JPS6267509A - Automatic focusing device - Google Patents

Automatic focusing device

Info

Publication number
JPS6267509A
JPS6267509A JP60208025A JP20802585A JPS6267509A JP S6267509 A JPS6267509 A JP S6267509A JP 60208025 A JP60208025 A JP 60208025A JP 20802585 A JP20802585 A JP 20802585A JP S6267509 A JPS6267509 A JP S6267509A
Authority
JP
Japan
Prior art keywords
focus
high frequency
frequency component
deadband
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60208025A
Other languages
Japanese (ja)
Other versions
JPH06100714B2 (en
Inventor
Yasunobu Otsuka
大塚 康信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP60208025A priority Critical patent/JPH06100714B2/en
Publication of JPS6267509A publication Critical patent/JPS6267509A/en
Publication of JPH06100714B2 publication Critical patent/JPH06100714B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To appropriately set the accuracy in focus decision in accordance with a field depth and to eliminate too much accurate focus adjustment action by controlling a focus deadband according to a high frequency component included in the output of an image pickup means. CONSTITUTION:A control signal made of high frequency components being the output of a high frequency component detecting circuit 9 becomes a lower level as it has a higher deviation amount from a focus point. Since the control signal controls the width of the focus deadband in an adjustment circuit 6, the width of the deadband between the focus point and a position (g) on the broken line is narrow at an initial point t0 where the deviation amount of the focus position is maximum, and an auto matic focus adjustment signal starts a focus action. As the deviation amount becomes smaller due to the focus action, an image picked up video becomes sharper, and the high frequency component included in the video signal increases to make the control signal larger. Accordingly the width of the deadband is wider together with the focus action. The deviation amount of solid line (f) becomes smaller, and the operation enters in the deadband where a focus position gradually increases. Then, at a point t1 the automatic focus adjustment signal stops the drive of a motor and the focus action.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、自動合焦装置、更に詳しくは、三角測量の
原理に基づくいわゆるアクティブ方式の自動合焦装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an automatic focusing device, and more particularly to a so-called active type automatic focusing device based on the principle of triangulation.

[従来の技術] カメラの自動合焦装置の1つに、カメラから被写体に向
けて発した光のうち、被写体で反射されて戻る光を受光
し、測距を行なう、いわゆるアクティブ方式のものがあ
る。この場合の測距手段としては、三角測量の原理を用
いるのが一般的である。この種の自動合焦装置において
、例えば、被写体が遠方にあるとき、或いは被写体が小
さかったり、その反射率が低いときには受光強度が微弱
となり、精度の高い測距を行なうことができなくなるの
で、従来、この点に関し、受光強度に応じて受光素子出
力の利得を可変する手段を有した装置は周知である(特
公昭55−13012号公報参照)。受光素子出力の利
得を上げると、被写体の遠近或いは面積や反射率に影響
されることなく合焦動作が行なわれることになるが、一
方、モータや撮像レンズなどの慣性モーメントなどのた
めに、合焦位置をオーバーランしてしまうことがあるの
で、この点に関する考慮も必要である。従来、合焦位置
をオーバーランしてしまうことを防ぐために、撮像レン
ズが慣性によって移動することを見込み、その分だけ合
焦点を挟んで不感帯を設け、焦点位置が不感帯に入った
ときモータへの給電を停止するようにした装置が既に周
知である(特公昭56−41970号公報参照)。
[Prior Art] One of the automatic focusing devices for cameras is the so-called active type, which measures the distance by receiving the light emitted from the camera toward the subject and then returning the light that is reflected by the subject. be. In this case, the distance measuring means generally uses the principle of triangulation. In this type of automatic focusing device, for example, when the subject is far away, or when the subject is small or has low reflectance, the received light intensity becomes weak and highly accurate distance measurement cannot be performed. In this regard, a device having means for varying the gain of the output of a light receiving element in accordance with the intensity of received light is well known (see Japanese Patent Publication No. 13012/1983). Increasing the gain of the light-receiving element output allows focusing to be performed without being affected by the distance, area, or reflectance of the subject. Since the focal position may be overrun, consideration must be given to this point. Conventionally, in order to prevent the in-focus position from overrunning, a dead zone was provided across the in-focus point to compensate for the movement of the imaging lens due to inertia, and when the focal point entered the dead zone, the motor was A device that stops power supply is already well known (see Japanese Patent Publication No. 41970/1983).

[発明が解決しようとする問題点] しかし、上記不感帯を有した従来装置は、上記不感帯の
幅を手動で設定するようにしたものであるとともに、被
写界深度にかかわらず一定幅に設定された不感帯域内に
焦点位置を合わせるようにしたものである。つまり、被
写体が明るく被写界深度が非常に深くなっている場合に
は、合焦点から焦点位置がある程度大きく外れていても
視覚的には何ら問題はないが、上記装置では、被写界深
度にかかわらず一定幅の不感帯域内に入るように制御さ
れるので、実際上は無駄な合焦動作が行なわれ、消費電
力の浪費をもたらすばかりでなく、合焦動作時間が長く
、また、ハンチングを生ずる等の問題点があった。なお
、被写界深度に応じて合焦精度を変化させるようにする
ために、絞りに連動して合焦精度を変えるようにした装
置が知られているが、このような装置の場合、焦点距離
によって被写界深度が変わるのでズームレンズや他の交
換レンズが使えないなどの問題があった。
[Problems to be Solved by the Invention] However, in the conventional device having the dead zone, the width of the dead zone is manually set, and the width is set to a constant width regardless of the depth of field. The focus position is set within the dead zone. In other words, if the subject is bright and the depth of field is very deep, there will be no visual problem even if the focal point is far away from the in-focus point. Since the focus is controlled to be within a fixed width dead band regardless of the focus, in reality, a useless focusing operation is performed, which not only results in wasted power consumption, but also increases the focusing operation time and causes hunting. There were problems such as the occurrence of Note that in order to change the focusing accuracy according to the depth of field, there is a known device that changes the focusing accuracy in conjunction with the aperture; Since the depth of field changes depending on the distance, there were problems such as the inability to use zoom lenses or other interchangeable lenses.

この発明は、このような問題点に着目してなされたもの
で、合焦判定の精度が被写界深度に応じて適切に設定さ
れるようにし、不必要に高精度な合焦調節動作が行なわ
れないようにした自動合焦装置を提供することを目的と
する。
This invention was made in view of these problems, and it allows the precision of focus judgment to be appropriately set according to the depth of field, thereby avoiding unnecessary high-precision focus adjustment operations. An object of the present invention is to provide an automatic focusing device that prevents automatic focusing from occurring.

[問題点を解決するための手段および作用]この自動合
焦装置は、撮像手段の出力から映像信号の高周波成分を
抽出する高周波成分抽出回路を設けるとともに、受光手
段の出力信号に基づいて合焦判定動作を行ない合焦調節
のための信号を出力する調節回路を設け、同調節回路の
合焦判定動作に関する不感帯が上記高周波成分抽出回路
の出力に基づいて設定されるようにしたもので、高周波
成分の出力が大きくなるほど不感帯の幅が広くなり合焦
精度が緩くなる。
[Means and effects for solving the problem] This automatic focusing device is equipped with a high frequency component extraction circuit that extracts a high frequency component of a video signal from the output of the imaging means, and also performs focusing based on the output signal of the light receiving means. An adjustment circuit that performs a judgment operation and outputs a signal for focus adjustment is provided, and a dead zone for the adjustment circuit's focus judgment operation is set based on the output of the high frequency component extraction circuit. As the output of the component increases, the width of the dead zone becomes wider and the focusing accuracy becomes looser.

[実 施 例コ 以下、この発明を図示の実施例に基づいて説明する。[Implementation example] The present invention will be explained below based on illustrated embodiments.

第1図は、この発明の一実施例を示す、ビデオカメラや
電子スチルカメラなどにおける自動合焦装置の電気回路
のブロック図である。第1図において、光投射手段1よ
り投射された距離検出光としての赤外光などの光ビーム
は被写体2に照射され、その反射光が受光手段3の第1
.第2の受光部3a、3bに入射する。受光部3a、3
bで光電変換された信号は、第1.第2の可変利得増幅
器4a、4bに導かれて、これら可変利得増幅器4a、
4bにおいて、その百出力の和が一定となるようにレベ
ル制御される。すなわち、可変利得増幅器4a、4bの
出力は利得設定信号発生回路5に導かれると、例えば、
被写体2の距離が遠かったり、被写体2の反射率が低か
ったりして可変利得増幅器4a、4bの出力レベルが低
い場合には利得設定信号発生回路5から可変利得増幅器
4a、4bの出力の和に応じて変化する利得設定信号が
発生して可変利得増幅器4a、4bの利得を増大させる
ように制御される。このように可変利得増幅器4a、4
bの出力は利得設定信号発生回路5により、被写体2の
反射率や距離によって変化しないように帰還がかけられ
ている。
FIG. 1 is a block diagram of an electric circuit of an automatic focusing device in a video camera, electronic still camera, etc., showing one embodiment of the present invention. In FIG. 1, a light beam such as infrared light as distance detection light projected from a light projecting means 1 is irradiated onto a subject 2, and the reflected light is reflected from a first beam of a light receiving means 3.
.. The light enters the second light receiving sections 3a and 3b. Light receiving section 3a, 3
The signal photoelectrically converted in step 1.b. These variable gain amplifiers 4a, 4b are guided to the second variable gain amplifiers 4a, 4b.
4b, the level is controlled so that the sum of the 100 outputs is constant. That is, when the outputs of the variable gain amplifiers 4a and 4b are led to the gain setting signal generation circuit 5, for example,
When the output level of the variable gain amplifiers 4a and 4b is low because the distance of the subject 2 is long or the reflectance of the subject 2 is low, the gain setting signal generation circuit 5 outputs the sum of the outputs of the variable gain amplifiers 4a and 4b. A gain setting signal that changes accordingly is generated and controlled to increase the gain of the variable gain amplifiers 4a, 4b. In this way, the variable gain amplifiers 4a, 4
The output of b is fed back by the gain setting signal generation circuit 5 so that it does not change depending on the reflectance or distance of the subject 2.

また、可変利得増幅器4a、4bの出力は調節回路6に
導かれ、同調節回路6で百出力の差信号の極性および大
きさが検知されるようになっている。すなわち、被写体
2の位置に応じて、第1゜第2の受光部3a、3bの光
電変換出力にレベル差が生じるので、可変利得増幅器4
a、4bの出力のいずれが大きいかで前ピン状態である
か後ピン状態であるか、また、可変利得増幅器4a。
Further, the outputs of the variable gain amplifiers 4a and 4b are led to an adjustment circuit 6, which detects the polarity and magnitude of the difference signal of the 100 outputs. That is, since a level difference occurs in the photoelectric conversion outputs of the first and second light receiving sections 3a and 3b depending on the position of the subject 2, the variable gain amplifier 4
The variable gain amplifier 4a is in the front pin state or the rear pin state depending on which of the outputs a and 4b is larger.

4bの出力差の大きさで合焦点からのずれ量が調節回路
6により検知される。調節回路6からは自動焦点調節信
号が検出される。この自動焦点調節信号は撮像レンズ7
を合焦位置に駆動させるモータの合焦制御用信号として
用いられる。
The adjustment circuit 6 detects the amount of deviation from the in-focus point based on the magnitude of the output difference 4b. An automatic focus adjustment signal is detected from the adjustment circuit 6. This automatic focus adjustment signal is transmitted to the imaging lens 7.
This signal is used as a focus control signal for the motor that drives the motor to the in-focus position.

一方、被写体2の光像は撮像レンズ7によって撮像管8
の撮像面に結像され、撮像管8により映像信号に変換さ
れる。撮像管8より得られた映像信号のうち、高周波成
分は高周波成分検出回路9で検出されて調節回路6に、
同回路内に構成された不感帯設定回路の制御信号として
入力される。
On the other hand, the optical image of the subject 2 is transmitted to the imaging tube 8 by the imaging lens 7.
The image is formed on the imaging surface of the image pickup tube 8, and converted into a video signal by the image pickup tube 8. Among the video signals obtained from the image pickup tube 8, high frequency components are detected by a high frequency component detection circuit 9 and sent to the adjustment circuit 6.
It is input as a control signal to a dead zone setting circuit configured within the same circuit.

この高周波成分の制御信号は、その高周波成分のレベル
の大きさによって、上記調節回路6に導かれた可変利得
増幅器4a、4bの出力差信号の合焦不感帯を制御し、
調節回路6より自動焦点調節信号を出力させるものとな
っている。
This high frequency component control signal controls the focusing dead zone of the output difference signals of the variable gain amplifiers 4a and 4b guided to the adjustment circuit 6, depending on the level of the high frequency component,
The adjustment circuit 6 outputs an automatic focus adjustment signal.

次に上記実施例装置の動作を説明する。Next, the operation of the apparatus of the above embodiment will be explained.

光投射手段1からの光ビームが被写体2で反射され受光
手段3に入射すると、受光部3a、3bはそれぞれ入射
光量に応じた光電変換信号を出力し、可変利得増幅器4
a、4bおよび利得設定信号発生回路5によって前述し
たように、光電変換信号の和の変動として現われる被写
体2の反射率や距離の影響が取り除かれ、可変利得増幅
器4a。
When the light beam from the light projection means 1 is reflected by the subject 2 and enters the light receiving means 3, the light receiving parts 3a and 3b each output a photoelectric conversion signal according to the amount of incident light, and the variable gain amplifier 4
a, 4b and the gain setting signal generation circuit 5, as described above, the effects of the reflectance and distance of the subject 2, which appear as fluctuations in the sum of photoelectric conversion signals, are removed, and the variable gain amplifier 4a.

4bの出力差に基づく焦点状態の情報が調節回路6に入
力される。
Information on the focus state based on the output difference of 4b is input to the adjustment circuit 6.

ここで、今、撮像レンズ7による被写体2の焦点位置が
合焦点からある方向にずれているとすると、自動焦点調
節信号は合焦点からのずれ量に基づく可変利得増幅器4
a、4bの出力差に応じて撮像レンズ7の駆動用モータ
を制御し、時間tの経過とともに、焦点位置は第2図に
示す実線fのように合焦点に近づく方向に変化する。と
ころで、高周波成分検出回路9の出力である高周波成分
からなる制御信号は、合焦点からのずれ量が大きいほど
、すなわち、ぼけ具合が大きい程レベルが低い。そして
、この制御信号は調節回路6において、合焦不感帯の幅
を制御するものとな)っでいるので、例えば、第2図に
示すように、焦点位置のずれ量が最も大きい初期時点t
。では、合焦点と破線gで示す位置間の不感帯の幅が狭
く、上記自動焦点調節信号によって合焦動作が開始され
る。合焦動作が行なわれることにより、ずれ量が次第に
小さくなっていくと、これに伴って、撮像される映像が
鮮明になり映像信号の高周波成分が増大して制御信号が
大きくなるので、不感帯の幅も合焦動作に伴い次第に広
くなる。実線fで示すずれ量が次第に小さくなり、焦点
位置が、次第に増大する不感帯域内に入ると、この時点
t1で自動焦点調節信号はモータの駆動を停止させ、合
焦動作を停止させる。すると、このあとは、レンズやモ
ータなどの慣性モーメントによって撮像レンズ7はさら
に合焦点へ近づく移動を行なったのち停止する。
Here, if the focal position of the subject 2 by the imaging lens 7 is now shifted from the focused point in a certain direction, the automatic focus adjustment signal is sent to the variable gain amplifier 4 based on the amount of shift from the focused point.
The driving motor of the imaging lens 7 is controlled in accordance with the output difference between a and 4b, and as time t elapses, the focal position changes in a direction closer to the in-focus point, as indicated by a solid line f in FIG. Incidentally, the level of the control signal composed of a high frequency component which is the output of the high frequency component detection circuit 9 is lower as the amount of deviation from the in-focus point is greater, that is, the degree of blur is greater. Since this control signal is used to control the width of the focusing dead zone in the adjustment circuit 6, for example, as shown in FIG.
. In this case, the width of the dead zone between the in-focus point and the position indicated by the broken line g is narrow, and the focusing operation is started by the automatic focus adjustment signal. As the amount of deviation gradually decreases due to the focusing operation, the captured image becomes clearer, the high frequency component of the image signal increases, and the control signal becomes larger, so the dead zone becomes smaller. The width also gradually increases with the focusing operation. When the amount of deviation shown by the solid line f gradually decreases and the focal position enters the gradually increasing dead zone, the automatic focus adjustment signal stops driving the motor and stops the focusing operation at time t1. Thereafter, the imaging lens 7 moves further toward the in-focus point due to the moment of inertia of the lens, motor, etc., and then stops.

なお、このとき必ずしも撮像レンズ7は合焦点で停止す
るとは限らず、このときの焦点位置と合焦点との差dが
合焦精度となる。
Note that at this time, the imaging lens 7 does not necessarily stop at the focal point, and the difference d between the focal point and the focal point at this time is the focusing accuracy.

ここで、絞りがある程度絞り込まれて被写界深度が深く
なった場合について考えると、焦点位置のずれ量が同じ
で第2図に実線fで示すように変化するものであっても
、被写界深度が浅いときに較べて映像信号の高周波成分
は大きくなるので、上記高周波成分検出回路9からの制
御信号により不感帯は第2図に一点鎖線g′で示すよう
にさらに広がったものとなり、合焦点がらのずれ量が大
きいうちに時点tt’で合焦動作を終了する。従って、
この場合、慣性モーメントにより二点鎖線f′で示す焦
点位置で撮像レンズ7が停止し、このときの合焦精度が
d′となるので、被写界深度が浅い場合に較べて合焦精
度が低下することになるが、上記のように焦点位置が上
記不感帯域内に入っている限りは、視覚上、ぼけのない
鮮明な映像が得られる。
Now, if we consider the case where the aperture is narrowed down to a certain extent and the depth of field becomes deep, even if the amount of shift in the focal position is the same and changes as shown by the solid line f in Figure 2, Since the high frequency components of the video signal are larger than when the depth of field is shallow, the control signal from the high frequency component detection circuit 9 further widens the dead zone as shown by the dashed line g' in FIG. The focusing operation is completed at time tt' while the amount of deviation from the focal point is large. Therefore,
In this case, the moment of inertia causes the imaging lens 7 to stop at the focal position indicated by the two-dot chain line f', and the focusing accuracy at this time is d', so the focusing accuracy is lower than when the depth of field is shallow. However, as long as the focal position is within the dead zone as described above, a visually clear image without blur can be obtained.

このように、映像信号に含まれる高周波成分の大きさに
よって合焦不感帯域が制御されるようになっているので
、不必要な合焦動作が行なわれず、このため迅速に合焦
を行なわせることができるとともに消費電力を節約する
ことができる。また、合焦時には不感帯域が広くなって
いるので、ノイズや合焦動作を追従させる必要のない被
写体の微動などがあっても、これらは焦点が合っている
と見なされる範囲(不感帯域)内での変動となり、ハン
チングが防止される。そして、他の交換レンズやズーム
レンズを用いることにより焦点距離が変化しても上述し
た動作は変らずその効果も同様である。
In this way, since the focus dead band is controlled according to the magnitude of the high frequency component contained in the video signal, unnecessary focusing operations are not performed, and therefore, focusing can be performed quickly. It is possible to save power consumption. In addition, when focusing, the dead band is wide, so even if there is noise or slight movement of the subject that does not need to be followed by the focusing operation, these will be within the range (dead band) that is considered to be in focus. This will prevent hunting. Even if the focal length changes by using another interchangeable lens or a zoom lens, the above-mentioned operation will not change and the effect will be the same.

第3図は、この発明の他の実施例を示す自動合焦装置の
電気回路のブロック図である。この第3図に示す実施例
装置では、撮像管8の後段に、前記実施例で用いた高周
波成分検出回路9(第1図参照)に代わって、バイパス
フィルター(以下、HPFとする)10.自動利得制御
回路(以下、AGCとする)11.バンドパスフィルタ
(以下、BPFとする)12a、12bおよび判定信号
発生回路13が設けられている。撮像管8から出力され
る映像信号に含まれる高周波成分はHPFIOにより検
出されたのちAGCllによって一部レベルにされたの
ち、BPF 12 aとBPF12bに導かれて周波数
の若干異なる2つの高周波信号が検出される。この2つ
の高周波信号は判定信号発生回路13に入力されると、
この判定信号発生回路13では2つの高周波信号の差が
求められ、この差信号の大きさと、上記2つの周波数と
によって解像限界周波数81が算出される。そして、こ
の解像限界周波数81によって変化する判定信号が調節
回路6内の不感帯設定回路に不感帯を可変設定する制御
信号として入力される。
FIG. 3 is a block diagram of an electric circuit of an automatic focusing device showing another embodiment of the present invention. In the embodiment shown in FIG. 3, a bypass filter (hereinafter referred to as HPF) 10. Automatic gain control circuit (hereinafter referred to as AGC) 11. Bandpass filters (hereinafter referred to as BPF) 12a and 12b and a determination signal generation circuit 13 are provided. The high frequency components included in the video signal output from the image pickup tube 8 are detected by the HPFIO, and then partially leveled by the AGCll, and then led to the BPF 12a and BPF 12b, where two high frequency signals with slightly different frequencies are detected. be done. When these two high frequency signals are input to the judgment signal generation circuit 13,
This determination signal generation circuit 13 determines the difference between the two high frequency signals, and a resolution limit frequency 81 is calculated from the magnitude of this difference signal and the two frequencies. A determination signal that varies depending on the resolution limit frequency 81 is input to a dead zone setting circuit in the adjustment circuit 6 as a control signal for variably setting the dead zone.

ここで、上記解像限界周波数Slについて説明すると、
第4図はコントラストを示した線図であって、同線図の
パターンが合焦の度合を表わしている。なお、点線の部
分はOTF (オプティカル・トランス・ファンクショ
ン)を示す。また、この第4図において上記BPF 1
2 aと12bの信号通過域の周波数位置A、  Bに
おける信号レベルの差Cが判定信号発生回路13にて検
知されることを表わしている。ここで、第4図において
上記周波数位置A、 Bに近い、解像限界周波数81は
、錯乱円(ボケ円)の半径をbとすると、Sl−0,8
1/b であり、錯乱円の半径すによって解像限界周波数81の
位置が移動する。このような空間周波数分布を持ったレ
ンズによって結像させるとすると、像の空間周波数分布
H(ω)は被写体の空間周波数分布F(ω)とレンズの
空間周波数分布G(ω)によって、 H(ω)−F(ω)・G(ω) で示される。一般的な被写体では、空間周波数分布は緩
やかな変化を示す。従って、像の空間周波数分布H(ω
)はほぼレンズの空間周波数分布G(ω)と同様の傾き
を示す。レンズの空間周波数分布G(ω)は解像限界周
波数81の近くでは周波数によって傾きはあまり変わら
ずほぼ直線となる。そこで、第4図に示すように、本実
施例では、解像限界周波数81の近くで、かつ偽解像領
域Iでない、極く僅かに離れた2点の周波数位置A。
Now, to explain the resolution limit frequency Sl,
FIG. 4 is a diagram showing contrast, and the pattern in the diagram represents the degree of focus. Note that the dotted line portion indicates an OTF (optical transformer function). In addition, in this FIG. 4, the above BPF 1
2a and 12b indicates that the difference C between the signal levels at frequency positions A and B in the signal passband is detected by the determination signal generation circuit 13. Here, in FIG. 4, the resolution limit frequency 81, which is close to the frequency positions A and B, is Sl-0, 8, where b is the radius of the circle of confusion (blur circle).
1/b, and the position of the resolution limit frequency 81 moves depending on the radius of the circle of confusion. When an image is formed by a lens with such a spatial frequency distribution, the spatial frequency distribution H(ω) of the image is determined by the spatial frequency distribution F(ω) of the subject and the spatial frequency distribution G(ω) of the lens, It is expressed as ω)-F(ω)・G(ω). In a typical subject, the spatial frequency distribution shows gradual changes. Therefore, the spatial frequency distribution H(ω
) exhibits approximately the same slope as the spatial frequency distribution G(ω) of the lens. The spatial frequency distribution G(ω) of the lens does not change much in slope depending on the frequency near the resolution limit frequency 81, and is almost a straight line. Therefore, as shown in FIG. 4, in this embodiment, two frequency positions A, which are close to the resolution limit frequency 81 and not in the false resolution region I, are very slightly apart.

Bのレベルを測定し、その差Cと周波数位置A。Measure the level of B, and find the difference C and frequency position A.

Bとから、上記第4図に示す周波数分布特性の傾きを求
めることで解像限界周波数81の位置を推測することが
できる。
B, the position of the resolution limit frequency 81 can be estimated by determining the slope of the frequency distribution characteristic shown in FIG. 4 above.

従って、今、焦点がずれると、映像信号の高周波成分の
うちの、より高域のレベルが合焦時よりも低下し、高い
周波数側のBPF12bの出力、すなわち、第4図中、
周波数位置Bのレベルが低下することになるため、上記
レベル差Cが大きくなり、周波数分布の傾きが急峻にな
り、解像限界周波数81の位置が下る。このことは、判
定信号発生回路13から発せられる判定信号が調節回路
6において不感帯の幅を狭く設定するように制御する。
Therefore, if the focus shifts now, the level of higher frequencies among the high frequency components of the video signal will be lower than when in focus, and the output of the BPF 12b on the higher frequency side, that is, in FIG.
Since the level at the frequency position B decreases, the level difference C increases, the slope of the frequency distribution becomes steeper, and the position of the resolution limit frequency 81 decreases. This means that the determination signal generated from the determination signal generation circuit 13 controls the adjustment circuit 6 so that the width of the dead zone is set narrowly.

このため、調節回路6からの自動焦点調節信号により撮
像レンズ7の駆動用モータは合焦点に向かって制御され
る。そして、焦点が合ってくると、BPF 12 aの
出力よりもBPF 12 bの出力が上昇し、上記レベ
ル差Cが小さくなって周波数分布の傾きが緩やかになる
ため、解像限界周波数81の位置が上昇し、これに伴っ
て不感帯域を次第に広くする。そして、焦点位置が合焦
不感帯域に入った時点で合焦動作が停止することになる
Therefore, the driving motor of the imaging lens 7 is controlled toward the in-focus point by an automatic focus adjustment signal from the adjustment circuit 6. When the focus comes into focus, the output of the BPF 12 b increases more than the output of the BPF 12 a, the level difference C becomes smaller, and the slope of the frequency distribution becomes gentler, so that the position of the resolution limit frequency 81 increases, and the dead zone gradually widens accordingly. Then, the focusing operation is stopped when the focal position enters the focusing dead zone.

この実施例によれば、被写体の空間周波数の影響を受け
ることなく最良の合焦状態を得ることができる。従って
、コントラストの少ない被写体に対しても効果がある。
According to this embodiment, the best in-focus state can be obtained without being affected by the spatial frequency of the subject. Therefore, it is effective even for subjects with low contrast.

第5図は、この発明のさらに他の実施例を示す自動合焦
装置の電気回路のブロック図である。この第5図に示す
実施例装置では、上記第3図に示した実施例装置におけ
る可変利得増幅器4a。
FIG. 5 is a block diagram of an electric circuit of an automatic focusing device showing still another embodiment of the present invention. In the embodiment shown in FIG. 5, the variable gain amplifier 4a is the same as the variable gain amplifier 4a in the embodiment shown in FIG.

4bに代わって、緩衝増幅器14a、14bを用い、こ
の緩衝増幅器14a、14bの出力を加算増幅器15に
導いて加算し、この加算出力で可変利得増幅器1Gの利
得を可変している。この可変利得増幅器16は判定信号
発生回路13より解像限界周波数81に対応して出力さ
れる判定信号を増幅して調節回路6の不感帯設定回路に
導くものである。従って、この実施例においては、入射
光量が多く加算増幅器15の出力が増大するときには、
判定信号発生回路16から調節回路6に導かれる判定信
号のレベルが増大して不感帯域が広がることになる。
4b, buffer amplifiers 14a and 14b are used, and the outputs of the buffer amplifiers 14a and 14b are led to a summing amplifier 15 and summed, and the gain of the variable gain amplifier 1G is varied by the summed output. The variable gain amplifier 16 amplifies the judgment signal output from the judgment signal generation circuit 13 in accordance with the resolution limit frequency 81 and guides it to the dead zone setting circuit of the adjustment circuit 6. Therefore, in this embodiment, when the amount of incident light is large and the output of the summing amplifier 15 increases,
The level of the determination signal guided from the determination signal generation circuit 16 to the adjustment circuit 6 increases, and the dead band widens.

[発明の効果] 以上述べたように、この発明によれば、撮像手段の出力
に含まれる高周波成分によって合焦不感帯が制御される
ようになっていて、合焦判定の精度が被写界深度に応じ
て適切に設定されるため、不必要に高精度な合焦調節動
作が行なわれなくなり、よって短時間で合焦動作が行な
われるとともに消費電力が節約され、また、ノイズに対
して過敏に反応したり、可動部の摩耗が過度に進行した
りすることを有効に回避できる。
[Effects of the Invention] As described above, according to the present invention, the focus dead zone is controlled by the high frequency component included in the output of the imaging means, and the accuracy of focus determination is improved by the depth of field. Since the settings are set appropriately according to the noise, unnecessary high-precision focusing adjustment operations are not performed, and the focusing operation is performed in a short time, saving power consumption, and reducing sensitivity to noise. It is possible to effectively avoid reactions and excessive wear of the movable parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例を示す自動合焦装置の電
気回路のブロック図、 第2図は、上記第1図に示す自動合焦装置による合焦動
作を説明するための線図、 第3図は、この発明の他の実施例を示す自動合焦装置の
電気回路のブロック図、 第4図は、上記第3図に示す自動合焦装置の動作を説明
するためのコントラスト線図、第5図は、この発明のさ
らに他の実施例を示す自動合焦装置の電気回路のブロッ
ク図である。 1・・・・・・・・・光投射手段 3・・・・・・・・・受光手段 6・・・・・・・・・調節回路 7・・・・・・・・・撮像レンズ(光学系)8・・・・
・・・・・撮像管(撮像手段)9・・・・・・・・・高
周波成分検出回路乃1 図
FIG. 1 is a block diagram of an electric circuit of an automatic focusing device showing an embodiment of the present invention, and FIG. 2 is a diagram for explaining the focusing operation by the automatic focusing device shown in FIG. 1 above. , FIG. 3 is a block diagram of an electric circuit of an automatic focusing device showing another embodiment of the present invention, and FIG. 4 is a contrast line for explaining the operation of the automatic focusing device shown in FIG. 3 above. FIG. 5 is a block diagram of an electric circuit of an automatic focusing device showing still another embodiment of the present invention. 1......Light projection means 3...Light receiving means 6...Adjustment circuit 7...Imaging lens ( optical system) 8...
......Image tube (imaging means) 9......High frequency component detection circuit No. 1 Fig.

Claims (1)

【特許請求の範囲】 被写体に向けて光ビームを投射する光投射手段と、 上記光ビームの被写体からの反射光を受光する受光手段
と、 被写体の像を結ぶための光学系と、 この光学系による像に対応した電気信号を得る撮像手段
と、 この撮像手段の出力から高周波成分を抽出する高周波成
分抽出回路と、 上記受光手段の出力信号に基づいて合焦判定動作を行な
って合焦調節のための信号を出力し、上記合焦判定動作
に関する不感帯が上記高周波成分抽出回路の出力に基づ
いて設定される調節回路と、を具備してなることを特徴
とする自動合焦装置。
[Scope of Claims] Light projection means for projecting a light beam toward a subject; light receiving means for receiving reflected light of the light beam from the subject; an optical system for forming an image of the subject; and this optical system. a high-frequency component extraction circuit that extracts a high-frequency component from the output of the image-pickup means; and a high-frequency component extraction circuit that extracts a high-frequency component from the output of the light-receiving means; an adjustment circuit that outputs a signal for the focus determination operation and sets a dead zone related to the focus determination operation based on the output of the high frequency component extraction circuit.
JP60208025A 1985-09-20 1985-09-20 Automatic focusing device Expired - Lifetime JPH06100714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60208025A JPH06100714B2 (en) 1985-09-20 1985-09-20 Automatic focusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60208025A JPH06100714B2 (en) 1985-09-20 1985-09-20 Automatic focusing device

Publications (2)

Publication Number Publication Date
JPS6267509A true JPS6267509A (en) 1987-03-27
JPH06100714B2 JPH06100714B2 (en) 1994-12-12

Family

ID=16549424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60208025A Expired - Lifetime JPH06100714B2 (en) 1985-09-20 1985-09-20 Automatic focusing device

Country Status (1)

Country Link
JP (1) JPH06100714B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391612A (en) * 1986-10-04 1988-04-22 Canon Inc Automatic focus adjusting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734509A (en) * 1980-08-07 1982-02-24 Asahi Optical Co Ltd Automatic focusing detector of camera
JPS59228213A (en) * 1983-06-09 1984-12-21 Canon Inc Automatic focus detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734509A (en) * 1980-08-07 1982-02-24 Asahi Optical Co Ltd Automatic focusing detector of camera
JPS59228213A (en) * 1983-06-09 1984-12-21 Canon Inc Automatic focus detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391612A (en) * 1986-10-04 1988-04-22 Canon Inc Automatic focus adjusting device

Also Published As

Publication number Publication date
JPH06100714B2 (en) 1994-12-12

Similar Documents

Publication Publication Date Title
US6999684B2 (en) Camera system and camera
JP2004309866A (en) Automatic focusing device for camera
WO2015064462A1 (en) Imaging system and imaging system operation method
JP4081806B2 (en) Autofocus camera and photographing method
JPS59216380A (en) Video camera
JP2001141982A (en) Automatic focusing device for electronic camera
JP3569973B2 (en) Focus adjustment device
JP2001141984A (en) Automatic focusing device for electronic camera
JPS6267509A (en) Automatic focusing device
JP2001051186A (en) Multipoint range finder and camera
JP2001141983A (en) Automatic focusing device for electronic camera
JPH04161912A (en) Automatic focusing device for electronic camera
JP3403447B2 (en) microscope
JP2868834B2 (en) Auto focus device
JP2974338B2 (en) Automatic focusing device
JP2810403B2 (en) Automatic focusing device
JPH05236328A (en) Image pickup device
JPH0381713A (en) Automatic focusing device
JPH04304405A (en) Automatic zooming and tracking camera device
JPS63198014A (en) Automatic focusing device
JPH01224716A (en) Focusing controller
JP2001141985A (en) Electronic camera
JP2001141986A (en) Electronic camera and automatic focusing device for electronic camera
JP3550601B2 (en) Focus detection device
JPS59221081A (en) Video camera

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term