JPS6268547A - Semiconductive photocatalyst - Google Patents

Semiconductive photocatalyst

Info

Publication number
JPS6268547A
JPS6268547A JP60206379A JP20637985A JPS6268547A JP S6268547 A JPS6268547 A JP S6268547A JP 60206379 A JP60206379 A JP 60206379A JP 20637985 A JP20637985 A JP 20637985A JP S6268547 A JPS6268547 A JP S6268547A
Authority
JP
Japan
Prior art keywords
semiconductor
type
film
semiconductors
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60206379A
Other languages
Japanese (ja)
Other versions
JPH0628737B2 (en
Inventor
Toshio Nakayama
中山 俊夫
Hiroshi Nakanishi
博 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60206379A priority Critical patent/JPH0628737B2/en
Publication of JPS6268547A publication Critical patent/JPS6268547A/en
Publication of JPH0628737B2 publication Critical patent/JPH0628737B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

PURPOSE:To enhance reaction efficiency, by successively laminating membrane like semiconductors from an incident light side in order larger in band gap energy and joining P-type and N-type membrane like semiconductors to tunnel through a high dope layer. CONSTITUTION:A P-type membrane like semiconductor 11 has band gap energy of Eg1 and a N-type membrane like semiconductor 12 has band gap energy of Eg2. The P-type membrane like semiconductor 11 and the N-type membrane like semiconductor 12 are jointed through a high-doped layer consisting of a high dope P-type region 13 and a high-doped N-type region 14. By this method, the P-type membrane like semiconductor 11 and the N-type membrane like semiconductor 12 form tunnel junction and, by this junction, mutual carrier injection functions in the same way as ohmic contact. The obtained semiconductive photocatalyst is increased in light absorbing efficiency and enhanced in reaction efficiency.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、光エネルギーを利用して化学反応を起こす半
導体光触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor photocatalyst that causes a chemical reaction using light energy.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

光化学反応を利用して光エネルギーから化学エネルギー
へのエネルギー変換を行なう技術は、太陽光エネルギー
利用技術として近年注目を集めており、特に半導体物質
を用いた光触媒反応については活発に研究が進められて
いる。
Technology that converts light energy into chemical energy using photochemical reactions has attracted attention in recent years as a solar energy utilization technology, and research is particularly active on photocatalytic reactions using semiconductor materials. There is.

例えば反応成分としての水と半導体光触媒を共存させた
反応系圧光を照射して、次式 で示される水の分解反応が、半導体光触媒の表面で行わ
れる事が知られている。
For example, it is known that a reaction system in which water as a reaction component and a semiconductor photocatalyst coexist is irradiated with pressure light to cause a water decomposition reaction represented by the following formula to occur on the surface of the semiconductor photocatalyst.

つまり第3図に模式的に示す如く、反応成分としての水
と共存下で半導体光触媒(3)に光(2)を照射すると
価電子帯に正孔(h+)が、伝導帯に電子(e−)がそ
れぞれ励起される。
In other words, as schematically shown in Figure 3, when the semiconductor photocatalyst (3) is irradiated with light (2) in the presence of water as a reaction component, holes (h+) are generated in the valence band and electrons (e) are generated in the conduction band. -) are excited respectively.

この時半導体光触媒(3)が、第4図に示すように水の
還元レベルB ()(”/H2)  よりも高い伝導帯
(4)のレベルを有するか、水の酸化レベルg(O□/
H20)よりも低い価電子帯(5)のレベルを有するも
のであれば、光によって生成した電子、正孔は水を分解
して水素あるいは酸素を発生させることが熱力学的に可
能である。もちろん、両方の条件を満足していれば水素
と酸素を同時に発生させることも可能である。
At this time, the semiconductor photocatalyst (3) has a conduction band (4) level higher than the water reduction level B()(''/H2) as shown in FIG. 4, or the water oxidation level g(O□ /
If it has a valence band (5) level lower than H20), it is thermodynamically possible for electrons and holes generated by light to decompose water and generate hydrogen or oxygen. Of course, it is also possible to generate hydrogen and oxygen simultaneously if both conditions are satisfied.

しかしながら、半導体光触媒には半導体の光吸収過程の
特質により、半導体のバンドギャップエネルギーより小
さいエレルギーに相当する波長域の光は有効に利用する
ことができず、光エネルギー変換効率を効果的に向上さ
せることができないという問題点がある。そのため、半
導体光触媒ができるだけ広い波長域にわたって光吸収領
域をもつように工夫しなければならない。
However, due to the characteristics of the light absorption process of semiconductors, semiconductor photocatalysts cannot effectively utilize light in the wavelength range corresponding to energy smaller than the bandgap energy of semiconductors, which effectively improves the light energy conversion efficiency. The problem is that it cannot be done. Therefore, efforts must be made to make the semiconductor photocatalyst have a light absorption region over as wide a wavelength range as possible.

光吸収領域を広げる方法の1つとして、バンドギャップ
エネルギーの異なる複数の半導体を用いる方法が考えら
れる。本発明者等は、種々検討した結果、バンドギャッ
プエネルギーの異なる2橿以上の膜状半導体を積層した
構造の半導体光触媒を発明し、特許出願した(vj願昭
58−223332号明細書)。本発明者達がさらに研
究を進めた結果、光吸収効率は良好となるものの、半導
体直接接合では、光照射により生じたキャリア(電子十
王孔)が接合界面で再結合を起こしやすく、酸化還元反
応に寄与する電子、正孔のエネルギー差、すなわち反応
に利用できるエネルギーが充分に得られないということ
がわかった。
One possible method for expanding the light absorption region is to use a plurality of semiconductors with different band gap energies. As a result of various studies, the present inventors invented a semiconductor photocatalyst having a structure in which two or more film-like semiconductors having different band gap energies were stacked, and filed a patent application (VJ Application No. 58-223332). As a result of further research by the present inventors, although the light absorption efficiency was improved, in direct semiconductor bonding, carriers (electronic pores) generated by light irradiation are likely to recombine at the bonding interface, resulting in oxidation and reduction. It was found that the energy difference between electrons and holes that contribute to the reaction, that is, the energy that can be used for the reaction, is not sufficient.

さらに、本発明者等は、膜状半導体を導電体層を介して
接合することKより、光吸収波長域を拡大しつつ各々の
半導体中に生じる電子、正孔の内、反応に寄与するキャ
リアを分離し、反応に寄与できるキャリアの損失を抑え
るとともに反応に利用できるエネルギーを充分に確保す
ることができることを見出し、特許出願した(特願昭5
9−227827号明細書)。この構造において重要な
点は、導電体層を介して存在する半導体層中に光照射に
よって発生したキャリアが効果的に導電体層に注入され
る必要があることである。このため、導電体7Iiとし
ては、接合する半導体とオーミックコンタクトを形成す
る材料を使い、接合する半導体によってオーミックコン
タクトとなる材料が異なる場合には、それぞれの材料を
複合化する必要がある。
Furthermore, the present inventors have discovered that by joining film-like semiconductors via a conductive layer, the light absorption wavelength range can be expanded, and carriers contributing to reactions among the electrons and holes generated in each semiconductor can be expanded. He discovered that it was possible to separate the carriers, suppress the loss of carriers that could contribute to the reaction, and secure sufficient energy that could be used for the reaction, and applied for a patent (patent application filed in 1973).
9-227827). An important point in this structure is that carriers generated by light irradiation in the semiconductor layer existing through the conductor layer need to be effectively injected into the conductor layer. Therefore, as the conductor 7Ii, a material that forms an ohmic contact with the semiconductor to be bonded is used, and if the material forming the ohmic contact differs depending on the semiconductor to be bonded, it is necessary to combine the respective materials.

通常オーミックコンタクト材料として金属を用いる場合
が多い為、光の損失は免れず、特に複合化した場合には
著しく半導体光触媒の高効率化を妨げる要因となってい
た。
Since metal is usually used as an ohmic contact material, light loss is inevitable, and especially when composites are used, this has been a factor that significantly hinders the improvement of the efficiency of semiconductor photocatalysts.

〔発明の目的〕[Purpose of the invention]

本発明はかかる問題点に鑑みなされたもので、光吸収領
域を拡大することにより、光吸収効率が増大し、反応効
率が向上した半導体光触媒を提供することを目的とする
The present invention was made in view of such problems, and an object of the present invention is to provide a semiconductor photocatalyst with increased light absorption efficiency and improved reaction efficiency by expanding the light absorption region.

〔発明の概要〕[Summary of the invention]

本発明は、少なくともバンドギャップエネルギーの異な
るp型及びn型の膜状半導体を具備し、反応成分との共
存下で光照射により酸化還元反応を生じる複数の膜状半
導体からなり、前記膜状半導体をバンドギャップエネル
ギーの大きい順に入射光側より頭次積層しかつ前記p型
及びn型の膜状半導体を高ドープ層を介してトンネル接
合したことを特徴とする半導体光触媒であり、また前記
p型及びn型の膜状半導体が、pn接合又はpin接合
の積層膜状半導体を構成するp型又はn型の膜状半導体
である半導体光触媒である。
The present invention comprises at least p-type and n-type film-like semiconductors having different band gap energies, and is composed of a plurality of film-like semiconductors that undergo a redox reaction by light irradiation in coexistence with a reaction component, and the film-like semiconductor The semiconductor photocatalyst is characterized in that the p-type and n-type film semiconductors are stacked in order of increasing bandgap energy from the incident light side, and the p-type and n-type film semiconductors are tunnel-junctioned via a highly doped layer. and a semiconductor photocatalyst in which the n-type film semiconductor is a p-type or n-type film semiconductor constituting a pn junction or pin junction laminated film semiconductor.

つまり本発明はp型、n型の膜状半導体、pn接合の積
層膜状半導体及びpin接合の積層膜状半導体等の積層
構造からなる半導体光触媒であり、これらを接合する際
に高ドープ層を介してバンドギャップエネルギーの異な
るp型及びn型の膜状半導体をトンネル接合する事によ
り、各膜状半導体をオーミックコンタクト状態で良好に
接合したものである。
In other words, the present invention is a semiconductor photocatalyst having a laminated structure such as p-type and n-type film semiconductors, pn junction laminated film semiconductors, pin junction laminated film semiconductors, etc. When joining these, a highly doped layer is formed. By tunnel-junctioning p-type and n-type film semiconductors having different band gap energies through the wafer, the film semiconductors are well bonded in an ohmic contact state.

次に本発明を、最も基本的な二層構造のものについて第
1図に示すバンド図を参照して説明する。
Next, the present invention will be explained with reference to the band diagram shown in FIG. 1 for the most basic two-layer structure.

第1図(a)のp型の膜状半導体11はE4のバンドギ
ャップエネルギーを有し、nuの膜状半導体12はEf
hのバンドギャップエネルギーを有している。
The p-type film semiconductor 11 in FIG. 1(a) has a bandgap energy of E4, and the nu film semiconductor 12 has a bandgap energy of Ef.
It has a bandgap energy of h.

このp型の膜状半導体11とn型の膜状半導体12とは
、高ドープn型領域13及び高ドープn型領域14から
なる高ドープ層を介して接合されており、これKよって
p型の膜状半導体11とn型の膜状半導体12とはトン
ネル接合となる。このため互いのキヤリア注入はオーミ
ックコンタクトと同様に機能する。すなわち前述のよう
に導電体層を介さず、オーミックコンタクトと同様の接
合が形成されることとなる。次に第1図(b)を用いて
、前述の如き半導体光触媒の光触媒反応を説明する。な
お本発明においては、バンドギャップエネルギーの大き
い膜状半導体側から光を照射する必要がある為バンドギ
ャップエネルギーがBgt>Elh のときp型の膜状
半導体11側から光照射し、Bgt>Bit のときn
型の膜状半導体12側から光照射する。
The p-type film-like semiconductor 11 and the n-type film-like semiconductor 12 are bonded via a highly doped layer consisting of a highly doped n-type region 13 and a highly doped n-type region 14. The film-like semiconductor 11 and the n-type film-like semiconductor 12 form a tunnel junction. Therefore, mutual carrier injection functions similarly to ohmic contact. That is, as described above, a junction similar to an ohmic contact is formed without using a conductor layer. Next, the photocatalytic reaction of the semiconductor photocatalyst as described above will be explained using FIG. 1(b). In the present invention, since it is necessary to irradiate light from the side of the film-like semiconductor with a large band gap energy, when the band-gap energy is Bgt>Elh, light is irradiated from the side of the p-type film-like semiconductor 11, and when Bgt>Bit. time n
Light is irradiated from the film semiconductor 12 side of the mold.

例えばバンドギャップエネルギーがBgt > Bgt
の場合をpWの膜状半導体11側から光2を照射すると
、膜状半導体11および12において電子、正孔が生成
され、膜状半導体11で生じた正孔と膜状半導体12で
生じた電子はそれぞれ高ドープ層の高ドープ型領域13
及び高ドープn型領域14に輸送されて再結合によって
消滅する。一方、膜状半導体11で生じた電子は膜状半
導体11の表面に輸送され、膜状半導体12で生じた正
孔は膜状半導体12の表面に4送されてそれぞれ酸化還
元反応に寄与する。
For example, the band gap energy is Bgt > Bgt
When the light 2 is irradiated from the pW film semiconductor 11 side in the case of , electrons and holes are generated in the film semiconductors 11 and 12, and the holes generated in the film semiconductor 11 and the electrons generated in the film semiconductor 12 are are highly doped regions 13 of the highly doped layer, respectively.
and is transported to the highly doped n-type region 14 and annihilated by recombination. On the other hand, electrons generated in the membrane semiconductor 11 are transported to the surface of the membrane semiconductor 11, and holes generated in the membrane semiconductor 12 are sent to the surface of the membrane semiconductor 12, each contributing to an oxidation-reduction reaction.

この際上記電子と正孔とのΔEのエネルギー差が、光触
媒反応の全エネルギー変化を決定する事となる。
At this time, the energy difference of ΔE between the electron and hole determines the total energy change of the photocatalytic reaction.

以上のような半導体光触媒の機能を充分にひき出すため
には、半導体光触媒を構成する各膜状半導体に充分に光
が到達する必要があり、従来の金属等の導電体層を介在
させる構成の半導体光触媒に比較して、本発明の半導体
光触媒では導電体層を介在させない分だけ光の透過効率
が増大し、全体として半導体光触媒の反応効率を向上さ
せることが可能となる。
In order to fully utilize the functions of a semiconductor photocatalyst as described above, it is necessary for sufficient light to reach each of the film-like semiconductors that make up the semiconductor photocatalyst. Compared to a semiconductor photocatalyst, the semiconductor photocatalyst of the present invention has an increased light transmission efficiency due to the absence of an intervening conductor layer, making it possible to improve the reaction efficiency of the semiconductor photocatalyst as a whole.

なお本発明における高ドープ層とは、接合されるp型及
びn型の膜状半導体の接合面近傍を膜状半導体自体より
高ドープ状態として、それぞれに高ドープn型領域(p
+)及び高ドープn型領域(n+)を設ける事により形
成され、トンネル接合状態となるものであればよい。通
常これらの高ドープ層は、不純物原子の熱拡散、イオン
インプランテーションあるいはCVD法におけるガス組
成の制御等によって得られ、目的とするオーミックコン
タクトを得るためにはキャリア濃度を10”−10” 
cm−”にする必要がある。
Note that the highly doped layer in the present invention refers to a highly doped layer in which the vicinity of the junction surface of the p-type and n-type film semiconductors to be joined is more highly doped than the film semiconductors themselves, and a highly doped n-type region (p
+) and a highly doped n-type region (n+) to form a tunnel junction state. Usually, these highly doped layers are obtained by thermal diffusion of impurity atoms, ion implantation, or controlling gas composition in CVD method, and in order to obtain the desired ohmic contact, the carrier concentration is set to 10"-10".
cm-".

また本発明に係る半導体光触媒は、バンドギャップエネ
ルギーが光の入射側よりその反対側に向かって連続的に
小さくなる膜状半導体を積層してもよい。すなわち、濃
度を変化させる等の手段を用いてバンドギャップエネル
ギーを連続的に変化させた膜状半導体を用いてもよい。
Further, the semiconductor photocatalyst according to the present invention may be formed by laminating film-like semiconductors in which the band gap energy decreases continuously from the light incident side toward the opposite side. That is, a film-like semiconductor whose band gap energy is continuously changed by changing the concentration or the like may be used.

本発明に用いられる半導体としては、Si、Ge等の他
にInP! GaPI Zn3P2 HAlAs + 
GaAs + CdS + Zn S + Cu、 S
 +CdSe、Zn8e、CdTe、ZnTe、TiO
2,ZnO,5rTiO,、Fe20g等の金属リン化
物、金属砒化物、金属硫化物、金属セレン化物、金属テ
ルル化物、金属酸化物およびこれらを3元又は4元に組
み合せたGaAlAS lInGaAs 、InGaA
sP、GaAA!AsP、CuInS2. CuInS
e、等が挙げられる。
In addition to Si, Ge, etc., the semiconductor used in the present invention includes InP! GaPI Zn3P2 HAlAs +
GaAs + CdS + Zn S + Cu, S
+CdSe, Zn8e, CdTe, ZnTe, TiO
2. Metal phosphides, metal arsenides, metal sulfides, metal selenides, metal tellurides, metal oxides such as ZnO, 5rTiO, Fe20g, and ternary or quaternary combinations of these GaAlAS lInGaAs, InGaA
sP, GaAA! AsP, CuInS2. CuInS
e, etc.

また、本発明の半導体光触媒の片面もしくは両面に酸化
反応促進物質あるいは還元反応促進物質を担持すると、
反応効率を一層向上させることが可能となる。ここで酸
化反応促進物質とはRuO2。
Furthermore, when an oxidation reaction promoting substance or a reduction reaction promoting substance is supported on one or both sides of the semiconductor photocatalyst of the present invention,
It becomes possible to further improve reaction efficiency. Here, the oxidation reaction promoter is RuO2.

Rh、O,等であり、還元反応促進物質とは、■r、Q
s。
Rh, O, etc., and the reduction reaction promoting substance is ■r, Q
s.

pd、pt、几h+ Ru 、 Re  等である。pd, pt, 几h+Ru, Re, etc.

次に本発明の半導体光触媒を光吸収が非常に効果的な4
層構造のものについて第2図に示すバンド図を参照して
説明する。第2図(a)のn型の膜状半導体11′及び
p凰の膜状半導体11はpn接合の積層膜状半導体を形
成している。nmの膜状半導体11′はBgtのバンド
ギャップエネルギーを有し、p型の膜状半導体11はE
g;のバンドギャップエネルギーを有している。同様に
n型の膜状半導体12及びp型の膜状半導体12′はp
n接合の積層膜状半導体を形成し、n型の膜状半導体1
2は8g2のバンドギャップエネルギーを、p型の膜状
半導体12′は8g2のバンドギャップエネルギーを有
している。
Next, we will use the semiconductor photocatalyst of the present invention as 4, which is highly effective in light absorption.
The layered structure will be explained with reference to the band diagram shown in FIG. The n-type film semiconductor 11' and the p-type film semiconductor 11 shown in FIG. 2(a) form a pn junction laminated film semiconductor. The nm film semiconductor 11' has a bandgap energy of Bgt, and the p-type film semiconductor 11 has a bandgap energy of E.
It has a bandgap energy of g; Similarly, the n-type film semiconductor 12 and the p-type film semiconductor 12' are p
An n-junction laminated film semiconductor is formed, and an n-type film semiconductor 1 is formed.
2 has a bandgap energy of 8g2, and the p-type film semiconductor 12' has a bandgap energy of 8g2.

p型の膜状半導体11とn型の膜状半導体12の界面に
は高ドープn型領域13及び高ドープn型領域14から
なる高ドープ層がそれぞれ形成されている。
A highly doped layer consisting of a highly doped n-type region 13 and a highly doped n-type region 14 is formed at the interface between the p-type film semiconductor 11 and the n-type film semiconductor 12, respectively.

これらのバンドギャップエネルギーがBg+≧Eg;)
Bg2≧Eg′2のときn型の膜状半導体11′側から
光2を照射する。光吸収領域の拡大という観点からは、
Eg+ > Eg: > Egz > Eg;  であ
ることが好ましい。
These band gap energies are Bg+≧Eg;)
When Bg2≧Eg'2, light 2 is irradiated from the n-type film semiconductor 11' side. From the perspective of expanding the light absorption area,
It is preferable that Eg+ > Eg: > Egz >Eg;

また、Eg+ >Bg+ + Bgt <Egt (E
g+とEgxの大小関係は任意)の場合、゛すなわち高
ドープ層に向かっテJ頁tiにバンドギャップエネルギ
ーが小さくなるような場合にはnuの膜状半導体11’
とp型の膜状半導体12’との両側から光照射する。
Also, Eg+ >Bg+ + Bgt <Egt (E
(The magnitude relationship between g+ and Egx is arbitrary), ``In other words, if the bandgap energy decreases toward the highly doped layer, then the nu film semiconductor 11'
Light is irradiated from both sides of the p-type film semiconductor 12'.

Bg+≧Egg>Bg2≧Eg1の場合、Eg;より小
さいエネルギーの光を吸収するためBgtより小さいバ
ンドギャップエネルギーを有するp型の膜状半導体(図
示せず)を膜状半導体12′の次に積層することもでき
る。また、Eg+より大きいエネルギーに相当する波長
域の光はバンドギャップエネルギーがEg+のn型の膜
状半導体1どにより吸収されるが、Eglよりかなり大
きなエネルギーをもつ光は有効に吸収することができな
いのでBg+より大きなバンドギャップエネルギーを持
つn型の膜状半導体(図示せず)をEg+の上に積層し
てもよい。
In the case of Bg+≧Egg>Bg2≧Eg1, Eg: In order to absorb light with lower energy, a p-type film semiconductor (not shown) having a band gap energy smaller than Bgt is laminated next to the film semiconductor 12′. You can also. In addition, light in a wavelength range corresponding to an energy greater than Eg+ is absorbed by an n-type film semiconductor 1 with a bandgap energy of Eg+, but light with an energy considerably greater than Egl cannot be effectively absorbed. Therefore, an n-type film semiconductor (not shown) having a larger band gap energy than Bg+ may be laminated on Eg+.

このような4層ちるいは51−構成の半導体光触媒では
pn接合の内部電場を利用することにより、光照射によ
り生じたキャリアの電荷分離効率を向上できる。
In such a semiconductor photocatalyst having a four-layer structure or a 51-layer structure, the efficiency of charge separation of carriers generated by light irradiation can be improved by utilizing the internal electric field of the pn junction.

更に、2組のpn接合を配置した構造であるため、光照
射を行なうと第2図(b)に示すように相対的KnWの
膜状半導体11′の7工ルミ準位がもち上がり、p型の
膜状半導体12′のフェルミ準位がおし下げられるので
、光照射状態においてn型の膜状半導体11′の表面に
出る電子とp型の膜状半導体12′の表面に出る正孔と
にΔBのエネルギー差をもたせることが可能となり、こ
れが反応系の全エネルギー変化を決定することになる。
Furthermore, since the structure has two sets of pn junctions, when light is irradiated, the 7-luminium level of the relative KnW film semiconductor 11' rises, as shown in FIG. Since the Fermi level of the type film semiconductor 12' is lowered, electrons appearing on the surface of the n-type film semiconductor 11' and holes appearing on the surface of the p-type film semiconductor 12' in the light irradiation state It becomes possible to have an energy difference of ΔB between the two, and this determines the total energy change of the reaction system.

また前述の説明ではpn接合の積層膜状半導体を例にと
ったが、片側もしくは両側のpn接合をpin接合の積
層膜状半導体でおきかえることができる。
Further, in the above description, a pn junction laminated film semiconductor was taken as an example, but the pn junction on one or both sides can be replaced with a pin junction laminated film semiconductor.

このように片側もしくは両側をpn接合、 pin接合
の積層膜状半導体とする場合には、各積層半導体は同一
の半導体を用いドーパントを選択する事テよりp型、n
型、i型とする事が実用的である。
In this way, when one side or both sides are made of a laminated film semiconductor with a pn junction or a pin junction, each laminated semiconductor is made of the same semiconductor and the dopant is selected, so that p-type, n-type
It is practical to use type i.

尚、本発明はバンドギャップエネルギーの異なるp型と
n型の膜状半導体を具備するものであれば何層構成のも
のであってもよい。特に光の透過率、電荷分離効率等を
考慮すると、上述のような4層あるいは5ノー構造のも
のが好ましい。
Note that the present invention may have any number of layers as long as it includes p-type and n-type film semiconductors having different band gap energies. In particular, in consideration of light transmittance, charge separation efficiency, etc., a four-layer or five-layer structure as described above is preferable.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例1 p 、Wの膜状半導体としてのp型S1  ウェハの表
面KPをドープしてn型の膜状半導体を形成し、バンド
ギャップエネルギー1.1eVOp型及びn型の膜状半
導体からなる積層膜状半導体を炸裂した。
Example 1 The surface KP of the p-type S1 wafer as a film-like semiconductor of p and W was doped to form an n-type film-like semiconductor, and the band gap energy was 1.1eV. The film-like semiconductor exploded.

さらに前記n型の膜状半導体長面を高ドープ状態にする
ため、キャリア密度10” Cm−’程度までドープし
て高ドープn型領域を形成した。この高ドー7’ n型
須截の上にプラズマCVD法を用イテバントギャップエ
ネルギー1.7eVのa−8iの高ドープp型領域−p
型−1型−n型を順番に積層し、a−3i  のpin
接合の積層膜状半導体を形成した。このa−3iのpi
n接合の積層膜状半導体とsiのpn接合の積層膜状半
導体とは前記高ドープn型領域及び高ドープn型領域か
らなる高ドープ層によってトンネル接合となっている。
Furthermore, in order to make the long surface of the n-type film-like semiconductor highly doped, a highly doped n-type region was formed by doping to a carrier density of about 10''Cm-'. A-8i highly doped p-type region-p with an itevant gap energy of 1.7 eV was prepared using plasma CVD method.
Stack type-1 type-n type in order, pin a-3i
A junction laminated film semiconductor was formed. This a-3i pi
The n-junction laminated film semiconductor and the Si pn junction laminated film semiconductor form a tunnel junction through the highly doped n-type region and the highly doped layer consisting of the highly doped n-type region.

さらにa−8iのn型の膜状半導体の上に高エネルギー
の光を吸収するためバンドギャップエネルギー3.Oe
VのTio、からなる膜状半導体を200OA形成し、
七の上に還元反応を促進するためにPt層を積層し、前
記s1ウェハの晶面には酸化反応を促進するためにRu
b。
Furthermore, since high-energy light is absorbed on the a-8i n-type film semiconductor, the band gap energy is 3. Oe
200 OA of film-like semiconductor made of Tio of V was formed,
A Pt layer is laminated on the s1 wafer to promote the reduction reaction, and a Ru layer is laminated on the crystal surface of the s1 wafer to promote the oxidation reaction.
b.

を積層して半導体光触媒を構成した。were stacked to form a semiconductor photocatalyst.

得られた半導体光触媒を反応成分としての水−メタノー
ル1:1混合溶媒中に浸漬し、真空脱気下においてri
o、側より500 W、X eランプを10時間照射し
た。この時水の分解により発生した水素の量は45μm
olであった。
The obtained semiconductor photocatalyst was immersed in a 1:1 mixed solvent of water and methanol as a reaction component, and subjected to ri under vacuum degassing.
A 500 W X e lamp was irradiated from the o side for 10 hours. The amount of hydrogen generated by water decomposition at this time is 45μm
It was OL.

″実施例2 p型の膜状半導体としてのp型GaPウェハの表面にS
をドープしてn型の膜状半導体を形成し、バンドギャッ
プエネルギー2.3eVOp型及びn型の膜状半導体か
らなる積層膜状半導体を炸裂する。
``Example 2 S on the surface of a p-type GaP wafer as a p-type film semiconductor
is doped to form an n-type film semiconductor, and a laminated film semiconductor consisting of a band gap energy of 2.3 eV Op type and an n-type film semiconductor is exploded.

さらに前記n型の膜状半導体表面を高ドープ状態にする
ためキャリア密度1021園づ程度までドープし高ドー
プn型領域分形成した。この高ドープn型領域の上にプ
ラズマCVD法を用いてパンドギヤツプエネルギー1.
7eVのa−3iの高ドープp型領域−p型〜i型−n
型を順番に積層し、a−3iのpin接合の積層膜状半
導体を形した。このa−3iのpin接合の積層膜状半
導体とGaPのpn接合の積ff!膜状半導体とは前記
の高ドープn型領域及び高ドープn型領域からなる高ド
ープ層によってトンネル接合となっている。さらに3−
3iのn型の膜状半導体の上に高エネルギーの光を吸収
するため、バンドギャップエネルギー3.OeVのTl
O2からなる膜状半導体を200OA形成し、その上に
還元反応を促進するためにpt 層を積層し、前記基板
のGaPの裏面には酸化反応を促進するためにRuO□
を積層して半導体光触媒を構成した。
Further, in order to make the surface of the n-type film-like semiconductor highly doped, the semiconductor was doped to a carrier density of about 1021 or so to form a highly doped n-type region. A plasma CVD method is used to deposit the highly doped n-type region with a gap energy of 1.
Highly doped p-type region of 7eV a-3i - p-type to i-type - n
The molds were laminated in order to form an a-3i pin junction laminated film semiconductor. Product ff of this a-3i pin junction laminated film semiconductor and GaP pn junction! The film-like semiconductor has a tunnel junction formed by the highly doped n-type region and the highly doped layer consisting of the highly doped n-type region. Further 3-
Since high energy light is absorbed on the n-type film semiconductor of 3i, the band gap energy 3. Tl of OeV
A 200 OA film-like semiconductor made of O2 was formed, a PT layer was laminated thereon to promote the reduction reaction, and RuO□ was layered on the back surface of the GaP of the substrate to promote the oxidation reaction.
were stacked to form a semiconductor photocatalyst.

得られた半導体光触媒を反応成分としての水−メタノー
ル1:1混合溶液中に浸漬し、真空脱気下においてTi
e、側ならびにGaP側の両側から500WXe ラン
プを10時間照射した。この時、水の分解により発生し
た水素の量は55μmolであった。
The obtained semiconductor photocatalyst was immersed in a 1:1 mixed solution of water and methanol as reaction components, and Ti was removed under vacuum degassing.
A 500WXe lamp was irradiated for 10 hours from both sides of the GaP side and the GaP side. At this time, the amount of hydrogen generated by water decomposition was 55 μmol.

比較例 p型の膜状半導体としてp型St  ウェハの表面にP
をドープしてn型の膜状半導体を形成し、バンドギャッ
プエネルギー1.1eVOp型n型の膜状半導体からな
る積層膜状半導体を・作製する。このn型の膜状半導体
の土建導電体層としてA、u−Ge層を形成し、オーミ
ックコンタクトを形成した。さらにこの上[4m!体層
としてA1層を形成した後、プラズマCVD法を用いて
バンドギャップエネルギー1.7eVのaStのpin
接合からなる積層膜状半導体を形成した。a−8iOp
型の膜状半導体とA1層はえ−ミンクコンタクトを形成
している。a−3iのn型の膜状半導体の上には高エネ
ルギーの光を吸収するためバンドギャップエネルギー3
.0eVOT102からなる膜状半導体を200OA形
成し、その上に還元反応を促進するためにPt 層を触
媒として形成し、前記SI  ウェハの裏面には酸化反
応を促進するためにR1302層を触媒として積層して
半導体光触媒を構成した。
Comparative Example: p-type St as a p-type film semiconductor. P on the surface of a wafer.
is doped to form an n-type film semiconductor, and a laminated film semiconductor made of the n-type film semiconductor having a band gap energy of 1.1 eVOp is manufactured. An A, u-Ge layer was formed as a civil conductor layer of this n-type film semiconductor to form an ohmic contact. Furthermore above this [4m! After forming the A1 layer as the body layer, aSt pin with a band gap energy of 1.7 eV was formed using plasma CVD method.
A laminated film semiconductor consisting of junctions was formed. a-8iOp
The film-like semiconductor of the mold and the A1 layer form an e-mink contact. On the n-type film semiconductor of a-3i, there is a band gap energy of 3 to absorb high energy light.
.. A 200 OA film semiconductor made of 0eVOT102 was formed, a Pt layer was formed thereon as a catalyst to promote the reduction reaction, and an R1302 layer was laminated as a catalyst on the back side of the SI wafer to promote the oxidation reaction. A semiconductor photocatalyst was constructed.

得られた半導体光触媒を反応成分としての水−メタノー
ル1:1混合溶液中に浸漬し、真空脱気下において′r
iO□側より500WXeランプヲlO時間照射した。
The obtained semiconductor photocatalyst was immersed in a 1:1 mixed solution of water and methanol as a reaction component, and heated under vacuum degassing.
A 500WXe lamp was irradiated from the iO□ side for 10 hours.

この時、水の分解により発生した水素の社は39μmo
lであった。
At this time, the amount of hydrogen generated by water decomposition was 39 μmo
It was l.

以上より明らかなように、本発明の実施例1゜2は共に
比較例より水素の発生量が多く有効な半導体光触媒であ
ることがわかる。
As is clear from the above, both Examples 1 and 2 of the present invention are effective semiconductor photocatalysts that generate more hydrogen than the comparative example.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば光吸収領域が拡大し
、光吸収効率が増大し、電荷分離効率が向上しキャリア
が有効に利用でき、反応効率を著しく向上した半導体光
触媒を提供できる。
As detailed above, according to the present invention, it is possible to provide a semiconductor photocatalyst in which the light absorption region is expanded, the light absorption efficiency is increased, the charge separation efficiency is improved, carriers can be used effectively, and the reaction efficiency is significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) (b)及び第2図ta) (b)は本発
明に係わる半導体光触媒のバンド図、第3図は半導体光
触媒表面での水分解を説明するための図、第4図は第3
図のエネルギーバンド図である。 2・・光        3 ・半導体光触媒4・・伝
導帯      5・・価電子帯11’、12・・・n
型の膜状半導体 11 、12’ ・・p型の膜状半導体13  高ドー
プn型領域  14・・高ドープn型領域第  1  
ド )LFrLP 第  2  図 第  3  図 第4図
Figures 1 (a) (b) and 2 (ta) (b) are band diagrams of the semiconductor photocatalyst according to the present invention, Figure 3 is a diagram for explaining water splitting on the surface of the semiconductor photocatalyst, and Figure 4 is the third
It is an energy band diagram of the figure. 2..Light 3.Semiconductor photocatalyst 4..Conduction band 5..Valence band 11', 12...n
type film semiconductors 11, 12'...P-type film semiconductor 13 Highly doped n-type region 14...Highly doped n-type region 1
D) LFrLP Figure 2 Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)少なくともバンドギャップエネルギーの異なるp
型及びn型の膜状半導体を具備し、反応成分との共存下
で光照射により酸化還元反応を生じる複数の膜状半導体
からなり、前記膜状半導体をバンドギャップエネルギー
の大きい順に入射光側より順次積層しかつ前記p型及び
n型の膜状半導体を高ドープ層を介してトンネル接合し
たことを特徴とする半導体光触媒。
(1) At least p with different bandgap energy
It is composed of a plurality of film-like semiconductors that undergo a redox reaction by light irradiation in the coexistence with a reaction component, and the film-like semiconductors are arranged in order of increasing band gap energy from the incident light side. 1. A semiconductor photocatalyst, characterized in that the p-type and n-type film semiconductors are sequentially stacked and tunnel-junctioned via a highly doped layer.
(2)p型及びn型の膜状半導体が、pn接合又はpi
n接合の積層膜状半導体を構成するp型又はn型の膜状
半導体である事を特徴とする特許請求の範囲第1項記載
の半導体光触媒。
(2) P-type and n-type film semiconductors are connected to p-n junction or pi
The semiconductor photocatalyst according to claim 1, which is a p-type or n-type film semiconductor constituting an n-junction laminated film semiconductor.
JP60206379A 1985-09-20 1985-09-20 Semiconductor photocatalyst Expired - Lifetime JPH0628737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60206379A JPH0628737B2 (en) 1985-09-20 1985-09-20 Semiconductor photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60206379A JPH0628737B2 (en) 1985-09-20 1985-09-20 Semiconductor photocatalyst

Publications (2)

Publication Number Publication Date
JPS6268547A true JPS6268547A (en) 1987-03-28
JPH0628737B2 JPH0628737B2 (en) 1994-04-20

Family

ID=16522360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60206379A Expired - Lifetime JPH0628737B2 (en) 1985-09-20 1985-09-20 Semiconductor photocatalyst

Country Status (1)

Country Link
JP (1) JPH0628737B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08155309A (en) * 1994-11-30 1996-06-18 Riken Corp Photodecomposition catalyst and its production
JP2008511435A (en) * 2004-09-03 2008-04-17 ジェン−エックス パワー コーポレイション Electrochemical device
US7842393B2 (en) 2006-12-27 2010-11-30 Murakami Corporation Vehicle antifogging element
JP2012046385A (en) * 2010-08-27 2012-03-08 Mitsubishi Chemical Holdings Corp Electrode for water decomposition by light, method for producing the same and method for decomposing water
JP2016034611A (en) * 2014-08-01 2016-03-17 株式会社デンソー Semiconductor photocatalyst and artificial photosynthesis device applying the same
WO2018135144A1 (en) * 2017-01-18 2018-07-26 日立化成株式会社 Method for producing hydrogen gas, and method for producing semiconductor device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4736267B2 (en) * 2001-08-08 2011-07-27 住友金属鉱山株式会社 Photocatalyst having catalytic activity even in the visible light region
JP4783686B2 (en) * 2006-07-07 2011-09-28 独立行政法人科学技術振興機構 III-V group nitride semiconductor, photocatalytic semiconductor element, photocatalytic oxidation-reduction reaction apparatus, and photoelectrochemical reaction execution method
JP4799450B2 (en) * 2007-03-09 2011-10-26 株式会社東芝 Photocatalyst complex and water purifier
JP4783869B2 (en) * 2011-03-03 2011-09-28 独立行政法人科学技術振興機構 III-V group nitride semiconductor, photocatalytic semiconductor element, photocatalytic oxidation-reduction reaction apparatus, and photoelectrochemical reaction execution method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08155309A (en) * 1994-11-30 1996-06-18 Riken Corp Photodecomposition catalyst and its production
JP2008511435A (en) * 2004-09-03 2008-04-17 ジェン−エックス パワー コーポレイション Electrochemical device
US7842393B2 (en) 2006-12-27 2010-11-30 Murakami Corporation Vehicle antifogging element
JP2012046385A (en) * 2010-08-27 2012-03-08 Mitsubishi Chemical Holdings Corp Electrode for water decomposition by light, method for producing the same and method for decomposing water
JP2016034611A (en) * 2014-08-01 2016-03-17 株式会社デンソー Semiconductor photocatalyst and artificial photosynthesis device applying the same
US9951429B2 (en) 2014-08-01 2018-04-24 Denso Corporation Semiconductor photocatalyst and artificial photonic synthesis device having the same
WO2018135144A1 (en) * 2017-01-18 2018-07-26 日立化成株式会社 Method for producing hydrogen gas, and method for producing semiconductor device

Also Published As

Publication number Publication date
JPH0628737B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
AU2003200122B2 (en) Apparatus and method for photovoltaic energy production based on internal charge emission in a solid-state heterostructure
US8624105B2 (en) Energy conversion device with support member having pore channels
Shaner et al. Functional integration of Ni–Mo electrocatalysts with Si microwire array photocathodes to simultaneously achieve high fill factors and light-limited photocurrent densities for solar-driven hydrogen evolution
Wu et al. Wafer-scale fabrication of self-catalyzed 1.7 eV GaAsP core–shell nanowire photocathode on silicon substrates
JPS61502020A (en) Solar cells and photodetectors
US20130269761A1 (en) Semiconductor structures for fuel generation
KR101208272B1 (en) Solar Cell of having Photovoltaic Structures on Both Sides of Substrate and Method of forming the same
JP6550691B2 (en) Compound semiconductor solar cell
US4634641A (en) Superlattice photoelectrodes for photoelectrochemical cells
JPS6268547A (en) Semiconductive photocatalyst
JP2005133174A (en) Water decomposition type hydrogen generation cell
CN111656535A (en) Voltage matched multijunction solar modules made of 2D materials
CN103999189A (en) Methods of fabricating dilute nitride semiconductor materials for use in photoactive devices and related structures
US9951429B2 (en) Semiconductor photocatalyst and artificial photonic synthesis device having the same
WO2016104711A1 (en) Solar battery
CN112117344A (en) Solar cell and manufacturing method thereof
JP5763603B2 (en) Photovoltaic device and manufacturing method thereof
Katsuyama et al. New approaches for high efficiency cascade solar cells
JPS60118239A (en) Semiconductor photocatalyst
JPS61107945A (en) Semiconductive optical catalyst
Sayed et al. Tunable GaInP solar cell lattice matched to GaAs
JPS61212334A (en) Semiconductor photocatalyst
JP2016098419A (en) Hydrogen generation method, hydrogen generating apparatus and anode electrode for hydrogen generation
CN106129165B (en) A kind of heterojunction solar battery for helping effect containing bilateral field
JP2021506135A (en) Energy conversion devices and methods with a superlattice absorption layer