JPS6268112A - Heat exchanger for thermal electricity generation - Google Patents

Heat exchanger for thermal electricity generation

Info

Publication number
JPS6268112A
JPS6268112A JP20733185A JP20733185A JPS6268112A JP S6268112 A JPS6268112 A JP S6268112A JP 20733185 A JP20733185 A JP 20733185A JP 20733185 A JP20733185 A JP 20733185A JP S6268112 A JPS6268112 A JP S6268112A
Authority
JP
Japan
Prior art keywords
heat
medium introduction
heat medium
duct
introduction duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20733185A
Other languages
Japanese (ja)
Other versions
JPH0612223B2 (en
Inventor
Masaki Okada
岡田 正貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP60207331A priority Critical patent/JPH0612223B2/en
Publication of JPS6268112A publication Critical patent/JPS6268112A/en
Publication of JPH0612223B2 publication Critical patent/JPH0612223B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/18Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the air being heated from the plant exhaust gases
    • B60H1/20Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the air being heated from the plant exhaust gases using an intermediate heat-transferring medium

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To obtain optimum capability of thermal electricity generation by making the areas of heat receiving fins arranged within a heat medium introduction duct smaller on the inlet side and gradually greater toward the outlet side of the heat medium introduction duct thereby reducing temperature difference between the inlet and outlet sides. CONSTITUTION:A heat medium introduction duct 4 connected to an exhaust duct of an engine is arranged to pass in a straight line through an outer duct curved in a V-shape and through a heated air duct 7. In the area where the heat medium introduction duct 4 and the heated air duct 7 are coaxially arranged, a thermal electricity generation element 5 is accommodated in a space between the hat medium introduction duct 4 and a cylindrical housing 10 arranged outside the heat medium introduction duct 4. In the above constitution, heat receiving fins 13 of a circularly arranged corrugated cross section are inserted in the best medium introduction duct 4. The heat receiving fins 13 are formed so that they have smaller heat transmission areas on the inlet side and have gradually greater heat transmission areas toward the outlet 9. this makes it possible to maintain the quantity of heat given to the thermal electricity generation element 5 approximately uniform over the area from the inlet to outlet sides.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は内燃l!!rallの排ガスの熱エネルギを利
用する熱発電用熱交換器に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention applies to internal combustion l! ! The present invention relates to a heat exchanger for thermal power generation that utilizes the thermal energy of exhaust gas from a RALL.

[従来の技術] 熱発電素子は熱媒導入管の外周側に配設され、この外側
を温風ダクトにより覆われる。ところで、熱発電素子は
、第4図に示すように、熱発電素子の一方側と他方側と
の温度差に比例して発?!能力が増大し、特に温度差が
大きいほど発電能力は大きく、温度差が小さいと発電能
力は実用上望めない。また、熱発電素子にはその機能を
発揮するのに最適な1度があり、この最適温度を越える
と熱発電素子は破壊してしまう。したがって、効率のよ
い発電を19るためには、温度差が大きくかつ熱発電素
子に最適な温度を保つことが必要である。
[Prior Art] A thermoelectric power generating element is disposed on the outer peripheral side of a heat medium introduction pipe, and the outside thereof is covered with a hot air duct. By the way, as shown in FIG. 4, a thermoelectric generating element generates electricity in proportion to the temperature difference between one side and the other side of the thermoelectric generating element. ! As the capacity increases, especially as the temperature difference increases, the power generation capacity increases, and if the temperature difference is small, the power generation capacity cannot be practically expected. Furthermore, thermoelectric generators have an optimum temperature of 1 degree at which they can perform their functions, and if this optimum temperature is exceeded, the thermoelectric generators will be destroyed. Therefore, in order to generate electricity efficiently, it is necessary to maintain a large temperature difference and an optimum temperature for the thermoelectric power generation element.

ところが、熱媒の流れに沿って熱発電素子を配置する場
合、熱媒の温度は入口から出口へ向って次第に温度が低
下するので、入口側ではむしろ発電素子の最適温度より
も高すぎる一方、出口側では温度が低すぎて十分な発電
能力を発揮し得ないという問題がある。
However, when the thermoelectric generator is placed along the flow of the heat medium, the temperature of the heat medium gradually decreases from the inlet to the outlet, so the temperature on the inlet side is actually higher than the optimum temperature of the power generating element. There is a problem in that the temperature on the exit side is too low to produce sufficient power generation capacity.

このような問題は一般的な熱交換器、例えば冷房用空気
を冷却する冷却器などにおいても同法であり、冷却域に
おいて均一に冷却された冷房用空気をiりることが望ま
しい。このような問題を解決するために、例えば実開昭
57−120887号公報に開示されるように、冷媒導
入管の受熱フィンのピッチを上流側では大きく、下流側
に至るほど小さくするものが提案されている。
This problem also occurs in general heat exchangers, such as coolers that cool cooling air, and it is desirable to distribute cooling air that is uniformly cooled in the cooling area. In order to solve this problem, it has been proposed to make the pitch of the heat receiving fins of the refrigerant introduction pipe larger on the upstream side and smaller on the downstream side, as disclosed in, for example, Japanese Utility Model Application Publication No. 57-120887. has been done.

しかし、この従来技術をそのまま熱発電用熱交換器に適
用することはできない。なぜなら、熱発電素子は熱媒導
入管と絶縁された状態すなわち−股には熱媒導入管の外
側に電気絶縁体を介して配置されるのが一般的であるの
で、熱媒導入管の外側にそのピッチを異ならしめで受熱
フィンを設けることは不可能である。
However, this conventional technology cannot be directly applied to a heat exchanger for thermal power generation. This is because the thermoelectric generating element is generally placed in a state insulated from the heat medium introduction pipe, that is, on the outside of the heat medium introduction pipe via an electrical insulator. It is impossible to provide heat receiving fins with different pitches.

[発明が解決しようとする問題点] 本発明の目的は、熱媒導入管の流れの方向に沿って十分
長い熱定’ms子を配設することができ、しかも入口側
と出口側とで温度差が少なく、最適な熱発電能力を得る
ことができる熱発電用熱交換器を提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to be able to dispose a sufficiently long thermal constant along the flow direction of the heat medium introduction pipe, and to provide a thermal constant between the inlet side and the outlet side. An object of the present invention is to provide a heat exchanger for thermal power generation that has a small temperature difference and can obtain optimal thermal power generation capacity.

E問題を解決するための手段〕 上記目的を達成するために、本発明の構成は熱媒導入管
の入口側では、該熱媒導入管の内部に配設する受熱フィ
ンの面積を小さく、出口側に至るにしたがって受熱フィ
ンの面積を次第に大きくしたものである。
Means for Solving Problem E] In order to achieve the above object, the configuration of the present invention is such that on the inlet side of the heat medium introduction pipe, the area of the heat receiving fins disposed inside the heat medium introduction pipe is reduced, and The area of the heat-receiving fins gradually increases toward the sides.

[作用] 熱媒導入管4の入口側内面には伝熱面積の小さい受熱フ
ィン13が設けられ、出口側に沿って次第に受熱フィン
13の伝熱面積が大きくなる。受熱フィン13を設ける
ことにより、熱媒の温度が入口から出口に至るまでほぼ
均一に保たれる。したがって、熱発電素子5に最適な温
度が保たれ、熱発電素子5の外側を取り囲む温風ダクト
7との温度差に対応して効果的な熱発電が達せられる。
[Function] Heat receiving fins 13 having a small heat transfer area are provided on the inner surface of the inlet side of the heat medium introduction pipe 4, and the heat transfer area of the heat receiving fins 13 gradually increases along the outlet side. By providing the heat-receiving fins 13, the temperature of the heat medium is maintained substantially uniform from the inlet to the outlet. Therefore, an optimum temperature is maintained for the thermoelectric generating element 5, and effective thermoelectric power generation can be achieved in accordance with the temperature difference between the thermoelectric generating element 5 and the hot air duct 7 surrounding the outside thereof.

これによって、熱定?!素子5を比較的細い熱媒導入管
4に沿って長く配W1rjることができ、全体として小
型でありながら、大きな熱発電能力を得ることができる
Is this heat fixed? ! The element 5 can be arranged for a long length W1rj along the relatively thin heat medium introduction pipe 4, and a large thermal power generation capacity can be obtained although the overall size is small.

[発明の実施例] 本発明を実施例に基づいて説明するつ第1図に示すよう
に、内燃機関の排ガスを熱媒として使用する熱発電用熱
交換器の実施例について示す。別間の排気管に接続され
る熱媒導入管4には、U字形に湾曲された外管ないしi
llダクト7を直線的に貫通して配置される。そして、
熱媒導入!!4と温風ダクト7とが同心に配置される部
分で、熱媒導入管4とこの外側に配設した円筒形のハウ
ジング10との間の空間に熱定1!塵子5が収容される
[Embodiments of the Invention] The present invention will be described based on embodiments. As shown in FIG. 1, an embodiment of a heat exchanger for thermoelectric power generation using exhaust gas of an internal combustion engine as a heat medium will be described. The heat medium introduction pipe 4 connected to the exhaust pipe between the other parts has a U-shaped outer pipe or an i
ll duct 7 in a straight line. and,
Introducing heat medium! ! 4 and the hot air duct 7 are arranged concentrically, and a heat constant 1! Dust particles 5 are accommodated.

熱媒導入管4の左端部が入口とされ、これに内燃1関の
排気管が接続される一方、右端部は出口とされ、これに
マフラが接続される。一方、ハウジング10の端部には
これを通過する空気を温風として自1lllIの暖房用
空気として使用するために入口2が、右端部には出口8
が設けられ、外気が温風ダクト7を通過するうちに加熱
されて、図示してないブロアにより単室へ吹き出される
ようになっている。
The left end of the heat medium introduction pipe 4 serves as an inlet, to which an exhaust pipe of the internal combustion engine 1 is connected, while the right end serves as an outlet, to which a muffler is connected. On the other hand, an inlet 2 is provided at the end of the housing 10 to use the air passing therethrough as hot air for heating the housing 10, and an outlet 8 is provided at the right end of the housing 10.
is provided, and as the outside air passes through the hot air duct 7, it is heated and blown out into the single room by a blower (not shown).

第2図に示すように、IJIダクト7とハウジング10
との間には断面菊花のように金属板を蛇腹状に折り曲げ
かつハウジング10に沿って周方向にIN設し、温風ダ
クト7とハウジング10とに屈曲部を接続して構成され
る。一方、熱媒導入管4の内部にも断面が菊花@様の受
熱フィン13が挿入されかつ熱媒導入管4の内壁に溶接
などの適当な手段により結合される。この受熱フィン1
3は第3図に示すように、入口側では受熱フィンの伝熱
面積が小さく、出口9に至るにし・たがって伝熱面積が
次第に大さく構成される。
As shown in FIG. 2, the IJI duct 7 and the housing 10
The hot air duct 7 and the housing 10 are formed by bending a metal plate into a bellows-like shape so as to have a chrysanthemum cross section and installing it in the circumferential direction along the housing 10, and connecting the bent portion to the hot air duct 7 and the housing 10. On the other hand, a heat receiving fin 13 having a cross section shaped like a chrysanthemum is inserted inside the heat medium introduction pipe 4 and is connected to the inner wall of the heat medium introduction pipe 4 by suitable means such as welding. This heat receiving fin 1
3, as shown in FIG. 3, the heat transfer area of the heat receiving fins is small on the inlet side, and gradually increases as it reaches the outlet 9.

具体的には、蛇腹状の受熱フィン13のピッチは同じで
あるが、この屈曲長さく波高に相当するもの)が次第に
出口側はど長くされる。これによって、熱媒導入管4を
通過する熱媒の流速が入口側では速く、出口側では次−
第に遅くなり、熱媒導入管4の周壁を通じて熱発電素子
5へ伝達される熱量が入口側と出口側で(熱媒導入管4
の軸線方向について)はぼ等量とされる。
Specifically, the pitch of the bellows-shaped heat receiving fins 13 is the same, but the bent length (corresponding to the wave height) is gradually made longer on the exit side. As a result, the flow rate of the heat medium passing through the heat medium introduction pipe 4 is high on the inlet side, and the flow rate of the heat medium passing through the heat medium introduction pipe 4 is high on the inlet side, and
The amount of heat transferred to the thermoelectric generating element 5 through the peripheral wall of the heat medium introduction pipe 4 becomes slower on the inlet side and the outlet side (heat medium introduction pipe 4
) are assumed to be approximately equal quantities.

換言すれば、熱媒導入管4の入口側では熱媒の温度は高
いが流速が速いので、熱媒導入T!14の周壁を通じて
熱発電素子5へ伝達される熱量が制限され、その温度差
は熱発電素子5の許容温度を越えることなく最適な温度
に抑えられる。
In other words, the temperature of the heat medium is high on the inlet side of the heat medium introduction pipe 4, but the flow rate is fast, so the heat medium is introduced T! The amount of heat transferred to the thermoelectric generating element 5 through the peripheral wall of the thermoelectric generating element 5 is limited, and the temperature difference therebetween is suppressed to an optimum temperature without exceeding the allowable temperature of the thermoelectric generating element 5.

一方、出口側に至るにしたがって、熱媒の温度は低下す
るが、この流速が受熱フィン13の流体抵抗により抑え
られるので、単位時間に熱媒導入管4から熱発電素子5
へ伝達される熱量は余り低下しない。
On the other hand, the temperature of the heat medium decreases as it reaches the outlet side, but this flow rate is suppressed by the fluid resistance of the heat receiving fins 13, so that the heat medium is transferred from the heat medium introduction pipe 4 to the thermoelectric generating element 5 per unit time.
The amount of heat transferred to is not significantly reduced.

一股に、熱媒導入管4の熱媒ガス流抵抗は高温であるほ
どガスの粘性ないし見掛けの’′e5Mが大きいので、
第6図に示すように、熱媒導入管4の入口側では熱媒導
入管4と熱発電素子5との境界温度Qは高く、一方、温
風ダクト7の入口岬の温度Qは出口側の温度Sと余り変
らない。熱媒導入管4の出口側の温度Rは熱発電素子5
との熱交換に−より大きく低下する。このような場合で
は、入口側では熱発電素子5の許容温度を越えることが
ある一方、出口側でiよ温度差が低いために十分な熱発
電能力を発揮し得ない。
In short, the heat medium gas flow resistance of the heat medium introduction pipe 4 is as follows:
As shown in FIG. 6, the boundary temperature Q between the heat medium introduction pipe 4 and the thermoelectric generating element 5 is high on the inlet side of the heat medium introduction pipe 4, while the temperature Q at the inlet cape of the hot air duct 7 is high on the exit side. It is not much different from the temperature S of . The temperature R on the outlet side of the heat medium introduction pipe 4 is the temperature R of the thermoelectric generator 5
The heat exchange with - decreases more greatly. In such a case, while the allowable temperature of the thermoelectric generating element 5 may be exceeded on the inlet side, sufficient thermoelectric power generation capacity cannot be exhibited because the temperature difference is lower than i on the outlet side.

これに対して、本発明では第5図に示すように、熱媒導
入管4の内部に取り付けた受熱フィン13の面積が入口
側で小さく、出口側に至るにしたがって次第に大きくし
たことにより、熱媒導入管4を流れる熱媒の流速が入口
側では速く、出口側では次第に遅くなるので、単位時間
に熱媒導入管4から熱発電素子5へ伝達される伝熱量が
ほぼ均一どなり、第6図に示すように、温風ダクトの入
口側温度Pと、出口側温度Sとの温度差も低くなる。
On the other hand, in the present invention, as shown in FIG. 5, the area of the heat receiving fins 13 attached inside the heat medium introduction pipe 4 is small on the inlet side and gradually increases toward the outlet side. Since the flow rate of the heat medium flowing through the medium introduction pipe 4 is fast on the inlet side and gradually slows down on the exit side, the amount of heat transferred from the heat medium introduction pipe 4 to the thermoelectric generating element 5 per unit time is almost uniform, and the sixth As shown in the figure, the temperature difference between the inlet side temperature P and the outlet side temperature S of the hot air duct also decreases.

このことは熱発電素子5についてこの伝熱面と放熱面と
の温度差が入口側から出口側についてほぼ均一に分布す
ることとなり、最も効率の良い発電能力を発揮すること
ができる。
This means that the temperature difference between the heat transfer surface and the heat radiation surface of the thermoelectric generating element 5 is distributed almost uniformly from the inlet side to the outlet side, and the most efficient power generation capacity can be exhibited.

[発明の効果1 本発明は上述のように、外周側に熱発電素子を取り付け
られる熱媒導入管について熱発電素子の入口側では面積
の小さい受熱フィンを導管の内面に取り付け、出口側に
至るにしたがって次第に面積が大きくなる受熱フィンを
取り付けたものであるから、その構成および組付けが簡
単でありながら、熱発電素子へ加えられる温度を入口側
から出口側に亘ってほぼ均一に保つことができるととも
に、熱定′i@素子の受熱面と放熱面との温度差をもほ
ぼ均一に保つことができ、熱発電素子として効率の最も
高い発電が得られる。そして、受熱フィンの断面が菊花
模様をなすものであるから、熱媒導入管を流れる流体抵
抗にはそれ【よど影響はなく、熱媒導入管へ熱媒を吸引
する送1111111などの消費電力も少なく抑えるこ
とができる。
[Effects of the Invention 1] As described above, the present invention provides a method for attaching heat receiving fins with a small area to the inner surface of the conduit on the inlet side of the thermoelectric generating element for the heat medium introduction pipe to which the thermoelectric generating element is attached to the outer circumferential side, and extending to the outlet side. Since it is equipped with heat receiving fins whose area gradually increases according to At the same time, the temperature difference between the heat-receiving surface and the heat-radiating surface of the thermally constant 'i@ element can be kept almost uniform, and power generation with the highest efficiency as a thermoelectric power generation element can be obtained. Since the cross section of the heat receiving fins has a chrysanthemum pattern, it has no effect on the resistance of the fluid flowing through the heat medium introduction pipe, and the power consumption of the heat transfer 1111111 that sucks the heat medium into the heat medium introduction pipe is also reduced. can be kept to a minimum.

また、熱発電用熱交換器全体としての温度がほぼ均一に
分散されるから、局部的な過熱状態を引き起すこともな
く、長期使用に対して耐久性に富み、熱発電素子として
の安定した発電能力が得られる。
In addition, since the temperature of the heat exchanger for thermoelectric power generation as a whole is almost uniformly distributed, it does not cause local overheating, is highly durable for long-term use, and is stable as a thermoelectric generating element. Generating power can be obtained.

なお、受熱フィンには導管の入口側で高温の熱媒に晒さ
れるので、この部分にセラミックなどのコーティングを
施ずようにすれば、一層熱定電用熱交換器としての耐久
性を向上することができる。
Furthermore, since the heat receiving fins are exposed to high temperature heat medium on the inlet side of the conduit, the durability of the heat exchanger as a thermostatic heat exchanger can be further improved by not coating this part with ceramic or other materials. be able to.

【図面の簡単な説明】 第1図は本発明に係る熱発電用熱交換器の側面断面図、
第2図は同正面断面図、第3図は同然発電用熱交換器の
断面を異にする正面断面図とその作動を説明する線図、
第4図は熱発電素子の温度特性を示す線図、第5図は本
発明に係る熱媒管に受熱フィンを備えた場合の熱発電素
子の性能を示す縮図、第6図は熱媒導入管に受熱フィン
がない場合の熱発電素子の性能を示す縮図である。 3:人口 4:熱媒導入管 5:熱発電素子 7:温風
ダクト 9:出口 特許出願人 いすず自動中株式会社 代理人 弁理士    山水 俊夫 第1図 第3図 変声1ti−のシH1t 差 第4図 第5図 第 6 図
[Brief Description of the Drawings] Fig. 1 is a side sectional view of a heat exchanger for thermal power generation according to the present invention;
Fig. 2 is a front sectional view of the same power generation heat exchanger, and Fig. 3 is a front sectional view with a different cross section of the heat exchanger for power generation and a line diagram explaining its operation.
Fig. 4 is a diagram showing the temperature characteristics of the thermoelectric power generation element, Fig. 5 is a miniature diagram showing the performance of the thermoelectric power generation element when the heat medium pipe according to the present invention is equipped with heat receiving fins, and Fig. 6 is a diagram showing the heat medium introduction. It is a microcosm showing the performance of a thermoelectric power generation element when a tube does not have heat receiving fins. 3: Population 4: Heat medium introduction pipe 5: Thermoelectric power generation element 7: Hot air duct 9: Exit Patent applicant Isuzu Jidochu Co., Ltd. Agent Patent attorney Toshio Sanmizu Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims]  熱媒導入管の入口側では、該熱媒導入管の内部に配設
する受熱フインの面積を小さく、出口側に至るにしたが
つて受熱フインの面積を次第に大きくしたことを特徴と
する熱発電用熱交換器。
Thermal power generation characterized in that the area of the heat receiving fins disposed inside the heat medium introduction pipe is small on the inlet side of the heat medium introduction pipe, and the area of the heat receiving fins is gradually increased toward the outlet side. heat exchanger.
JP60207331A 1985-09-19 1985-09-19 Vehicle thermoelectric generator Expired - Lifetime JPH0612223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60207331A JPH0612223B2 (en) 1985-09-19 1985-09-19 Vehicle thermoelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60207331A JPH0612223B2 (en) 1985-09-19 1985-09-19 Vehicle thermoelectric generator

Publications (2)

Publication Number Publication Date
JPS6268112A true JPS6268112A (en) 1987-03-28
JPH0612223B2 JPH0612223B2 (en) 1994-02-16

Family

ID=16537978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60207331A Expired - Lifetime JPH0612223B2 (en) 1985-09-19 1985-09-19 Vehicle thermoelectric generator

Country Status (1)

Country Link
JP (1) JPH0612223B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264277A (en) * 2008-04-25 2009-11-12 Honda Motor Co Ltd Pump device with engine
WO2015107815A1 (en) * 2014-01-14 2015-07-23 株式会社ミクニ Heat transfer pipe for heat exchanger and heat exchanger
CN109341400A (en) * 2018-11-22 2019-02-15 方快锅炉有限公司 A kind of composite boiler heat exchange assistant pipe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042594A (en) * 1983-08-18 1985-03-06 Seiichi Konaka Heat exchanger with fins

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042594A (en) * 1983-08-18 1985-03-06 Seiichi Konaka Heat exchanger with fins

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264277A (en) * 2008-04-25 2009-11-12 Honda Motor Co Ltd Pump device with engine
WO2015107815A1 (en) * 2014-01-14 2015-07-23 株式会社ミクニ Heat transfer pipe for heat exchanger and heat exchanger
CN109341400A (en) * 2018-11-22 2019-02-15 方快锅炉有限公司 A kind of composite boiler heat exchange assistant pipe

Also Published As

Publication number Publication date
JPH0612223B2 (en) 1994-02-16

Similar Documents

Publication Publication Date Title
JP3564274B2 (en) Waste heat power generator
EP0887612B1 (en) Heat transfer structure
TW340180B (en) Heat exchanger having corrugated fins and air conditioner having the same
IT1283555B1 (en) POWER AIR RADIATOR
JP2000111277A (en) Double piping type heat exchanger
JP2007211748A (en) Heat exchanger and thermoelectric generator
JPS6268112A (en) Heat exchanger for thermal electricity generation
JP2002199762A (en) Exhaust heat thermoelectric converter, exhaust gas exhausting system using it, and vehicle using it
JP3343713B2 (en) Heat exchanger for heating refrigerant
JPH09264697A (en) Heat exchanger
JP2000009361A (en) Thermoelectric conversion system
JP3622297B2 (en) Heat exchanger
JPS6125563Y2 (en)
JP2876889B2 (en) Hot air heater
CN221258940U (en) Wind-guiding heat radiation structure
CN211792662U (en) Heat dissipation module and electronic equipment
JP2000161872A (en) Double piping type heat exchanger
CN215245280U (en) Heating radiator
JPS5916693Y2 (en) Heat exchanger
JP3591090B2 (en) Heat exchanger
JPH01144659U (en)
JPS632792Y2 (en)
KR200303493Y1 (en) fin for radiation
JPH0370164A (en) Heat pipe type heat radiating unit
KR950003627Y1 (en) Warm water radiator