JPS6267114A - Production of low iron loss grain oriented electrical steel sheet - Google Patents

Production of low iron loss grain oriented electrical steel sheet

Info

Publication number
JPS6267114A
JPS6267114A JP60206385A JP20638585A JPS6267114A JP S6267114 A JPS6267114 A JP S6267114A JP 60206385 A JP60206385 A JP 60206385A JP 20638585 A JP20638585 A JP 20638585A JP S6267114 A JPS6267114 A JP S6267114A
Authority
JP
Japan
Prior art keywords
steel sheet
recesses
electrical steel
iron loss
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60206385A
Other languages
Japanese (ja)
Other versions
JPS6344804B2 (en
Inventor
Takashi Kobayashi
尚 小林
Katsuro Kuroki
黒木 克郎
Eiji Sasaki
英二 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60206385A priority Critical patent/JPS6267114A/en
Publication of JPS6267114A publication Critical patent/JPS6267114A/en
Publication of JPS6344804B2 publication Critical patent/JPS6344804B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a grain oriented electrical steel sheet exhibiting an excellent iron loss value by pressing the electrical steel sheet subjected to finish annealing at a specific temp. to form recesses then subjecting the steel sheet to a heat treatment at a specific temp. CONSTITUTION:The electrical steel sheet subjected to the finish annealing or an insulating film treatment after the finish annealing is formed with the recesses of a linear, dotted or broken line shape by, for example, a gear type roll under 70-220kg/mm<2> average load in a 50-500 deg.C range. The optimum shape of the recesses is 1-20mm space between the recesses and recesses with regard to the rolling direction and 10-300mum width of the recesses. The depth of the recesses is preferably larger than 5mu in the base iron part of the steel sheet. The direction of the recesses is made 45-90 deg. with regard to the rolling direction.Such electrical steel sheet is then heat-treated at 750 deg.C to generate the fine recrystal grains in the crystal grains, by which the magnetic domains are finely segmented. The grain oriented electrical steel sheet exhibiting the excellent iron loss value equiv. to the iron loss value of the electrical sheet formed by laser irradiation is thus obtd. even if the stress relief annealing is executed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は人為的に磁区を制御した一方向性電磁鋼板で歪
取焼鈍を行なっても磁気特性の劣化しない超低鉄損一方
向性電磁鋼板の製造方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is an ultra-low iron loss unidirectional electromagnetic steel sheet whose magnetic properties do not deteriorate even when strain relief annealing is performed using a unidirectional electromagnetic steel sheet with artificially controlled magnetic domains. This invention relates to a method for manufacturing steel plates.

〔従来の技術〕[Conventional technology]

方向性電磁鋼板において近年エネルギー節約の観点から
鉄損を低減することが要望されている。
In recent years, it has been desired to reduce iron loss in grain-oriented electrical steel sheets from the viewpoint of energy conservation.

鉄損を低減する方法としてはレーザー照射により磁区を
細分化する方法が既に特開昭58−26405号公報に
開示されている。該方法による鉄損の低減はレーザーに
より導入された歪に起因している。したがって歪取り焼
鈍を必要としない積鉄心トランス用としては使用出来る
が歪取り焼鈍を必要とする巻き鉄心トランス用としては
使用出来ない。また特開昭59108911号公報にお
いて二次再結晶焼鈍ずみの鋼板に局所的な熱処理を加え
て800℃以上の温度で焼なましを行ない、人工的粒界
を導入する方法が開示されている。該方法は鉄損値の低
減が、鋼板に導入された人工粒界により磁区細分化をは
かることによって達成される。800℃以上の温度で焼
なましするため、歪取り焼鈍により効果が消失すること
はないが、実施例がらみて上記レーザー照射による鉄損
値低減方法なみの鉄損を得ることは困難である。
As a method for reducing iron loss, a method of subdividing magnetic domains by laser irradiation has already been disclosed in JP-A-58-26405. The reduction in core loss by this method is due to the strain introduced by the laser. Therefore, it can be used for laminated core transformers that do not require strain relief annealing, but cannot be used for wound core transformers that require strain relief annealing. Further, JP-A-59108911 discloses a method of introducing artificial grain boundaries by subjecting a secondary recrystallization annealed steel plate to local heat treatment and annealing at a temperature of 800° C. or higher. In this method, reduction of core loss value is achieved by refining magnetic domains by artificial grain boundaries introduced into the steel sheet. Since the annealing is performed at a temperature of 800° C. or higher, the effect of strain relief annealing is not lost, but considering the examples, it is difficult to obtain an iron loss equivalent to the iron loss value reduction method using laser irradiation described above.

この他特公昭60−14827号及び特願昭59−23
6974号に示すような一方向性型[鋼板の2次再結晶
粒の表面層に微細な1次再結晶粒を生成させる事によっ
て磁区を細分化し鉄損を低減させる方法等が提案されて
いる。
In addition, Special Publication No. 60-14827 and Patent Application No. 59-23
A unidirectional type as shown in No. 6974 [a method has been proposed in which fine primary recrystallized grains are generated in the surface layer of secondary recrystallized grains of a steel sheet to subdivide the magnetic domain and reduce iron loss. .

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

本発明は特に押圧によって凹部を形成する際、例えば前
記特願昭59−236974号で記載している押圧加工
法などで溝を形成する際に発生ずる双晶及び被膜の劣化
を防止する事によって鋼板の品質向上を図ることを狙い
とするものである。
In particular, the present invention prevents twinning and film deterioration that occur when forming grooves by pressing, for example, by the pressing method described in Japanese Patent Application No. 59-236974. The aim is to improve the quality of steel sheets.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は仕上げ焼鈍済又は絶縁被膜処理済の鋼板に、例
えば歯車型ロールにより平均荷重70〜22 ’ kg
/IIIm”で線状又は点状、破線状等の凹部を形成す
る際、鋼板の温度を50℃〜500℃にして加工しその
後、750℃以上の温度で熱処理することにより結晶粒
内に微細再結晶粒を生じさせて磁区の細分化を図ろうと
するもので、これにより歪取焼鈍を行なってもレーザー
照射並の優れた鉄損値を示す一方向性電磁鋼板を提供し
ようとするものである。
The present invention applies an average load of 70 to 22' kg to a steel plate that has been finish annealed or treated with an insulating coating, for example, using a gear type roll.
/IIIm", when forming linear, dotted, broken line, etc. recesses, the steel plate is processed at a temperature of 50°C to 500°C, and then heat treated at a temperature of 750°C or higher to form fine particles within the crystal grains. The aim is to create recrystallized grains and to refine the magnetic domains, thereby providing a unidirectional electrical steel sheet that exhibits an iron loss value comparable to that of laser irradiation even after strain relief annealing. be.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

Si4%以下を含むスラブを加熱し、中間板厚まで熱間
圧延し、必要に応じてこの段階で熱処理を行ない−・回
或いは中間焼鈍をはさむ二回の冷間圧延を行なって最終
板厚にし、得られた冷延板を脱炭焼鈍し、焼鈍分離剤を
塗布した後高温長時間の什」−げ焼鈍を施しく110)
 <001 >方位の二次再結晶粒を発達させた鋼板或
いはこれに張力付与被膜等の絶縁被膜形成用コーテイン
グ液を塗布し、焼付けた鋼板に応力印加部分の平均荷重
(板面法線方向からみた板面上の応力付与断面積で印加
応力を割った値)が70〜220kg/mm”である加
工を加え一方向性電磁鋼板は周知の通りその結晶粒は粒
径が通常3〜10mmと大きくしかもその表面には絶縁
性の被膜が形成されている。従ってこの鋼板に局部加工
を加えると歪が導入されることはもとよりであるが常温
においては双晶が発生し被膜の劣化を招き歪取焼鈍後の
磁気特性の向上率も低い。
A slab containing 4% Si or less is heated and hot-rolled to an intermediate thickness, and if necessary, heat treatment is performed at this stage. The obtained cold-rolled sheet is decarburized and annealed, coated with an annealing separator, and then subjected to high-temperature and long-term annealing (110).
A coating liquid for forming an insulating film such as a tension imparting film is applied to a steel plate in which secondary recrystallized grains with <001> orientation have been developed, and the average load of the stress application area (from the normal direction of the plate surface) is applied to the steel plate and baked. As is well known, unidirectional electrical steel sheets are processed so that the applied stress divided by the stress applied cross-sectional area on the plate surface is 70 to 220 kg/mm, and the grain size is usually 3 to 10 mm. Although it is large, an insulating film is formed on its surface. Therefore, if local processing is applied to this steel plate, not only will strain be introduced, but at room temperature, twinning will occur, deteriorating the film and causing distortion. The rate of improvement in magnetic properties after annealing is also low.

発明者等はこれを解決するために種々検討した結果鋼板
の温度を高めて加工する事が最も効果的である事を見い
出した。
In order to solve this problem, the inventors conducted various studies and found that the most effective method is to process the steel plate at a higher temperature.

第1図は歯車型ロールで加工した後800℃4時間の歪
取焼鈍をした後の鋼板(被膜の上)を光学顕微鏡で観察
したものである。第1図(alは本発明の方法である鋼
板の温度を300 ’Cに加熱して加工したものであり
同図(blは室温で加工したものである。これらの図か
ら判る様に同図(alでは被膜の損傷が少ないが同図山
)では双晶が発生しそれに伴な鋼板温度が低い場合或い
はSi含有量が多い場合など双晶の発生量が増すと双晶
部から磁気特性改善に好ましくない再結晶が起る。第2
図は加工時の鋼板温度と歪取焼鈍後の磁気特性との関係
を示したものである。130kg/mm”の押圧加工時
の鋼板温度は室温より高くする事が鉄損特性に効果があ
ることが判るが500℃を越すことは好ましくない。
FIG. 1 shows a steel plate (on top of the coating) observed with an optical microscope after being processed with a gear roll and then subjected to strain relief annealing at 800°C for 4 hours. Figure 1 (al is a steel plate processed by heating it to 300'C according to the method of the present invention, and bl is a plate processed at room temperature. As can be seen from these figures, the same figure (Although there is little damage to the film in Al, the same figure shows) Twins occur, and when the amount of twins increases, such as when the steel plate temperature is low or the Si content is high, the magnetic properties improve from the twin part. Unfavorable recrystallization occurs.Second
The figure shows the relationship between the steel plate temperature during processing and the magnetic properties after strain relief annealing. It can be seen that setting the temperature of the steel sheet during pressing at 130 kg/mm'' higher than room temperature has an effect on iron loss characteristics, but it is not preferable to exceed 500°C.

第3図は歪取焼鈍後の鋼板表面層に生成した微細再結晶
粒をみたものである。同図+a)は加工時の鋼板温度が
約300℃であり同図(b)は室温である。
Figure 3 shows fine recrystallized grains formed on the surface layer of the steel sheet after stress relief annealing. Figure +a) indicates that the steel plate temperature during processing is approximately 300°C, and Figure (b) indicates room temperature.

鋼板に印加した平均荷重はどちらも130kg/am”
である。室温に比べ300℃で加工したものが再結晶粒
が小さい事が判る。これは加工時の歪量が室温で加工し
たものに比べ小さいためと考えられるが鉄損低域には微
細再結晶粒は必要以上に粗大化させない事が重要といえ
る。
The average load applied to the steel plate was 130 kg/am in both cases.
It is. It can be seen that the recrystallized grains of the specimen processed at 300°C are smaller than at room temperature. This is thought to be because the amount of strain during processing is smaller than when processed at room temperature, but in the low iron loss range it is important not to make the fine recrystallized grains coarser than necessary.

次に鋼板に印加する平均荷重と鉄損の関係を第4図に示
す。
Next, Figure 4 shows the relationship between the average load applied to the steel plate and iron loss.

加工時の鋼板温度は50℃、300℃、500℃である
。これから鉄損の向上する平均荷重は70〜220kg
/mm”の範囲であるといえる。即ち平均加重が70k
g/l1111!より小さい場合には、歪導入量が小さ
いため細粒が発生しないか或いは発生しても磁区に影響
を与えない。
The steel plate temperatures during processing were 50°C, 300°C, and 500°C. From now on, the average load at which iron loss will improve is 70 to 220 kg.
/mm”. That is, the average weight is 70k.
g/l1111! If it is smaller, the amount of strain introduced is small, so fine grains are not generated, or even if they are generated, they do not affect the magnetic domain.

一方220kg/mm”を超えると比較的低温加工(5
0〜100℃)においては歪量が増し再結晶粒が粗大化
する。また鋼板温度が450℃〜500℃では鋼板が軟
らかくなるため凹部が深くなり磁束密度が低下し特性向
上がみられない。
On the other hand, if the weight exceeds 220 kg/mm, relatively low-temperature processing (5
(0 to 100°C), the amount of strain increases and the recrystallized grains become coarser. Further, when the steel plate temperature is 450°C to 500°C, the steel plate becomes soft, the recesses become deep, the magnetic flux density decreases, and no improvement in characteristics is observed.

このような平均荷重を鋼板に与える際の応力印加部分即
ち凹部の最適な形状は次の通りである。
The optimum shape of the stress applying portion, that is, the recess, when applying such an average load to the steel plate is as follows.

先ず、圧延方向に対する凹部と凹部との間隔は1〜20
μm1mが好ましい。次に凹部の巾は10〜300μm
好ましくは50〜200μmである。加工上の凹部中の
最小値は108mであり300μmを超すと再結晶粒が
大きくなりすぎ特性上好ましくない。
First, the distance between the recesses in the rolling direction is 1 to 20
μm 1 m is preferable. Next, the width of the recess is 10 to 300 μm.
Preferably it is 50 to 200 μm. The minimum value of the concavity due to processing is 108 m, and if it exceeds 300 μm, the recrystallized grains become too large, which is not preferable in terms of characteristics.

凹部の形状は特にこだわるものではない。凹部の深さは
鋼板地鉄部において5μmより大きいことが好ましい。
The shape of the recess is not particularly important. The depth of the recess is preferably greater than 5 μm in the steel plate base portion.

この深さは加工時の荷重の増加とともに或いは鋼板の温
度が高くなる程深くなる。
This depth becomes deeper as the load during processing increases or as the temperature of the steel plate becomes higher.

凹部が深くなりすぎると磁束密度の低下を招き好ましく
ない。好ましい範囲は5〜20μmである。凹部の方向
は圧延方向に対して45°〜90゜の方向がよい。また
、凹部の平面視形状は線状、点線状又は破線状でも良い
If the recesses are too deep, the magnetic flux density will decrease, which is undesirable. The preferred range is 5 to 20 μm. The direction of the recess is preferably 45° to 90° with respect to the rolling direction. Further, the shape of the recessed portion in plan view may be linear, dotted, or broken.

本発明では歪導入後750℃以上の熱処理を施すが、歪
導入後種々の熱処理を行なったときの鉄損値(Wl 7
150w/kg)の変化を第5図に示す。
In the present invention, heat treatment is performed at 750°C or higher after introducing strain, but the iron loss value (Wl 7
150w/kg) is shown in Figure 5.

この図から判るように歪導入前の鉄損値は歪導入後一旦
悪くなるが、短時間の熱処理により極めて低い鉄II値
を示す。
As can be seen from this figure, the iron loss value before the introduction of strain deteriorates once after the introduction of strain, but after a short heat treatment, the iron II value is extremely low.

このことから仕上焼鈍後、歪導入をし次いで行なう絶縁
被膜処理の焼付時の熱処理を利用して歪導入部の再結晶
を図り鉄損値を歪取焼鈍前より低減することが可能であ
る。この場合は歪取焼鈍を行なわない積鉄心用トランス
材としても使用できる。
From this, after final annealing, it is possible to recrystallize the strain-introduced portion by utilizing the heat treatment during baking of the insulating coating treatment, which is performed after strain introduction, and to reduce the iron loss value compared to before the strain-relief annealing. In this case, it can also be used as a transformer material for stacked iron cores without strain relief annealing.

本発明における歪導入は鋼板温度を50°〜500℃の
範囲で行、なうため鋼板を再加熱する必要があるが絶縁
被膜処理の焼付焼鈍後の冷却過程で行なうとエネルギー
的に効率が良い。なお、本発明における実施例では歯車
型ロールにより凹部を形成する例を示したが、この例に
限らず、本発明で言う荷重を局部的に加えることができ
る方法があればいかなる方法でもよい。
Strain introduction in the present invention is carried out at a steel plate temperature in the range of 50° to 500°C, so it is necessary to reheat the steel plate, but it is energy efficient if it is carried out during the cooling process after baking annealing for insulation coating treatment. . In addition, in the embodiment of the present invention, an example was shown in which the recessed portion was formed using a gear-shaped roll, but the present invention is not limited to this example, and any method may be used as long as there is a method that can locally apply the load referred to in the present invention.

ここでは最も経済的に製品をつくることを意識して、仕
上焼鈍の被膜あるいはリン酸系張力付与被膜のついた鋼
板を対象として説明したが、全く被膜のない二次再結晶
した鋼板に本発明の方法を適用しても鉄損低減の効果が
期待できる。
In order to produce the product in the most economical way, we have explained the steel sheet with a finish annealing film or a phosphoric acid tension imparting film. Even if this method is applied, the effect of reducing iron loss can be expected.

実施例I Si:3.2%を含む板厚0.23n+mの高磁束密度
一方向性電磁鋼板製品(張力コーテイング付)に歯車ピ
ッチ5IIII11、歯車先端の刃幅50μm、刃先形
状平坦、刃の傾が歯車軸方向に対して15度である歯車
型ロールにより荷重150kg/mn+”で破線状の凹
部を形成して歪導入を行なった。
Example I A high magnetic flux density unidirectional electrical steel sheet product (with tension coating) containing 3.2% Si and having a thickness of 0.23n+m was manufactured with a gear pitch of 5III11, a blade width at the tip of the gear of 50μm, a flat blade shape, and a blade inclination. Strain was introduced by forming a concave portion in the shape of a broken line at a load of 150 kg/mn+'' using a gear-shaped roll whose angle is 15 degrees with respect to the gear axis direction.

歪導入時の鋼板温度は■室温、0100℃、0200℃
であった。
The steel plate temperature at the time of strain introduction is ■room temperature, 0100℃, 0200℃
Met.

歪導入後850℃×4時間の歪取り焼鈍を行なった。第
1表にその磁気特性を示す。
After introducing strain, strain relief annealing was performed at 850° C. for 4 hours. Table 1 shows its magnetic properties.

以下余白 (lO) 歪導入時の鋼板温度を高める方が鉄損特性が向上する。Margin below (lO) Iron loss characteristics are improved by increasing the temperature of the steel sheet when strain is introduced.

実施例2 Si:3.2%を含む板厚0.20mmの高磁束密度一
方向性電磁鋼板に歯車ピンチ8IIIm、歯車先端曲率
半径100μm、刃の傾が歯車軸方向に対して15度で
ある歯車型ロールにより荷重150kg/mm”で歪導
入を行なった。
Example 2 A high magnetic flux density unidirectional electromagnetic steel plate with a thickness of 0.20 mm containing 3.2% Si was used with a gear pinch of 8IIIm, a gear tip curvature radius of 100 μm, and a blade inclination of 15 degrees with respect to the gear axis direction. Strain was introduced using a gear type roll at a load of 150 kg/mm''.

歪導入時の鋼板温度は■室温、0200℃、0400℃
であった。
The steel plate temperature at the time of strain introduction is ■room temperature, 0200℃, 0400℃
Met.

歪導入後リン酸系張力被膜付与溶液をコーティングし、
850℃、30秒の焼付は焼鈍を行なった。
After introducing strain, coat with phosphoric acid-based tension coating solution,
Annealing was performed by baking at 850°C for 30 seconds.

その後800℃×4時間の焼鈍を行なった。Thereafter, annealing was performed at 800° C. for 4 hours.

磁気特性を第2表に示す。The magnetic properties are shown in Table 2.

以下余白 実施例3 仕上げ焼鈍後の板厚0.2Ononの高磁束密度一方向
性電磁鋼板に歯車ピッチ5IIIII+、歯車先端の刃
幅50μm、刃先形状平坦、刃の傾きが歯車軸方向に対
して15度である歯車型ロールにより荷重130kg/
ma+2で歪導入を行なった。歪導入時の鋼板温度は■
室温、0200℃であった。この後リン酸系張力被膜溶
液をコーティングし850℃、60秒の熱処理を行なっ
た。
Below is the blank space Example 3 A high magnetic flux density unidirectional electrical steel plate with a plate thickness of 0.2 Onon after finish annealing has a gear pitch of 5III+, a tooth width at the tip of the gear of 50 μm, a flat blade shape, and a blade inclination of 15 with respect to the gear axial direction. Load of 130 kg/
Strain was introduced at ma+2. The steel plate temperature at the time of strain introduction is ■
The room temperature was 0200°C. Thereafter, a phosphoric acid-based tension coating solution was coated and heat treatment was performed at 850° C. for 60 seconds.

その時の磁気特性を第3表に示す。The magnetic properties at that time are shown in Table 3.

以下余日 〔発明の効果〕 本発明は押圧による磁区制御技術において、従来の技術
に比し、一層、磁気特性を向上せしめうるちのであるか
ら、その工業的効果は甚大である。
[Effects of the Invention] Since the present invention improves magnetic properties even more than conventional techniques in magnetic domain control technology by pressing, its industrial effects are enormous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明ta+と従来法fb)で押圧加工した後
、歪取焼鈍を施した鋼板の光学金属顕微鏡写真、第2図
は加工時の鋼板温度と歪取焼鈍後の磁気特性との関係を
示す図、 第3図は本発明(5)と従来法(b)における鋼板表面
層の光学金属顕微鏡写真、 第4図は加工温度が平均荷重及び鉄損に与える関係を示
す図。 第5図は本発明法における歪取焼鈍条件と鉄損との関係
を示す図である。 (。)   xloo (b)×100 第1図 第2図 (。>  x 200 第3面 第4図 第5図 手続補正書(自発) 昭和60年11月26 日 特許庁長官 宇 賀 道 部 殿 1、事件の表示 昭和60年特許願第206385号 2、発明の名称 低鉄損一方向性電磁鋼板の製造方法 2、補正をする者 事件との関係   特許出願人 名称 (665)新日本製鐵株式会社 4、代理人 住所 、〒105東京都港区虎ノ門−丁目8番1o号5
、補正の対象 明細書の「発明の詳細な説明」の欄 6、補正の内容 +11  明細書第4頁第1行のr22’kg/1m2
Jを’220kg/麿諧2Jに訂正する。 (2)明細書第8頁第18行の「50°」を「50℃」
に訂正する。 (3)明細書第9頁第17行の「破線状」を「線状」に
訂正する。 手続補正書(自発) 昭和61年6月23 日 特許庁長官 宇 賀 道 部 殿 ■、事件の表示 昭和60年特許願第206385号 2、発明の名称 低鉄損一方向性電磁鋼板の製造方法 2、補正をする者 事件との関係  特許出願人 名称(665)新日本製鐵株式会社 4、代理人 住所 〒105東京都港区虎ノ門−丁目8番10号5、
補正の対象 明細書の「発明の詳細な説明」の欄 8、補正の内容 (1)明細書第2頁第9行の「特開昭」をr特公昭1に
、第15行のr 59−208911 、をr 59−
100222 Jに訂正する。 (2)明細書第4頁第19行の「応力付与断面積」をr
応力付与面積」に訂正する。
Figure 1 is an optical metallurgical micrograph of a steel plate subjected to stress relief annealing after pressing using the present invention ta+ and the conventional method fb), and Figure 2 shows the relationship between the steel plate temperature during processing and the magnetic properties after strain relief annealing. Figure 3 is an optical metallurgical micrograph of the steel sheet surface layer in the present invention (5) and conventional method (b); Figure 4 is a diagram showing the relationship that processing temperature has on average load and iron loss. FIG. 5 is a diagram showing the relationship between strain relief annealing conditions and iron loss in the method of the present invention. (。) 1. Indication of the case 1985 Patent Application No. 206385 2. Name of the invention Method for manufacturing low iron loss unidirectional electrical steel sheet 2. Person making the amendment Relationship to the case Name of patent applicant (665) Nippon Steel Corporation Co., Ltd. 4, agent address: 5-8-1o Toranomon-chome, Minato-ku, Tokyo 105
, "Detailed Description of the Invention" column 6 of the specification to be amended, content of amendment +11 r22'kg/1m2 on page 4, line 1 of the specification
Correct J to '220kg/Marojo 2J. (2) “50°” on page 8, line 18 of the specification is “50°C”
Correct. (3) Correct "broken line" to "linear" on page 9, line 17 of the specification. Procedural amendment (spontaneous) June 23, 1985 Michibu Uga, Commissioner of the Patent Office ■, Indication of the case 1985 Patent Application No. 206385 2, Name of the invention Method for manufacturing low iron loss unidirectional electrical steel sheet 2. Relationship with the case of the person making the amendment Patent applicant name (665) Nippon Steel Corporation 4 Address of agent 8-10-5 Toranomon-chome, Minato-ku, Tokyo 105
Column 8 of "Detailed Description of the Invention" of the specification to be amended, Contents of the amendment (1) "JP-A-Sho" in the 9th line of page 2 of the specification is changed to JP-KOKAI-Sho 1, and r 59 in the 15th line. -208911, r 59-
Corrected to 100222 J. (2) "Stress applied cross-sectional area" on page 4, line 19 of the specification is r
Corrected to "stress application area".

Claims (1)

【特許請求の範囲】 1、仕上げ焼鈍済又は仕上焼鈍後絶縁被膜処理した電磁
鋼板を50〜500℃の温度範囲で押圧により凹部を形
成し、次いで750℃以上の温度で熱処理することを特
徴とする低鉄損一方向性電磁鋼板の製造方法。 2、電磁鋼板に70〜220kg/mm^2の平均荷重
で凹部加工を行う第1項記載の方法。 3、電磁鋼板に、圧延方向に対し、直角から45°の範
囲内で、間隔が圧延方向に1〜20mm、巾が10〜3
00μm、地鉄部分の深さが5μm以上の凹部を形成す
る第1項記載の方法。 4、凹部が点線状又は破線状よりなる第1項記載の方法
[Claims] 1. A recess is formed by pressing an electrical steel sheet that has been finish annealed or has been treated with an insulating coating after finish annealing at a temperature range of 50 to 500°C, and then heat treated at a temperature of 750°C or higher. A method for manufacturing unidirectional electrical steel sheets with low iron loss. 2. The method according to item 1, wherein the concave portion is machined on the electromagnetic steel sheet with an average load of 70 to 220 kg/mm^2. 3. On the electromagnetic steel sheet, within the range of 45 degrees from the right angle to the rolling direction, the interval is 1 to 20 mm in the rolling direction, and the width is 10 to 3
2. The method according to item 1, wherein the recess is formed with a depth of 0.00 μm and a depth of 5 μm or more in the base metal portion. 4. The method according to item 1, wherein the recessed portion has a dotted line shape or a broken line shape.
JP60206385A 1985-09-20 1985-09-20 Production of low iron loss grain oriented electrical steel sheet Granted JPS6267114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60206385A JPS6267114A (en) 1985-09-20 1985-09-20 Production of low iron loss grain oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60206385A JPS6267114A (en) 1985-09-20 1985-09-20 Production of low iron loss grain oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JPS6267114A true JPS6267114A (en) 1987-03-26
JPS6344804B2 JPS6344804B2 (en) 1988-09-07

Family

ID=16522465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60206385A Granted JPS6267114A (en) 1985-09-20 1985-09-20 Production of low iron loss grain oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JPS6267114A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456842A (en) * 1987-08-27 1989-03-03 Nippon Mining Co Copper alloy foil for flexible circuit board
EP0467384A2 (en) * 1990-07-20 1992-01-22 Nippon Steel Corporation Method of producing grain oriented silicon steel sheets each having a low watt loss
EP0992591A3 (en) * 1998-10-06 2001-02-07 Nippon Steel Corporation Grain-oriented electrical steel sheet and production method thereof
JP2010168615A (en) * 2009-01-21 2010-08-05 Nippon Steel Corp Method for producing low iron loss single-oriented electromagnetic steel sheet
JP2013510239A (en) * 2009-12-04 2013-03-21 ポスコ Oriented electrical steel sheet with low iron loss and high magnetic flux density
CN103305682A (en) * 2013-06-20 2013-09-18 东北大学 Device and method for improving orientation silicon steel permeability
WO2018150791A1 (en) 2017-02-17 2018-08-23 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152806U (en) * 1988-04-13 1989-10-20
JPH056170Y2 (en) * 1988-12-26 1993-02-17
JP2018024087A (en) * 2016-07-29 2018-02-15 新日鐵住金株式会社 Tooth type roll manufacturing method, and steel plate processing method
JP7274987B2 (en) * 2019-08-30 2023-05-17 東芝産業機器システム株式会社 Wound core manufacturing apparatus and wound core manufacturing method
KR20220128430A (en) 2020-05-19 2022-09-20 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253579A (en) * 1985-09-03 1987-03-09 Seiko Epson Corp Portable receiver

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253579A (en) * 1985-09-03 1987-03-09 Seiko Epson Corp Portable receiver

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456842A (en) * 1987-08-27 1989-03-03 Nippon Mining Co Copper alloy foil for flexible circuit board
EP0467384A2 (en) * 1990-07-20 1992-01-22 Nippon Steel Corporation Method of producing grain oriented silicon steel sheets each having a low watt loss
EP0992591A3 (en) * 1998-10-06 2001-02-07 Nippon Steel Corporation Grain-oriented electrical steel sheet and production method thereof
JP2010168615A (en) * 2009-01-21 2010-08-05 Nippon Steel Corp Method for producing low iron loss single-oriented electromagnetic steel sheet
JP2013510239A (en) * 2009-12-04 2013-03-21 ポスコ Oriented electrical steel sheet with low iron loss and high magnetic flux density
JP2015092028A (en) * 2009-12-04 2015-05-14 ポスコ Grain-oriented electrical steel sheet
JP2015117435A (en) * 2009-12-04 2015-06-25 ポスコ Grain-oriented electrical steel sheet
CN103305682A (en) * 2013-06-20 2013-09-18 东北大学 Device and method for improving orientation silicon steel permeability
WO2018150791A1 (en) 2017-02-17 2018-08-23 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet
KR20190107079A (en) 2017-02-17 2019-09-18 제이에프이 스틸 가부시키가이샤 Directional electrical steel sheet
US11293070B2 (en) 2017-02-17 2022-04-05 Jfe Steel Corporation Grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPS6344804B2 (en) 1988-09-07

Similar Documents

Publication Publication Date Title
KR900007448B1 (en) Method for producing a grain oriented electrical steel sheet having a low watt-loss
US11772199B2 (en) Grain-oriented electrical steel sheet and magnetic domain refinement method therefor
JP6496412B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JPS6267114A (en) Production of low iron loss grain oriented electrical steel sheet
JPS6254873B2 (en)
US4545828A (en) Local annealing treatment for cube-on-edge grain oriented silicon steel
KR102133909B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
JPH07268567A (en) Grain oriented silicon steel sheet having extremely low iron loss
JPS60255926A (en) Manufacture of grain oriented electrical steel sheet low in iron loss
JPH0978129A (en) Production of nonortiented silicon steel sheet extremely excellent in magnetic property in all orientation
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPS6046325A (en) Treatment of electromagnetic steel plate
JPS585969B2 (en) Manufacturing method of low core loss unidirectional silicon steel sheet
JPH01191744A (en) Manufacture of grain-oriented electrical steel sheet with low iron loss
JP2647322B2 (en) Low iron loss grain-oriented electrical steel sheet and method of manufacturing the same
US3586545A (en) Method of making thin-gauge oriented electrical steel sheet
JPH01252726A (en) Manufacture of grain-oriented silicon steel sheet with low iron loss
CN113243034B (en) Oriented electrical steel sheet and method for manufacturing same
CN113196423B (en) Oriented electrical steel sheet and method for manufacturing same
JPS60262981A (en) Manufacture of grain-oriented silicon steel sheet with small iron loss
JPH05247538A (en) Manufacture of low iron loss grain-oriented electrical steel sheet
KR950002894B1 (en) Making method of oriented electromagnetic steel plate
JPS61190021A (en) Manufacture of grain-oriented electrical steel sheet having satisfactory magnetism
KR20240098941A (en) Grain oriented electrical steel sheet and method for the same
JPH0565543A (en) Manufacture of low iron loss unidirectional silicon steel sheet having uniform characteristic in transverse direction without deteriorating magnetic characteristic even in the case of applying strain-removal annealing

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees