recording film.
An optical disc was prototyped using a thin film of 0.

まず、基材上に耐熱層としてZnS薄膜を900人蒸着
し、その上に記録層を約100o人の厚さに蒸着し、更
にその上に、同じく耐熱層としてZnS薄膜を1800
人蒸着入念。
First, 900 layers of ZnS thin film was deposited as a heat-resistant layer on the base material, a recording layer was deposited on top of it to a thickness of about 100 layers, and on top of that, a ZnS thin film was also deposited as a heat-resistant layer with 1800 layers thick.
Careful human vaporization.

この光ディスクの基板側から、光学系を用いて絞シ込ん
だレーザー光線を照射して信号を記録し、直ちに消去を
行なった。記録に先立って、スポット形状が1μm×1
0μmの長楕円形のレーザ光線を14mWの強さでトラ
ックにそって照射し、トラ、り内の記録膜を結晶化し、
次に0.9μmφに絞り込んだレーザー光線を8mWの
強さで照射した。記録周波数は2M)h、ディスクの回
転速度は5 m / sである。このとき照射部は非晶
質化され、トラックに沿って信号が記録された。スペク
トラムアナライザーで、C/Nを測定したところ、50
dBが得られた。このトラック上に、前述の長楕円スポ
ットを照射したところ、信号は完全に消去された。
A focused laser beam was irradiated from the substrate side of the optical disk using an optical system to record a signal, and the signal was immediately erased. Prior to recording, the spot shape is 1 μm x 1
A long elliptical laser beam of 0 μm is irradiated along the track with an intensity of 14 mW to crystallize the recording film in the track and the track.
Next, a laser beam focused to 0.9 μmφ was irradiated with an intensity of 8 mW. The recording frequency is 2M) h, and the rotation speed of the disk is 5 m/s. At this time, the irradiated area was made amorphous and a signal was recorded along the track. When I measured the C/N with a spectrum analyzer, it was 50.
dB was obtained. When the above-mentioned long elliptical spot was irradiated onto this track, the signal was completely erased.

実施列4 実施列3における光ディスクを用いて、寿命試I検を8
0’C,60%RHの条件下で行なった。
Test row 4 Using the optical disks in test row 3, a life test I test was carried out for 8
The test was carried out under the conditions of 0'C and 60% RH.

試験方法は、予じめ情報を記録しておき、上記条件で保
持後のC/Hの劣化をみた。1ケ月経過後のC/Hの低
下は−0,5dBと無視できる程度であった。
The test method was to record information in advance and observe the deterioration of C/H after holding under the above conditions. The decrease in C/H after one month was -0.5 dB, which was negligible.

実施列5 実施F!jIJ3における光ディスクの記録、消去の繰
り返し特性を評価した。
Implementation row 5 Implementation F! The repeated recording and erasing characteristics of the optical disc in jIJ3 were evaluated.

10万回記録、消去を繰シ返し息抜のC/Nの低下は、
約1dB程度であった。
The decrease in C/N after recording and erasing 100,000 times and taking a break is as follows.
It was about 1 dB.

発明の効果 本発明によるTe−Ge−8s−Bi記録薄膜は、耐熱
性及び耐湿性に極めて優れ、記録−消去を繰シ返しても
膜が破壊されることが無い。即ち、本発明によって実用
上、極めて優れた光学情報記録部材が提供される。
Effects of the Invention The Te-Ge-8s-Bi recording thin film according to the present invention has extremely excellent heat resistance and moisture resistance, and the film is not destroyed even after repeated recording and erasing. That is, the present invention provides a practically excellent optical information recording member.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による光学情報記録部材の組成の範囲
を示す組成図、第2図は本発明の一実施例における光学
情報記録部材の構成を示した断面図である。 第1図 GeCtσOLt%ジ 第2図
FIG. 1 is a composition diagram showing the range of composition of an optical information recording member according to the present invention, and FIG. 2 is a sectional view showing the structure of an optical information recording member in one embodiment of the present invention. Fig. 1 GeCtσOLt% Fig. 2

Claims (4)

【特許請求の範囲】[Claims] (1)Te、Ge、Se、Biを主成分とし、Te、G
e、Seの原子数比が第1図における、 A_1(Te_9_0Ge_5Se_5)、B_1(T
e_6_0Ge_5Se_3_5)、C_1(Te_4
_0Ge_2_5Se_3_5)、D_1(Te_4_
0Ge_4_0Se_2_0)、E_1(Te_3_5
Ge_4_0Se_5)の各点で囲まれる領域内にあり
、Biの濃度(at%)が全体の組成を(Te_xGe
_ySe_z)_1_0_0_−_mBimと表したと
き、15≦m≦35at%である薄膜を備えた光学情報
記録部材。
(1) The main components are Te, Ge, Se, and Bi, and Te, G
The atomic ratio of e and Se is A_1(Te_9_0Ge_5Se_5) and B_1(T
e_6_0Ge_5Se_3_5), C_1(Te_4
_0Ge_2_5Se_3_5), D_1(Te_4_
0Ge_4_0Se_2_0), E_1(Te_3_5
Ge_4_0Se_5), and the Bi concentration (at%) makes the overall composition (Te_xGe
An optical information recording member comprising a thin film satisfying 15≦m≦35 at% when expressed as _ySe_z)_1_0_0_−_mBim.
(2)Te、Ge、Seの原子数比が第1図における、
A_2(Te_8_3Ge_7Se_1_0)、B_2
(Te_6_3Ge_7Se_3_0)、C_2(Te
_4_5Ge_3_0Se_2_5)、D_2(Te_
4_5Ge_3_5Se_2_0)、E_2(Te_5
_5Ge_3_5Se_1_0)の各点で囲まれる領域
内に有って、Biの濃度(at%)が15≦m≦30a
t%であることを特徴とする特許請求の範囲第1項記載
の光学情報記録部材。
(2) The atomic ratio of Te, Ge, and Se in Figure 1 is as follows:
A_2 (Te_8_3Ge_7Se_1_0), B_2
(Te_6_3Ge_7Se_3_0), C_2(Te
_4_5Ge_3_0Se_2_5), D_2(Te_
4_5Ge_3_5Se_2_0), E_2(Te_5
_5Ge_3_5Se_1_0), and the concentration of Bi (at%) is 15≦m≦30a
The optical information recording member according to claim 1, wherein the optical information recording member is t%.
(3)Te、Ge、Seの原子数比が第1図における、
A_3(Te_7_5Ge_1_0Se_1_5)、B
_3(Te_6_5Ge_1_0Se_2_5)、C_
3(Te_5_0Ge_2_5Se_2_5)、D_3
(Te_5_0Ge_3_0Se_2_0)、E_3(
Te_5_5Ge_3_0Se_1_5)の各点で囲ま
れる領域内に有って、Biの濃度(at%)が、15≦
m≦25at%であることを特徴とする特許請求の範囲
第1項記載の光学情報記録部材。
(3) The atomic ratio of Te, Ge, and Se in Figure 1 is
A_3(Te_7_5Ge_1_0Se_1_5), B
_3(Te_6_5Ge_1_0Se_2_5), C_
3 (Te_5_0Ge_2_5Se_2_5), D_3
(Te_5_0Ge_3_0Se_2_0), E_3(
Within the region surrounded by each point of Te_5_5Ge_3_0Se_1_5), the concentration of Bi (at%) is 15≦
The optical information recording member according to claim 1, characterized in that m≦25 at%.
(4)組成を(Te_8_0_−_pGe_pSe_2
_0)_1_0_0_−_mBi_mと表したとき、1
0≦p≦25、15≦m≦25at%であることを特徴
とする特許請求の範囲第1項記載の光学情報記録部材。
(4) The composition is (Te_8_0_−_pGe_pSe_2
_0) When expressed as _1_0_0_-_mBi_m, 1
The optical information recording member according to claim 1, characterized in that 0≦p≦25 and 15≦m≦25at%.
JP60211471A 1985-09-25 1985-09-25 Optical information recording member Granted JPS6273439A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP60211471A JPS6273439A (en) 1985-09-25 1985-09-25 Optical information recording member
CN86107003A CN1010519B (en) 1985-09-25 1986-09-22 Invertible optical recording information dielectrical
KR1019860007937A KR900009187B1 (en) 1985-09-25 1986-09-23 Optical information recording carrier
EP89118260A EP0355865B1 (en) 1985-09-25 1986-09-25 Reversible optical information-recording medium
DE3689886T DE3689886T2 (en) 1985-09-25 1986-09-25 Reversible optical information recording medium.
DE3689815T DE3689815T2 (en) 1985-09-25 1986-09-25 Use of compositions as reversible optical recording materials.
EP86113211A EP0217293B1 (en) 1985-09-25 1986-09-25 Use of compositions as reversible optical information media
US08/053,346 US5278011A (en) 1985-09-25 1993-04-28 Reversible optical information-recording medium
US08/053,343 US6268107B1 (en) 1985-09-25 1993-04-28 Reversible optical information-recording medium
US09/765,677 US20010019810A1 (en) 1985-09-25 2001-01-22 Reversible optical information-recording medium
US10/389,615 USRE42222E1 (en) 1985-09-25 2003-03-14 Reversible optival information-recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60211471A JPS6273439A (en) 1985-09-25 1985-09-25 Optical information recording member

Publications (2)

Publication Number Publication Date
JPS6273439A true JPS6273439A (en) 1987-04-04
JPH0453192B2 JPH0453192B2 (en) 1992-08-25

Family

ID=16606490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60211471A Granted JPS6273439A (en) 1985-09-25 1985-09-25 Optical information recording member

Country Status (1)

Country Link
JP (1) JPS6273439A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005076355A1 (en) * 2004-02-06 2008-01-10 株式会社ルネサステクノロジ Storage device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766996A (en) * 1980-10-15 1982-04-23 Hitachi Ltd Information recording member and method of preparing thereof
JPS6034897A (en) * 1983-08-08 1985-02-22 Nippon Telegr & Teleph Corp <Ntt> Rewritable optical recording medium
JPS6048397A (en) * 1983-08-29 1985-03-16 Nippon Telegr & Teleph Corp <Ntt> Optical recording medium and preparation thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766996A (en) * 1980-10-15 1982-04-23 Hitachi Ltd Information recording member and method of preparing thereof
JPS6034897A (en) * 1983-08-08 1985-02-22 Nippon Telegr & Teleph Corp <Ntt> Rewritable optical recording medium
JPS6048397A (en) * 1983-08-29 1985-03-16 Nippon Telegr & Teleph Corp <Ntt> Optical recording medium and preparation thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005076355A1 (en) * 2004-02-06 2008-01-10 株式会社ルネサステクノロジ Storage device
JP4856953B2 (en) * 2004-02-06 2012-01-18 ルネサスエレクトロニクス株式会社 Storage device

Also Published As

Publication number Publication date
JPH0453192B2 (en) 1992-08-25

Similar Documents

Publication Publication Date Title
JP2584741B2 (en) Rewritable optical information recording member
JPH029955B2 (en)
US4939013A (en) Optical information storing medium
JPS6273438A (en) Optical information recording member
JP2592800B2 (en) Optical information recording member
JPS6358636A (en) Optical information recording medium
JPS6273439A (en) Optical information recording member
JPH0673991B2 (en) Optical information recording element
JPH02147289A (en) Optical data recording member
JPS62161590A (en) Optical information recording member
JPH0526668B2 (en)
JPS62161587A (en) Optical information recording member
JPS63173241A (en) Optical information recording medium
JP2685754B2 (en) Information recording medium
JPH0530193B2 (en)
JPH02147288A (en) Optical data recording member
JPH0714657B2 (en) Optical information recording member
JPS6391837A (en) Optical information recording member
JP2650868B2 (en) Rewritable optical information recording method
JPS62161589A (en) Optical information recording member
JPH07115536B2 (en) Optical information recording member
JPS62161591A (en) Optical information recording member
JPS62161588A (en) Optical information recording member
JPS62202345A (en) Rewriting type optical recording medium
JPS6329334A (en) Optical recording medium