JPS6266042A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS6266042A
JPS6266042A JP60201001A JP20100185A JPS6266042A JP S6266042 A JPS6266042 A JP S6266042A JP 60201001 A JP60201001 A JP 60201001A JP 20100185 A JP20100185 A JP 20100185A JP S6266042 A JPS6266042 A JP S6266042A
Authority
JP
Japan
Prior art keywords
temperature
room
capacity
air
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60201001A
Other languages
Japanese (ja)
Inventor
Nobuo Otsuka
大塚 信夫
Hideo Igarashi
英雄 五十嵐
Tonpuson Piita
ピータ・トンプソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60201001A priority Critical patent/JPS6266042A/en
Priority to KR1019860004443A priority patent/KR900006505B1/en
Priority to AU61149/86A priority patent/AU582664B2/en
Priority to CA000516546A priority patent/CA1272024A/en
Priority to US06/899,327 priority patent/US4754919A/en
Publication of JPS6266042A publication Critical patent/JPS6266042A/en
Priority to US07/154,233 priority patent/US4821526A/en
Priority to CA000597922A priority patent/CA1273491A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To make is possible to control accurately the room temperature to a set value even when thermal load is large and operate a blower with a small transmission power when thermal load is small by determining a set temperature in a duct according to the capacity of maximum thermal load and supplying a air of a suitable temperature to each room according to said determination. CONSTITUTION:The capacity of thermal load of each room 1 is measured by a thermal load measuring means 18 which receives as inputs set temperature signal and detected temperature signal from a room thermostat 14 installed in each room 1, and based on its output a damper control means 19 is controlled to control the opening of each damper 9, then, next, based on a maximum value of thermal load in each room 1 the air supply temperature is determined by a set temperature determination means 20, and based on the results of this determination and the output of a temperature determination device 21 which receives as inputs detection signal from a temperature detection device 15, the capability of a heat source machine 17 is determined by a capability determination means 22. Based on the output of this determination means 22, the capacity of the heat source machine 17 is controlled by the capability control means 23.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、各部屋の室温を独立に調節できろ可変風量
制御システムを採用したダクト式の空気調和機に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a duct type air conditioner that employs a variable air volume control system that can independently adjust the room temperature of each room.

〔従来の技術〕[Conventional technology]

エアーダクトを用いて温度調節された空気を各部屋へ分
配して空気調和を行なうセントラル空気調和システムは
、加湿器や高性能フィルターが容易に組込め、外気処理
や余熱交換器の採用も可能で質の高い空気調和が可能で
あり、また空気調和する部屋には吹出口と吸込口しかな
く、室内スペースが有効に使えるほか、熱搬送系のトラ
ブルも少ないなど、ヒートポンプチラー・ファンコイル
方式やパッケージエアコン分散配置方式などに比べ多く
のメリットを有し、このためビル空調等に多く採用され
ている。その中でも省エネルギー運転が可能な可変風量
制御方式(以下VAV方式と呼ぶ)(ま、熱負荷の異な
る各部屋を独立に温度制御でき、使用しない部屋の空気
調和を停止させろ事も可能で、かつ必要送風量の大小に
応じ送風機の動力を可変して運転費を低減させる事もで
き、また同時使用率を考慮することにより熱源機の能力
を小さく設計することができる。
Central air conditioning systems use air ducts to distribute temperature-controlled air to each room for air conditioning, and can easily incorporate humidifiers and high-performance filters, as well as external air processing and residual heat exchangers. High-quality air conditioning is possible, and the room to be air-conditioned has only an air outlet and an inlet, making efficient use of indoor space and minimizing problems with the heat transfer system. It has many advantages compared to distributed air conditioner systems, and for this reason is often used for air conditioning in buildings. Among them, variable air volume control method (hereinafter referred to as VAV method) that allows energy-saving operation (well, it is possible to independently control the temperature of each room with a different heat load, and it is also possible and necessary to stop air conditioning in rooms that are not in use. Operating costs can be reduced by varying the power of the blower depending on the amount of air blown, and the capacity of the heat source device can be designed to be smaller by considering the simultaneous usage rate.

上記VAV方式には風量調節用ダンパの形式に応じて2
つの方式がある。1つはバイパス形VAVユニットを用
いる方式で、室内負荷に応じて室内へ吹出す風量と直接
熱源機へ戻す(バイパスさせる)風量の比率を調節する
ものである。この方式は送風量が一定のため熱源機の能
力制御がむずかしいパッケージエアコンを用いたシステ
ムに用いられろことが多いが、送風機制御による省エネ
ルギー効果はない。
For the above VAV system, there are 2
There are two methods. One is a method using a bypass type VAV unit, which adjusts the ratio of the amount of air blown into the room and the amount of air directly returned to the heat source equipment (bypassed) depending on the indoor load. This method is often used in systems using packaged air conditioners, where it is difficult to control the capacity of the heat source equipment because the amount of air blown is constant, but there is no energy saving effect by controlling the blower.

もう1つの方式は絞り形VAVユニットを用いる方式で
ある。この方式はダンパの開度に応じて変化するダクト
内の圧力を検出し、この値が設定値になるよう送風機の
容量を制御するもので、負荷が少なくなれぼく風量が少
なくなってもこの時ダクト内の空気温度は一定に制御さ
れる)、熱源機の所要能力が小さくなると同時に送風機
の動力も低減される。
Another method uses an aperture-type VAV unit. This method detects the pressure inside the duct, which changes according to the opening degree of the damper, and controls the capacity of the blower so that this value becomes the set value. (The air temperature inside the duct is controlled to be constant), the required capacity of the heat source equipment is reduced, and at the same time the power of the blower is reduced.

絞9形VAVユニットを用いた従来技術には、特開昭5
7−196029号公報や、日本冷凍協会発行の冷凍空
調便覧(新版・第4版・応用編)0’)図2.10 (
a)が知られている。第4図はこれら従来における空気
調和機のシステム構成図である。同図において、1は空
調される部屋で、ここでは3部屋の場合を示している。
Conventional technology using a 9-diaphragm VAV unit includes Japanese Patent Laid-Open No. 5
Publication No. 7-196029 and the Refrigeration and Air Conditioning Handbook (New Edition/4th Edition/Advanced Edition) published by the Japan Refrigeration Association 0') Figure 2.10 (
a) is known. FIG. 4 is a system configuration diagram of these conventional air conditioners. In the figure, 1 is a room to be air-conditioned, and here a case of three rooms is shown.

2ば部屋1の天井内に配置された室内機で、エアーフィ
ルター3戸熱交換器4.送風機5から構成されている。
2. An indoor unit placed in the ceiling of room 1 with an air filter, 3 heat exchangers, and 4. It is composed of a blower 5.

6は室内機2の空気吹出口に接続されたメインダクト、
7はこのメインダクト6から部屋数に応じて分岐した3
本の枝ダクト、8はこの枝ダクト7の途中に挿入された
絞り形のVAVユニット、9はとのVAVユニット8内
に回転可能に取付けられたダンパ、10ば上記技ダクト
7の末端に取付けられた吹出口、11は上記部屋1のド
アー下部に設けられた吸込口、12ば廊下天井面に設け
られた天井吸込口、13ばこの天井吸込口12と上記室
内機2の吸込口を連絡する吸込ダクト、14は上記各部
屋1に各々取付けられたルームサーモスタット、15は
上記メインダクト6内に取付けられた温度検出器、16
は同じくメインダクト6内に設けられた圧力検出器、1
7は上記熱交換器4に接続したし−トポンプ等の熱源機
である。
6 is a main duct connected to the air outlet of the indoor unit 2;
7 is the 3 branched from this main duct 6 according to the number of rooms.
A main branch duct, 8 is a throttle-shaped VAV unit inserted in the middle of this branch duct 7, 9 is a damper rotatably installed in the VAV unit 8, and 10 is installed at the end of the above-mentioned branch duct 7. 11 is a suction port provided at the bottom of the door of the room 1, 12 is a ceiling suction port provided on the ceiling of the hallway, and 13 is a connection between the ceiling suction port 12 of the cigarette and the suction port of the indoor unit 2. 14 is a room thermostat installed in each of the rooms 1, 15 is a temperature detector installed in the main duct 6, 16
1 is a pressure detector also installed in the main duct 6.
7 is a heat source device such as a waste pump connected to the heat exchanger 4.

上記のように構成された従来の空気調和機において、各
ルームサーモスタット14で使用者が設定した設定温度
と検出された現在の空気温度の温度差に応じダンパ9の
開度を任意の位置に各々調節する。そしてダンパ9q開
度に応じ、メインダグ1−6内の圧力が変化し、これを
圧力検出器16が検出し、予め設定した設定圧力になる
よう送風[5の容量を変化させる。また、送風量の変化
に伴ない熱交換器4の出口空気温度が変わるため、乙の
温度を温度検出器15で検出し、予め設定しておいた空
気温度になるようRA源機17の能力を制御する。この
ように略一定温度に調節された空気は吹田口10から室
内熱負荷の大小に応じた風量で部屋1内へ吹き出す。部
屋1を空調17た空気は吸込口11から廊下等のスペー
スを通り天井吸込口12へ流れ、吸込ダクト13を経由
して再び室内機2へ戻る。
In the conventional air conditioner configured as described above, the opening degree of the damper 9 is adjusted to an arbitrary position according to the temperature difference between the set temperature set by the user on each room thermostat 14 and the detected current air temperature. Adjust. Then, the pressure inside the main dug 1-6 changes according to the opening degree of the damper 9q, which is detected by the pressure detector 16, and the capacity of the air blower [5 is changed so as to reach a preset set pressure. In addition, since the outlet air temperature of the heat exchanger 4 changes as the air flow rate changes, the temperature of the RA source 17 is detected by the temperature detector 15, and the RA source 17 has the ability to maintain the preset air temperature. control. The air, which has been adjusted to a substantially constant temperature in this manner, is blown out into the room 1 from the Suita outlet 10 at an air volume that corresponds to the magnitude of the indoor heat load. Air that has been conditioned 17 in the room 1 flows from the suction port 11 through a space such as a hallway to the ceiling suction port 12, and returns to the indoor unit 2 via the suction duct 13.

第5図は上記冷凍空調便覧の図2.14に示された冷房
負荷に対するVAVユニットの通過風量の制御の様子を
表わす線図である。同図において、横軸は冷房負荷、縦
軸は風量を表わしているが、冷房負荷は現在の室温と設
定室温の差に、風景はダンパ9の開度に置きかえること
ができる。冷房運転により室温が低下し設定室温との差
が小さくなるに従いダンパ9は徐々に閉まり、熱負荷と
バランスした風量を吹出口10より部屋1内へ吹き出す
。なお、暖房時も暖房負荷と風量との関係シよ同様であ
る。
FIG. 5 is a diagram showing how the amount of air passing through the VAV unit is controlled with respect to the cooling load shown in FIG. 2.14 of the Refrigeration and Air Conditioning Handbook. In the figure, the horizontal axis represents the cooling load and the vertical axis represents the air volume, but the cooling load can be replaced with the difference between the current room temperature and the set room temperature, and the scenery can be replaced with the opening degree of the damper 9. As the room temperature decreases due to the cooling operation and the difference from the set room temperature becomes smaller, the damper 9 gradually closes and blows an air volume balanced with the heat load into the room 1 from the air outlet 10. Note that during heating, the relationship between heating load and air volume is the same.

さて第5図において、冷房負荷がある値以下に減少した
場合、風量は一定となり、送風温度が負荷の減少に伴な
い高くなるようffl11御されている。
Now, in FIG. 5, when the cooling load decreases below a certain value, the air flow rate remains constant and the air temperature is controlled by ffl11 so that it increases as the load decreases.

これは、ビル等において最小換気量を確保するための制
御で、最小風量を維持しながら送風温度を変え負荷に対
応していく制御(定風量方式−〇AV方式)である。
This is a control to ensure the minimum ventilation volume in buildings, etc., and is a control that changes the air temperature to correspond to the load while maintaining the minimum air volume (constant air volume method - ○ AV method).

また他の従来技術としては、特公昭55−14979号
公報や特公昭55−44854号公報、特公昭55−4
4854け公報、特公昭55−24022号公報などが
知られている。これらはダンパ9の開度調節を手動で行
ない、送風機と熱源機の制御は自動で行なうVAV方式
であり、送風温度を外気に追従して変化させ、熱負荷の
大小に応じて熱源機の能力を制御する方式である。
In addition, as other conventional techniques, there are
Publication No. 4854, Japanese Patent Publication No. 55-24022, etc. are known. These are VAV systems in which the opening of the damper 9 is manually adjusted and the blower and heat source equipment are automatically controlled.The air temperature is changed to follow the outside air, and the capacity of the heat source equipment is adjusted according to the size of the heat load. This is a method to control the

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の絞り形VAVユニットを用いた空気
調和機では、各部屋の熱負荷が大きく異なる場合でも枝
ダクト7の寸法や吹田口10の寸法、吹出口10の内側
に設けられた風量調整用の絞り (図示せず)などで正
確な各部屋の風景バランスをとる6製がなく、vAVユ
ニット8のダンパ9が各部屋の熱負荷に応じた風量を自
動調節していた。しかし熱負荷は外気温や室内発生熱な
どにより大きく異なり、吹田空気温度とダクト内圧力が
いつも一定に制御される場合、吹田空気温度と圧力の設
定値のとり方によ−)では熱負荷が大きい時ダンパ9を
全開にしても能力が不足して室温が設定値に到達しない
部屋がでる場合や、熱負荷が小さい時は、風量を下げる
ため各ダンパをすへて絞り込んで圧力損失の大きい状態
で運転するという問題があった。なお、低負荷時VAV
方式からCAV方式に単純に切換えろ方式では送風機動
力を十分低減できない。
In an air conditioner using a conventional throttle-type VAV unit as described above, even if the heat load in each room differs greatly, the dimensions of the branch duct 7, the dimensions of the Suita outlet 10, and the air volume provided inside the outlet 10 can be adjusted. There was no adjustment diaphragm (not shown) to accurately balance the scenery in each room, and the damper 9 of the vAV unit 8 automatically adjusted the air volume according to the heat load in each room. However, the heat load varies greatly depending on the outside temperature and the heat generated indoors, and if the Suita air temperature and duct internal pressure are always controlled to be constant, the heat load will be large depending on how the Suita air temperature and pressure are set. Even if the damper 9 is fully opened, there is a room where the room temperature does not reach the set value due to insufficient capacity, or when the heat load is small, each damper is narrowed down to reduce the air volume, resulting in a large pressure loss. There was a problem with driving. In addition, VAV at low load
Simply switching from the CAV method to the CAV method cannot reduce the blower power sufficiently.

また、ダンパ9を手動制御する空気調和機では、外気温
により送風圧を変化させ、送風量を単純に増減させても
、各部屋の熱負荷は内部発生熱にも大きく影響されるた
め、熱負荷に見合った最適な運転能力が得られろとは限
らず、さらに熱負荷の異なる各部屋への送風量調節を手
動のダンパ9を用いて行なわなければならず、各部屋の
室温を希望湿度に維持することが値しいという間;項が
あった。
In addition, in air conditioners that manually control the damper 9, even if the air blowing pressure is changed depending on the outside temperature and the air blowing amount is simply increased or decreased, the heat load in each room is greatly affected by the internally generated heat. It is not always possible to obtain the optimum operating capacity commensurate with the load, and it is also necessary to use a manual damper 9 to adjust the air flow to each room with a different heat load, and the room temperature in each room must be adjusted to the desired humidity. There was a term that it was worth keeping in mind.

この発明は上記の問題点を解決するためになされたもの
で、室内の熱負荷の大小に応して最適な送風温度の設定
を行なうことにより、熱負荷が大きい時でも室温を正確
に設定値に制御することができ、熱負荷が小さい時は送
風機の動力をよリ一層低減することができる空気調和機
を提供することを目的とする。
This invention was made to solve the above problems, and by setting the optimal air blowing temperature according to the size of the indoor heat load, the room temperature can be accurately set to the set value even when the heat load is large. It is an object of the present invention to provide an air conditioner that can control the air conditioner and further reduce the power of the blower when the heat load is small.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る空気調和機は、ルームサーモスタットの
検出信号を入力とする熱負荷測定手段によって各部屋の
熱負荷を測定し、この測定結果に基づき熱源機に接続さ
れたダクトに設けられたダンパの開度をダンパ制御手段
によって制御し、上記熱負荷測定手段によって測定され
た各部屋の熱負荷の内の最大の値に基づき送風1度の設
定温度を設定温度決定手段によって決定し、この決定結
果と温度検出器からの検出信号を入力とする温度測定手
段の出力に基づき、熱源機の能力を能力決定手段によっ
て決定し、この出力に基づいて熱源機の容量を制御する
能力制御手段を設けたものである。
The air conditioner according to the present invention measures the heat load in each room using a heat load measuring means that inputs a detection signal from a room thermostat, and based on the measurement results, controls the damper installed in the duct connected to the heat source device. The opening degree is controlled by a damper control means, and a set temperature for one degree of ventilation is determined by a set temperature determining means based on the maximum value of the heat loads of each room measured by the heat load measuring means, and the determined result is and capacity control means for determining the capacity of the heat source device by the capacity determining means based on the output of the temperature measuring means which inputs the detection signal from the temperature detector, and controlling the capacity of the heat source device based on this output. It is something.

〔作 用〕[For production]

この発明においては、設定湿度決定手段が、送風温度の
設定温度を最大の熱負荷がゼロ以下の時は設計上の上下
の限界温度に、最大の熱負荷が設定値以上の時は同じく
設計上の上下の限界温度に、最大の熱負荷がゼロから設
定値の間は、熱負荷に比例させた温度に値を決定するこ
とにより、これによって高熱負荷時の正確な室温制御、
および低熱負荷時の送風機動力の低減を可能にする。
In this invention, the set humidity determining means sets the set temperature of the air blowing temperature to the upper and lower design limit temperatures when the maximum heat load is less than zero, and to the upper and lower design limit temperatures when the maximum heat load is equal to or higher than the set value. By determining the temperature value proportional to the heat load between the maximum heat load and the upper and lower limit temperatures of zero to the set value, this allows accurate room temperature control during high heat loads,
and enables reduction of blower power during low heat loads.

〔実施例〕〔Example〕

第1図はこの発明による空気調和機の一実施例を示す全
体のシステム構成図である。第1図から明らかなように
、室内機2の熱交換器4と接続されたヒートポンプ等の
熱源機17と、この熱源機17および熱交換器4により
発生する冷温風を搬送する送風機5と、この送風機5に
接続したメインダクト6と、このメインダクト6の枝ダ
クト7内に配置された風量調節用のダンパ9と、上記メ
インダクト6内の圧力を検出する圧力検出M16および
吹出空気湿度を検出する温度検出器15と、4各部屋1
に取付けられたルームサーモスタット14を備え、この
ルームサーモスタット14の設定温度信号および検出温
度信号を入力とする熱負荷測定手段18により各部屋1
の熱負荷の大小を測定し、その出力に基づきダンパ制御
手段19を制御して各ダンパ9の開度を制御し、次いで
各部屋1の熱負荷の内の最大の値に基づき、送風温度を
いくらにするかを設定温度決定手段20によって決定し
、この決定結果と温度検出器15からの検出信号を入力
とする温度測定手段21の出力に基づき熱源機17の能
力を能力決定手段22によって決定し、この決定手段2
2の出力に基づいて熱源機17の容量を能力制御手段2
3で制御するように構成したものである。
FIG. 1 is an overall system configuration diagram showing an embodiment of an air conditioner according to the present invention. As is clear from FIG. 1, a heat source device 17 such as a heat pump connected to the heat exchanger 4 of the indoor unit 2, a blower 5 that conveys cold and hot air generated by the heat source device 17 and the heat exchanger 4, A main duct 6 connected to the blower 5, a damper 9 for adjusting the air volume arranged in a branch duct 7 of the main duct 6, a pressure detection M16 for detecting the pressure inside the main duct 6, and a pressure detection M16 for detecting the humidity of the blown air. Temperature detector 15 to detect, 4 each room 1
Each room 1 is equipped with a room thermostat 14 attached to
The magnitude of the heat load is measured, and based on the output, the damper control means 19 is controlled to control the opening degree of each damper 9, and then, based on the maximum value of the heat load of each room 1, the blowing temperature is adjusted. The setting temperature determining means 20 determines how much the temperature should be set, and the capacity determining means 22 determines the capacity of the heat source device 17 based on the determination result and the output of the temperature measuring means 21 which receives the detection signal from the temperature detector 15 as input. And this determining means 2
The capacity control means 2 controls the capacity of the heat source device 17 based on the output of the heat source device 2.
It is configured to be controlled by 3.

なお、第1図において、第4図と同一符号は同−又は相
当部分を示している。
In FIG. 1, the same reference numerals as in FIG. 4 indicate the same or corresponding parts.

次に上記実施例の物件を第2図の熱源機制御プログラム
のフローチャートおよび第3図の設定温度の説明線図を
参照しながら暖房時について説明する。なお、これら制
御はマイクロコンピュータを利用して実現させるもので
あるが、その回路は省略した。また送風圧力を一定にす
るための送風@5の容量制御法と、熱負荷に見合った送
風社を調節するためのダンパ9の開度制御法についての
詳細説明は省略しな。
Next, the heating operation of the object of the above embodiment will be described with reference to the flowchart of the heat source device control program shown in FIG. 2 and the explanatory diagram of the set temperature shown in FIG. 3. Note that these controls are realized using a microcomputer, but the circuit is omitted. Further, a detailed explanation of the method of controlling the capacity of the air blower 5 to keep the air blowing pressure constant and the method of controlling the opening of the damper 9 to adjust the air blower in accordance with the heat load will not be omitted.

空気調和機が暖房運転されると、第2図に示す制御プロ
グラムがスタートシ、まず、ステップ30で各部屋1の
ルームサーモスタット14から各々の設定室温(To 
)と実際の室温(TR)の値が入力される。ここで、室
温が設定室温と等しければダンパ9の開度変更は行なわ
れず、室温が低ければダンパ9を開けろ方向に、高けれ
ば閉める方向に制御する。次のステップ31では非空調
室を除く各部屋の室温TRと各々の設定室温T。との差
から求められた熱負荷の内の最大値を求める。
When the air conditioner is operated for heating, the control program shown in FIG.
) and the actual room temperature (TR) values are input. Here, if the room temperature is equal to the set room temperature, the opening degree of the damper 9 is not changed, and if the room temperature is low, the damper 9 is controlled to be opened, and if the room temperature is high, it is controlled to be closed. In the next step 31, the room temperature TR and set room temperature T of each room except non-air conditioned rooms are determined. Find the maximum value of the heat loads found from the difference between

なお、ここでば熱負荷=設定室温To−室Fjfx T
 Rと定義する。次のステップ32において、T=Tw
in 十A (T □  T R)の計算を行ないTを
求めろ。なお、Tは送風温度の設定値、Tm1nは熱源
45!117が安定して運転できる範囲内で定めた下限
設定温度(定数)、Aは定数である。
Note that here, heat load = set room temperature To - room Fjfx T
Define R. In the next step 32, T=Tw
Find T by calculating in 10A (T □ TR). Note that T is a set value of the air blowing temperature, Tm1n is a lower limit set temperature (constant) determined within a range in which the heat source 45!117 can operate stably, and A is a constant.

設定湿度Tの値は、ステップ33で下限設定温度(T 
n+in)を下回っていないか否かが判定され、下回っ
ていれば、次のステップ34でT=Tminと設定する
。一方、ステップ33での判定結果が「NO」のときは
、ステップ35に移行して設定温度Tが上限設定温度(
T win)を上回っていないかどうかが判定され、上
回っていれば、ステップ36でT = T winと設
定する。
The value of the set humidity T is determined by the lower limit set temperature (T
It is determined whether or not the value is below n+in), and if it is, then in the next step 34, T=Tmin is set. On the other hand, when the determination result in step 33 is "NO", the process moves to step 35 and the set temperature T is set to the upper limit set temperature (
It is determined whether or not T win) is exceeded. If it is, T = T win is set in step 36.

ステップ37は温度検出器15から信号を取込み、現在
のダクト6内の温度(Ts)を測定するものである。こ
の処理が終了すると、次のステップ38に移行して各ダ
ンパ9がすべて全閉または運転限界を越える全閉に近い
状態かどうかを判定し、全閉でないならば、次のステッ
プ39で現在#4源機17が運転されているか否かが判
定され、運転さねていれば、次のステップ40へ進み、
停止していれば、熱源機17を運転させるステップ41
を経てステップ40へ進む。ステップ40でばTとTs
との値が比較され、T>Tsの関係ならば熱源機17の
能力(熱源機がビートポンプの場りば圧縮機の回転数)
がTとTsとの差に応じてアップされ(ステップ42)
、TくTsの関係ならば、ダウンされる(ステップ43
)。また、TがTsの不感帯内ならば、回転数の変更を
行なわず、次のステップ45へ進む。上記ステップ38
で各ダンパ9がすべて全閉と判定された場合は、熱源機
17を停止して(ステップ46)ステップ45へ進む。
Step 37 takes in a signal from the temperature detector 15 and measures the current temperature (Ts) inside the duct 6. When this process is completed, the process moves to the next step 38, where it is determined whether all dampers 9 are fully closed or close to fully closed, which exceeds the operating limit.If not, the process proceeds to the next step 39 where the current # It is determined whether or not the four-source machine 17 is being operated, and if it is not being operated, the process proceeds to the next step 40.
If stopped, step 41 of operating the heat source device 17
The process then proceeds to step 40. In step 40, T and Ts
The values are compared, and if the relationship T>Ts, the capacity of the heat source device 17 (if the heat source device is a beat pump, the rotation speed of the compressor)
is increased according to the difference between T and Ts (step 42).
, T x Ts, it is down (step 43).
). Further, if T is within the dead zone of Ts, the rotation speed is not changed and the process proceeds to the next step 45. Step 38 above
If it is determined that all the dampers 9 are fully closed, the heat source device 17 is stopped (step 46) and the process proceeds to step 45.

ステップ45ではインバータ等のコントローラーにより
熱源機17の回転数制御が行なわれる。以上の制御は一
定時間間隔で繰り返される。これら一連の制御により、
ある特定の一室あるいは複数室の室温が設定室温を大幅
に下回っている場合は設定温度の値は高目に設定され、
また、ダンパ9開度も熱負荷の大小に比例するため最大
熱負荷の部屋1のダンパ9はほぼ全開状態となる。その
結果、最大熱負荷の部屋へは高温で大風量の温風が供給
され、その室温を急速に高める。
In step 45, the rotation speed of the heat source device 17 is controlled by a controller such as an inverter. The above control is repeated at regular time intervals. With these series of controls,
If the room temperature in a particular room or multiple rooms is significantly lower than the set temperature, the set temperature will be set higher.
Further, since the opening degree of the damper 9 is also proportional to the magnitude of the heat load, the damper 9 in the room 1 with the maximum heat load is almost fully opened. As a result, high-temperature, large-volume hot air is supplied to the room with the maximum heat load, rapidly raising the room temperature.

一方、室温がほぼ満足されている部屋1のダンパ9は絞
ぼられ適切な風量の温風が供給されろ。また、各部屋1
の室温がすべて設定室温に近づき、最大熱負荷の値が小
さくなると、設定温度の値は下げられ送風温度は低下す
る。乙の温度の低下に伴い室温が低下すると、各ダンパ
9は開く方向に動作し、最終的に8よ低い設定温度でダ
ンパ9ば全開に近い状態で運転される。したがって少な
い圧力損失で送風機5が運転されろ事になり、送風機入
力は低減する。
On the other hand, the damper 9 in the room 1 where the room temperature is almost satisfied is throttled down to supply an appropriate amount of warm air. Also, each room 1
When all the room temperatures in the room become close to the set room temperature and the maximum heat load value becomes smaller, the set temperature value is lowered and the air blowing temperature is lowered. When the room temperature decreases as the temperature of the damper 9 decreases, each damper 9 operates in the opening direction, and finally, at a set temperature lower than 8, the damper 9 is operated in a nearly fully open state. Therefore, the blower 5 can be operated with less pressure loss, and the blower input is reduced.

なお、上記実施例で(よ設定温度(T)の値を最大熱負
荷、つまり (To  TR)の値がゼロの時からTm
1nに固定するようにしていたが、これは必ずしもゼロ
の時からでなくとも良い。
In the above example, the value of the set temperature (T) is the maximum heat load, that is, Tm from the time when the value of (To TR) is zero.
Although it was fixed at 1n, this does not necessarily have to be from zero.

また、上記実施例でば温度測定手段20を設定温度決定
手段21の次に位置させていたが、両手段を入れかえて
も同じことである。
Further, in the above embodiment, the temperature measuring means 20 is located next to the set temperature determining means 21, but the same effect can be obtained even if both means are replaced.

さらに、上記実施例では熱源機17をインバータにより
回転数制御することにより能力を制御していたが、これ
は他の制御手段によってもよい。
Further, in the above embodiment, the capacity is controlled by controlling the rotation speed of the heat source device 17 using an inverter, but this may be done by other control means.

また、上記実施例では最大熱負荷(各空調中の部屋の設
定室温−室温の値の最大値)の値に基づいて設定温度の
値を決定ずろようにしたが、最大熱負荷の求め方は毎制
御タイミングごとの計測、ある間隔をおいての計測、あ
る時間内の積算値あるいは平均値としての計測値として
求めろことができる。また最大熱負荷の定義を非空調室
を除く各部屋の室温の内の最小値と(冷房時は最大値)
し、この値に基づいて設定温度の値を決定するようにし
てもよい。
In addition, in the above embodiment, the set temperature value is determined based on the value of the maximum heat load (the set room temperature of each air-conditioned room - the maximum value of the room temperature value), but the method for determining the maximum heat load is It can be measured at every control timing, measured at certain intervals, or calculated as an integrated value or average value within a certain period of time. In addition, the maximum heat load is defined as the minimum value of the room temperature in each room excluding non-air conditioned rooms (maximum value when cooling).
However, the value of the set temperature may be determined based on this value.

〔発明の効果〕〔Effect of the invention〕

以上のように乙の発明によれば、ダクI・内の設定温度
を最大熱負荷の大小に応じて決定する手段を設け、この
決定に基づいて適切な送風湿度の風を各部屋へ与え得る
ように構成したので、熱負荷が大きい時でも室温を設定
値に正確に制御でき、熱負荷の小さい時は少ない搬送動
力で送風機を運転することができる。
As described above, according to the invention of Party B, there is provided a means for determining the set temperature inside the duct I according to the magnitude of the maximum heat load, and based on this determination, it is possible to supply air with appropriate ventilation humidity to each room. With this configuration, the room temperature can be accurately controlled to the set value even when the heat load is large, and the blower can be operated with less conveying power when the heat load is small.

【図面の簡単な説明】 第1図はこの発明による空気調和機の一実施例を示すシ
ステム構成図、第2図は第1図の制御動作を示すフロー
チャート、第3図は熱負荷と設定ン晶度の関係を示す説
明線図、第4図は従来における空気調和機の構成説明図
、第5図は従来の冷房負荷と風量の関係を示す説明線図
である。 1 部屋、5・送風機、6 ダクト、7 枝ダクト、9
・・・ダンパ、14 ・ルームサーモスタット、15・
温度検出器、17 熱源機、18−熱負荷測定手段、1
9・ダンパ制御手段、2o −設定温度決定手段、21
 ・温度測定手段、22 能力決定手段、23 ・能力
制御手段。 なお、図中同一符号は同一または相当部分を示す。 代理人 大 岩 増 雄(外2名) 第2図 第3図 設  1 第5図 −→冷房負荷 手続補正書(自発)
[Brief Description of the Drawings] Fig. 1 is a system configuration diagram showing an embodiment of the air conditioner according to the present invention, Fig. 2 is a flowchart showing the control operation of Fig. 1, and Fig. 3 shows heat load and setting temperature. FIG. 4 is an explanatory diagram showing the relationship between crystallinity, FIG. 4 is an explanatory diagram of the configuration of a conventional air conditioner, and FIG. 5 is an explanatory diagram showing the conventional relationship between cooling load and air volume. 1 Room, 5/Blower, 6 Duct, 7 Branch duct, 9
・・・Damper, 14 ・Room thermostat, 15・
Temperature detector, 17 Heat source device, 18-Heat load measuring means, 1
9. Damper control means, 2o - Set temperature determination means, 21
・Temperature measuring means, 22 Capacity determining means, 23 ・Capacity controlling means. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Masuo Oiwa (2 others) Figure 2 Figure 3 Installation 1 Figure 5 - → Cooling load procedure amendment (voluntary)

Claims (4)

【特許請求の範囲】[Claims] (1)冷風または冷温風を発生させる能力可変形の熱源
機と、この熱源機の冷温風を略一定圧力で各部屋へ分配
する送風機およびダクトと、このダクトの枝部分に配置
され風量調節用のダンパと、各部屋に設置されたルーム
サーモスタットを備えた空気調和機において、上記ルー
ムサーモスタットで設定された室温および検出された室
温の信号を入力としてその差より各部屋の熱負荷を測定
する熱負荷測定手段、この熱負荷測定手段の出力に基づ
き上記ダンパの開度を制御するダンパ制御手段、上記熱
負荷測定手段によって測定された各部屋の熱負荷の内の
最大の値に基づきダクト内の送風温度の設定値を決定す
る設定温度決定手段、この設定温度決定手段の出力とダ
クト内温度検出器からの検出信号を入力とする温度測定
手段、この温度測定手段の出力に基づき熱源機の能力を
決定する能力決定手段、この能力決定手段の出力に基づ
き熱源機を制御する能力制御手段を備えた空気調和機。
(1) A heat source device with variable capacity that generates cold air or hot and cold air, a blower and duct that distributes the hot and cold air from this heat source device to each room at approximately constant pressure, and a fan and duct placed on the branches of this duct for adjusting air volume. In an air conditioner equipped with a damper and a room thermostat installed in each room, the heat load in each room is measured from the difference between the input signals of the room temperature set by the room thermostat and the detected room temperature. a load measuring means, a damper control means for controlling the opening degree of the damper based on the output of the heat load measuring means, and a damper control means for controlling the opening degree of the damper based on the output of the heat load measuring means; A set temperature determining means for determining the set value of the air blowing temperature, a temperature measuring means that receives the output of the set temperature determining means and a detection signal from the duct temperature detector, and determining the capacity of the heat source equipment based on the output of the temperature measuring means. An air conditioner comprising a capacity determining means for determining the capacity determining means, and a capacity controlling means for controlling a heat source device based on the output of the capacity determining means.
(2)設定温度決定手段は、ダクト内の設定温度を最大
の熱負荷(設定室温と実際室温の温度差)がゼロ以下の
時は熱源機の運転が可能な設計上の限界温度(暖房時は
下限温度、冷房時は上限温度)に、最大の熱負荷が設定
値以上の時は設計上の限界温度(暖房時は上限温度、冷
房時は下限温度)に、最大の熱負荷がゼロから上記設定
値の間は、熱負荷に比例させた温度に値を決定するよう
になっていることを特徴とする特許請求の範囲第1項記
載の空気調和機。
(2) The set temperature determining means sets the set temperature in the duct to the design limit temperature at which the heat source equipment can operate (during heating) when the maximum heat load (temperature difference between set room temperature and actual room temperature) is zero or less. When the maximum heat load is higher than the set value, the maximum heat load reaches the design limit temperature (the upper limit temperature when heating and the lower limit temperature when cooling), and the maximum heat load changes from zero to 2. The air conditioner according to claim 1, wherein the temperature is determined in proportion to the heat load between the set values.
(3)能力制御手段は、設定温度決定手段によって決定
された設定温度と、温度検出器で検出された温度との差
に応じて熱源機の能力を増減するよう決定するようにな
っていることを特徴とする特許請求の範囲第1項記載の
空気調和機。
(3) The capacity control means is configured to increase or decrease the capacity of the heat source device according to the difference between the set temperature determined by the set temperature determining means and the temperature detected by the temperature detector. An air conditioner according to claim 1, characterized in that:
(4)能力制御手段は、熱源機がヒートポンプの場合そ
の圧縮機の回転数を調節するようになっていることを特
徴とする特許請求の範囲第1項または第3項記載の空気
調和機。
(4) The air conditioner according to claim 1 or 3, wherein the capacity control means is adapted to adjust the rotation speed of a compressor when the heat source device is a heat pump.
JP60201001A 1985-08-22 1985-09-11 Air conditioner Pending JPS6266042A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP60201001A JPS6266042A (en) 1985-09-11 1985-09-11 Air conditioner
KR1019860004443A KR900006505B1 (en) 1985-08-22 1986-06-04 Air-conditioner
AU61149/86A AU582664B2 (en) 1985-08-22 1986-08-14 Air-conditioning apparatus
CA000516546A CA1272024A (en) 1985-08-22 1986-08-21 Air conditioning apparatus
US06/899,327 US4754919A (en) 1985-08-22 1986-08-22 Air conditioning apparatus
US07/154,233 US4821526A (en) 1985-08-22 1988-02-10 Air conditioning apparatus
CA000597922A CA1273491A (en) 1985-08-22 1989-04-26 Air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60201001A JPS6266042A (en) 1985-09-11 1985-09-11 Air conditioner

Publications (1)

Publication Number Publication Date
JPS6266042A true JPS6266042A (en) 1987-03-25

Family

ID=16433854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60201001A Pending JPS6266042A (en) 1985-08-22 1985-09-11 Air conditioner

Country Status (1)

Country Link
JP (1) JPS6266042A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259350A (en) * 1989-03-30 1990-10-22 Toshiba Corp Duct type air conditioner and control method thereof
JPH0423950U (en) * 1990-06-18 1992-02-26
JPH0587382A (en) * 1991-09-30 1993-04-06 Kubota Corp Atmospheric air introduction type air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259350A (en) * 1989-03-30 1990-10-22 Toshiba Corp Duct type air conditioner and control method thereof
JPH0423950U (en) * 1990-06-18 1992-02-26
JPH0587382A (en) * 1991-09-30 1993-04-06 Kubota Corp Atmospheric air introduction type air conditioner

Similar Documents

Publication Publication Date Title
KR900006505B1 (en) Air-conditioner
KR900001875B1 (en) Air-conditioner
JPS62225842A (en) Air conditioner
JPS6266042A (en) Air conditioner
JPH0517462B2 (en)
JPS6284250A (en) Air conditioner
JPS6284245A (en) Air conditioner
JPH02290454A (en) Air conditioner
JPS6284244A (en) Air conditioner
JP2755003B2 (en) Duct air conditioner
JP3103583B2 (en) Air conditioner
JPH0480297B2 (en)
JP2536234B2 (en) Air conditioner
JPS6266041A (en) Air conditioner
JPH0480296B2 (en)
JPS6284254A (en) Air conditioner
JPS61243247A (en) Air-conditioning machine
JPH06103115B2 (en) Air conditioner
JPS6246156A (en) Air-conditioning machine
JP2578885B2 (en) Air conditioner
JPH0522824B2 (en)
JPS6237632A (en) Air-conditioning machine
JPH03186137A (en) Duct type air conditioner
JPH0563693B2 (en)
KR920006073B1 (en) Air conditioner