JPS6265735A - Reaction vessel - Google Patents

Reaction vessel

Info

Publication number
JPS6265735A
JPS6265735A JP20433985A JP20433985A JPS6265735A JP S6265735 A JPS6265735 A JP S6265735A JP 20433985 A JP20433985 A JP 20433985A JP 20433985 A JP20433985 A JP 20433985A JP S6265735 A JPS6265735 A JP S6265735A
Authority
JP
Japan
Prior art keywords
liquid
catalyst bed
mixer
gas
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20433985A
Other languages
Japanese (ja)
Inventor
Toshikazu Shinkawa
新川 利和
Masahito Kaneko
雅人 金子
Kichiyoshi Arahata
新畠 吉良
Masayuki Moriwaki
正之 森脇
Michinaru Masumi
升見 通考
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryomei Engineering Co Ltd
Mitsubishi Heavy Industries Ltd
Original Assignee
Ryomei Engineering Co Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryomei Engineering Co Ltd, Mitsubishi Heavy Industries Ltd filed Critical Ryomei Engineering Co Ltd
Priority to JP20433985A priority Critical patent/JPS6265735A/en
Publication of JPS6265735A publication Critical patent/JPS6265735A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0492Feeding reactive fluids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

PURPOSE:To prevent the decrease of a yield by excessive reaction by providing a liquid mixer and liquid separator between a catalyst bed and catalyst bed so that the liquid passing the catalyst bed is mixed then the liquid is uniformly dispersed and admitted together with gas to the succeeding catalyst bed. CONSTITUTION:The liquid flowing out of a bottom surface of the catalyst bed 1 supported on a grating 10 flows down atop the liquid mixer 2 having a circular conical shape. The liquid arriving at the top of the mixer 2 flows downward on the circular conical slope and flows down from a central liquid downflow port 3. All the liquid past the bed 1 is stirred and mixed in this stage so that the liquid temp. and liquid compsn. are made uniform. The gas flowing out of the bottom surface of the catalyst bed flows down from plural pieces of gas downflow nozzles 5 provided to the slope of the mixer 2 and part thereof flows down together with the liquid from the central liquid downflow port 3 of the mixer 2. The uniformly mixed liquid is poured to the catalyst bed 7 of the succeeding stage.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は例えば水素化脱硫反応、@値化反応のように、
多段固定触媒床に液体とガスを流動させて発熱反応を行
なわせる反応器に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention is applicable to, for example, hydrodesulfurization reaction, @valorization reaction, etc.
It relates to a reactor that causes exothermic reactions to occur by flowing liquid and gas through multiple fixed catalyst beds.

(従来の技術) 従来の石油の水素化分解反応器を第6図に示す。この反
応器は触媒床を5段に分離した例であり、触媒床1はグ
レーティング1oにより支持されている。石油及び水素
ガスは上端の入口11よジ導入され、入口直下の衝突板
式液分散器12及びトレイ式液分散器6により前記液体
を分散流下させて1段目の触媒床1に至る。この水素化
分解反応は発熱反応のために、触媒床1を流下した流体
にクエ、ンチガス8を送入して@変調節をした後再度ト
レイ式液分散器6により液体を径方向に分散させて2段
目の触媒床7に導入する。同様の接触反応を繰返した後
に、最終段の触媒床から流下した反応生成物は反応器底
部のセラミックボール層15t−経て出口14より回収
される。
(Prior Art) A conventional petroleum hydrocracking reactor is shown in FIG. This reactor is an example in which the catalyst bed is separated into five stages, and the catalyst bed 1 is supported by a grating 1o. Petroleum and hydrogen gas are introduced through an inlet 11 at the upper end, and the liquids are dispersed and flowed down by a collision plate type liquid disperser 12 and a tray type liquid disperser 6 immediately below the inlet, and reach the first stage catalyst bed 1. Since this hydrocracking reaction is an exothermic reaction, a nitrogen gas 8 is introduced into the fluid flowing down the catalyst bed 1 for variable adjustment, and then the liquid is dispersed in the radial direction again by the tray-type liquid disperser 6. and introduced into the second stage catalyst bed 7. After repeating the same catalytic reaction, the reaction product flowing down from the final stage catalyst bed is recovered from the outlet 14 via the ceramic ball layer 15t at the bottom of the reactor.

各段の触媒床1の上方に設けるトレイ式液分散器6につ
いて第7図(a)〜(θンにより説明する。
The tray-type liquid disperser 6 provided above the catalyst bed 1 in each stage will be explained using FIGS. 7(a) to (θ).

第7図(a)は仕切板上に流下ノズルを突設したもので
、液体は流下ノズルをオーバーフローして流下するとと
もにノズル中央音ガスが流下する。
FIG. 7(a) shows a structure in which a downstream nozzle is provided on a partition plate, and the liquid overflows the downstream nozzle and flows down, and the sound gas at the center of the nozzle also flows down.

この液分散器においては流下ノズルの高さより若干高い
[6を保持し、各流下ノズルから均一に数体を分散流下
させることができる。しかし、仕切板上に保持された液
体の混合機能を格別有していないので、液温及び液組成
全均一にすることはで@ない。第7図(b)〜(e)は
第7図(a)の変形であり、液体が仕切板上に一担保持
されずに直接流下ノズルに入ることを防ぐために流下ノ
ズルにカバーを設けた例が(b) (C) (d)であ
り、液の流下専用の孔を設けた例は(b) (aJ−c
ある。これらの例においても液混合機能を有しない点で
は第7図<a)と同じでるる。
In this liquid disperser, the height [6] is maintained slightly higher than the height of the downstream nozzle, and it is possible to uniformly disperse and flow down several bodies from each downstream nozzle. However, since it does not have a special mixing function for the liquid held on the partition plate, it is not possible to make the liquid temperature and liquid composition completely uniform. Figures 7(b) to (e) are variations of Figure 7(a), in which a cover is provided on the downstream nozzle to prevent the liquid from directly entering the downstream nozzle without being held on the partition plate. Examples are (b) (C) (d), and an example where a hole is provided exclusively for the flow of liquid is (b) (aJ-c
be. These examples are also the same as FIG. 7<a) in that they do not have a liquid mixing function.

このような発熱反応を伴なう反応器においては、特に触
媒床に均一に触媒全充填することが重要になるが、現実
には触媒床の径方向、高さ方向に触媒充填密度の偏ジが
生ずることは避けられない。この充填密度の偏りは触媒
床全流下するか1体の空間速度の不均一化を招来する。
In reactors that involve such exothermic reactions, it is particularly important to uniformly and fully pack the catalyst in the catalyst bed, but in reality the catalyst packing density is uneven in the radial and height directions of the catalyst bed. It is inevitable that this will occur. This imbalance in packing density causes the entire catalyst bed to flow down or the space velocity of one catalyst to become non-uniform.

なお、現実の装置においては他の原因例えば液分散器の
機能が不充分であることなどによっても流体の空間速度
が不均一になることがある。この空間速度の不均一の桿
度が犬きくなると、反応流体と触媒との接触時間に大き
な差が生じ、特に、空間速度の小さい領域では接触時間
が犬となジ、反応熱が蓄積して温度が上昇するとともに
反応速度も加速されてこの領域の温度は急激に上昇する
。でた、石油の分解軽質化反応においては、このような
温度上昇にともなって反応が加速され、メタンが発生し
、その結果、水素分圧が低下するたりに、触媒粒子間に
炭素が析出する、いわゆるニーキングを生ずる。炭素の
析出は、通過抵抗を増大し、空間速度を更に小さくして
温度上昇を加速する。そして、暴走反応に至る。
Note that in actual devices, the space velocity of the fluid may become non-uniform due to other causes, such as an insufficient function of the liquid disperser. When the degree of non-uniformity of the space velocity becomes too large, a large difference occurs in the contact time between the reaction fluid and the catalyst. Particularly in the region of low space velocity, the contact time becomes small and reaction heat accumulates. As the temperature rises, the reaction rate also accelerates and the temperature in this region rises rapidly. In the petroleum cracking and lightening reaction, the reaction accelerates as the temperature rises, producing methane.As a result, hydrogen partial pressure decreases and carbon precipitates between catalyst particles. , causing so-called kneeing. Carbon precipitation increases the passage resistance, further reducing the space velocity and accelerating temperature rise. This leads to a runaway reaction.

この間の状況を第8図にみると、1段目の触媒床に対し
て液分散話力・らの液体は均一に分散して液量、液温共
均−な状態で流下するが、触媒床中に触媒充填密度が太
きいなどの原因で空間速度が小さい領域(右側」の黒い
部分)が生ずると、該触媒床から流下する液体は該領域
の下方において液量が減少し液温が上昇する。クエンチ
ガスは触媒床間Vこ均一に分散注入され一定の冷却効果
全奏するが、液温を積極的に均一ンこする効果はない。
If we look at the situation during this period in Figure 8, we can see that the liquid dispersion force and the like are uniformly dispersed and flow down to the first stage catalyst bed with a uniform amount and temperature, but the catalyst When a region (black area on the right side) where the space velocity is low occurs in the bed due to a high catalyst packing density, etc., the liquid flowing down from the catalyst bed decreases in volume below the region and the liquid temperature increases. Rise. The quench gas is uniformly distributed and injected between the catalyst beds and has a certain cooling effect, but it does not have the effect of actively uniformizing the liquid temperature.

そして、クエンチガスにより冷却された液体は再ひ液分
散器で分散されて次段の触媒床に流入されるが、この液
分散器にニジ液量は触媒床に均一に分散されるが、液温
は充分に均−Vこすることができず、触媒床の中に液温
高領域を形式する。そしてこの領域における反応器1変
を加速して温度を上昇させる。その間に触媒粒子間にコ
ーキングを生ずることもあり、順次暴走反応に至ること
になる。このような温度異常上昇、即ち暴走反応は1段
目の触媒床に生ずることは少なく、2〜4段目に生ずる
ことが多い。
Then, the liquid cooled by the quench gas is dispersed in a refill disperser and flows into the next catalyst bed. The temperature cannot be sufficiently evenly distributed, creating regions of high liquid temperature in the catalyst bed. Then, the temperature of the reactor in this region is increased by accelerating the reaction. During this time, coking may occur between the catalyst particles, leading to a runaway reaction. Such an abnormal temperature rise, ie, a runaway reaction, rarely occurs in the first stage catalyst bed, but often occurs in the second to fourth stages.

(発明が解決し、ようとする問題点ン 本発明は複数段の粒状(5)形触媒床上で発熱反応をさ
せる反IS器において、上記のような暴走反応全防止す
るために、触媒床を流下する液体の温度及び液組成を均
一にする手段を触媒床と触媒床との間に設けた反応器を
提供しようとするものである。
(Problems to be solved and attempted by the invention) The present invention is an anti-IS reactor in which an exothermic reaction is carried out on a multi-stage granular (5) type catalyst bed, in order to completely prevent the runaway reaction as described above. It is an object of the present invention to provide a reactor in which a means for uniformizing the temperature and liquid composition of the flowing liquid is provided between the catalyst beds.

(問題点全解決するための手段ン 本発明は粒状固形触媒を複数段の触媒床に分離して配置
し、液体及び気体の原料を触媒床に流して発熱反応を生
じさせる反応器において、触媒床と触媒床との間に液混
合器及び液分散器を設けることにより前段触媒床を通過
した液を混合して液体の温度と組成を均一にした後、次
段触媒床に該液体をガスとともに均一分散流入させるこ
とを特徴とする反応器である。
(Means for Solving All Problems) The present invention is a reactor in which a granular solid catalyst is arranged separately in a plurality of catalyst beds, and liquid and gaseous raw materials are caused to flow through the catalyst bed to cause an exothermic reaction. By providing a liquid mixer and a liquid disperser between the catalyst bed and the catalyst bed, the liquid that has passed through the previous catalyst bed is mixed to make the temperature and composition of the liquid uniform, and then the liquid is transferred to the next catalyst bed as a gas. This is a reactor characterized by uniformly dispersed inflow.

触媒床間に配置する液混合器は触媒床全光下した液体を
混合して液温及びg組成を均一にすることのできるもの
であればよいが、好ましい例をあげれば、第1図〜第3
図のような触媒床流下yt−担集めた後に再分配する形
式のものがよい。
The liquid mixer placed between the catalyst beds may be of any type as long as it can mix the liquid that has been exposed to the entire catalyst bed to make the liquid temperature and g composition uniform. Third
It is preferable to use a type in which the yt-carrying material is collected under the catalyst bed and then redistributed as shown in the figure.

なお、本発明に係る反応器は石油等の水素化分解反応に
用いることができるが、そのときの液体原料は反16器
の触媒床を通過する際に液状を呈する炭化水素を意味し
、工業的には灯油、4!1:油、重油と称されるvIJ
賀、あるいはこれと同等の物質を意味する。また、ガス
とは水素を主成分とし、その他にメタン、エタンなどの
軽質炭化水素ガス、硫化水床、アンモニア、水、塩化水
素などの不可辻的な共存物を含み、反応器の触媒床を通
過する際に気体状を呈するものを意味する、 触媒は球状もしくは短円柱状のシリカ・アルミナ担体の
表面にニッケル、コバルト、モリブデン、タングステン
を担持させたものが広く用いられているが必ずしもこれ
に拘束されない。
Note that the reactor according to the present invention can be used for hydrocracking reactions of petroleum, etc., but the liquid raw material at that time refers to hydrocarbons that become liquid when passing through the catalyst bed of the kerosene, 4!1: oil, vIJ called heavy oil
It means ka, or a substance equivalent to this. In addition, gas is mainly composed of hydrogen, and also contains inextricable coexisting substances such as light hydrocarbon gases such as methane and ethane, a sulfurized aqueous bed, ammonia, water, and hydrogen chloride, and is used as a catalyst bed in a reactor. Catalysts are substances that exhibit a gaseous state when they pass through the air. Catalysts are widely used in which nickel, cobalt, molybdenum, or tungsten is supported on the surface of a spherical or short cylindrical silica/alumina carrier. Not restricted.

(実施例] 第1図は本発明の1実施例である反応器の断面図を示し
たものであって、グレーティング10Vこ支持された触
媒床1の下面から流出した液は円錐形の液混合器2の上
面に流下する。この液混合器2全面に達した液は円錐の
傾斜面を下方へ流下し中央の液流下口3より下方へ流下
するが、この液流下孔3を液が通過する際に触媒床1を
通過したフーベての液が攪拌混合され、これに上り液温
と液組成が均一化される。また、触媒床1下面から流出
したガスは円錐形液混合器2の傾斜面に設けた複数個の
ガス流下ノズル5より流下するが、その一部は円錐形液
混合器2の中央の液流下口3より液とと%に流下する。
(Example) Figure 1 shows a cross-sectional view of a reactor that is an example of the present invention, in which the liquid flowing out from the bottom surface of the catalyst bed 1 supported by a grating 10V forms a conical liquid mixture. The liquid flows down to the upper surface of the liquid mixer 2.The liquid that has reached the entire surface of the liquid mixer 2 flows down the inclined surface of the cone and flows downward from the liquid flow hole 3 in the center, but the liquid passes through this liquid flow hole 3. During this process, the liquid that has passed through the catalyst bed 1 is stirred and mixed, and the liquid temperature and liquid composition are made uniform.In addition, the gas flowing out from the bottom surface of the catalyst bed 1 is passed through the conical liquid mixer 2. The gas flows down from the plurality of gas flow down nozzles 5 provided on the inclined surface, and a portion of the gas flows down from the liquid flow down port 3 in the center of the conical liquid mixer 2.

このように温度、組成を均一化させられたaは多孔板液
分散器4及びトレイ式液分散器6により径方向、周方向
に均一分散されて次段の触媒床7に注入させられる。ト
レイ式液分散器6へ流下する液量の径方向の分布をほぼ
均一にするために、会費に応じて多孔板の孔径を径方向
に変化させることもできる。一方、ガスも液分散器のガ
ス流下ノズルを介して流下するが、2つの液分散器の間
に設けたクエンチガス分散器8よりクエンチガスを加え
ることもできる。
A, whose temperature and composition have been made uniform in this way, is uniformly dispersed in the radial and circumferential directions by the perforated plate liquid distributor 4 and the tray type liquid distributor 6, and is injected into the next stage catalyst bed 7. In order to make the radial distribution of the amount of liquid flowing down to the tray-type liquid distributor 6 substantially uniform, the hole diameter of the perforated plate can be changed in the radial direction depending on the membership fee. On the other hand, gas also flows down through the gas flow down nozzle of the liquid disperser, but quench gas can also be added from the quench gas disperser 8 provided between the two liquid dispersers.

このようにして反応流体の温度及びm成を均一化するこ
とにより、異常反応を回避することができた。
By making the temperature and composition of the reaction fluid uniform in this way, abnormal reactions could be avoided.

第2図は第1図の反応器の変形であって、円錐形液混合
器2の中央液流下口3に気液共存化で流れに旋回流を付
与するミキサー9を設けたものである。このミキサー9
から流下した液とガスは直下の多孔板液分散器4に衝突
し流下エネルギーの方向金径、周方向に変換し、該液分
散器4の開口から流下して、さらにトレイ式分散器6を
経て次段の触媒床7に均一に流下される。
FIG. 2 is a modification of the reactor shown in FIG. 1, in which a mixer 9 is provided at the central lower port 3 of the liquid flow of the conical liquid mixer 2 to impart a swirling flow to the flow by coexistence of gas and liquid. This mixer 9
The liquid and gas flowing down collide with the perforated plate liquid distributor 4 directly below, converting the direction of the flowing energy into the radial and circumferential directions, flowing down from the opening of the liquid distributor 4, and further passing through the tray type distributor 6. Then, it is uniformly flowed down to the next stage catalyst bed 7.

第3図は第2図の変形であり、クエンチガス分散器8を
円錐形液混合器2の上方に設けて、該液混合器2のミキ
サ−9全通過する際にクエンチガスを加えた状態で気液
混合が促進され、液の冷却降温効果が促進される。
FIG. 3 is a modification of FIG. 2, in which a quench gas distributor 8 is provided above the conical liquid mixer 2, and quench gas is added when the liquid mixer 2 passes through the mixer 9. This promotes gas-liquid mixing and promotes the cooling effect of the liquid.

なお、第1図〜第5図に示した液混合器は円錐形を例と
して示したが、これに限定されるものでになく、半球形
、角錐形でも同様な効果が得られる。
Although the liquid mixer shown in FIGS. 1 to 5 is shown as an example of a conical shape, the present invention is not limited to this, and the same effect can be obtained with a hemispherical or pyramidal shape.

第4図は液混合器の拡大図である。液流下ノズルは円錐
中央に設け、上方触媒床から流下する液体を全て集めて
1つの流下ノズルを通過する間及び該ノズル下方の多孔
板に衝突して液体の均一混合がなされる。ガスは前記円
錐面に詭けた複数個のガス流下ノズルから流下する。
FIG. 4 is an enlarged view of the liquid mixer. A liquid flow down nozzle is provided in the center of the cone, and all the liquid flowing down from the upper catalyst bed is collected and uniformly mixed while passing through one flow down nozzle and colliding with a perforated plate below the nozzle. Gas flows down from a plurality of gas flow down nozzles arranged around the conical surface.

第5図は液混合器の下方Vこ設ける多孔板液分散器の拡
大図である。
FIG. 5 is an enlarged view of the perforated plate liquid distributor provided below the liquid mixer.

円錐混合器の中央から流下する液は多孔板上面で凸形の
液面を構成する。一方、この多孔板から下方のトレイ式
液分散器へ流下する液量分布(径方向の)ははソ均一で
あることが好ましいので多孔板の孔径は径方向に変化さ
せることも有効である。多孔板液分散器の下方に位置す
るトレイ式の液分散器で光分に液体の分散が行なわれる
ときには、前記孔径の変化を必要としないことは自然の
ことである。また、多孔板上には、液体が保持されると
ころから、ガス流下用のノズルを別個に複数設ける必要
がある。また、該混合器中央の流下孔の形状、構造は前
述のものに拘束されず、前段触媒床から流出するgを混
合して液温及び液組成全均一にするものであればよい。
The liquid flowing down from the center of the conical mixer forms a convex liquid surface on the upper surface of the perforated plate. On the other hand, since it is preferable that the distribution (in the radial direction) of the liquid flowing down from the perforated plate to the tray-type liquid distributor below is uniform, it is also effective to vary the pore diameter of the perforated plate in the radial direction. When the liquid is dispersed into light by a tray-type liquid disperser located below the perforated plate liquid disperser, it is natural that the pore diameter does not need to be changed. Furthermore, since the liquid is held on the porous plate, it is necessary to separately provide a plurality of nozzles for flowing down the gas. Further, the shape and structure of the flow hole in the center of the mixer are not limited to those described above, and may be any one that mixes the g flowing out from the front catalyst bed to make the liquid temperature and liquid composition uniform.

このように本発明は液状炭化水素を多段固定触媒床で水
素化分解反応(発熱反応)を行なうのに適したものであ
って、暴走反応による運転停止と触媒損傷を回避すると
共に過剰反応による収率低下全防止した反応器であって
、M何泊の水素化分解装置に適用して大きい効果が得ら
れるものである。
As described above, the present invention is suitable for carrying out a hydrocracking reaction (exothermic reaction) of liquid hydrocarbons using a multi-stage fixed catalyst bed, and is capable of avoiding operation stoppage and catalyst damage caused by runaway reactions, as well as reducing recovery caused by excessive reactions. This is a reactor that completely prevents rate reduction, and can be applied to a hydrocracking unit with several M days to obtain great effects.

なお、本発明は石油類の水素化分解反応以外の用途VC
適用することも可能であって、多段固定触媒床に液とガ
ス全流動せしめて発熱反応を生ぜしめる反応器であれば
、前に述べたと同様な効果がめる。
Note that the present invention is applicable to VC for purposes other than hydrocracking reactions of petroleum.
It is also possible to apply this method to a reactor in which all liquid and gas flow through a multi-stage fixed catalyst bed to generate an exothermic reaction, and the same effect as described above can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図へ第3図は、本発明の実施例である反応器の断面
図、第4図は反応器の一部を成す混合器の拡大図、第5
図は同じく多孔板分散器の拡大図である。第6図は従来
の反応器の断面図、第7図(a)〜(句はトレイ式液分
散器の各種トレイの拡大図、第8図μ従来の反応器で暴
走反応か生ずる過8を説明するための図である。 第1図 第4図
Figure 1 to Figure 3 is a sectional view of a reactor that is an embodiment of the present invention, Figure 4 is an enlarged view of a mixer forming a part of the reactor, and Figure 5
The figure is also an enlarged view of the perforated plate disperser. Figure 6 is a cross-sectional view of a conventional reactor, Figures 7 (a) to (phrases are enlarged views of various trays of a tray-type liquid disperser, and Figure 8 μ shows the problems that occur in runaway reactions in conventional reactors). These are diagrams for explanation. Fig. 1 Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 粒状固形触媒を複数段の触媒床に分離して配置し、液体
及び気体の原料を触媒床に流して発熱反応を生じさせる
反応器において、触媒床と触媒床との間に液混合器及び
液分散器を設けることにより前段触媒床を通過した液を
混合して液体の温度と組成を均一にした後、次段触媒床
に該液体をガスとともに均一分散流入させることを特徴
とする反応器。
In a reactor in which a granular solid catalyst is arranged separately in multiple stages of catalyst beds, and liquid and gaseous raw materials are caused to flow through the catalyst beds to cause an exothermic reaction, a liquid mixer and a liquid mixer are installed between the catalyst beds. A reactor characterized in that a disperser is provided to mix the liquid that has passed through the first stage catalyst bed to make the temperature and composition of the liquid uniform, and then to uniformly disperse and flow the liquid together with gas into the next stage catalyst bed.
JP20433985A 1985-09-18 1985-09-18 Reaction vessel Pending JPS6265735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20433985A JPS6265735A (en) 1985-09-18 1985-09-18 Reaction vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20433985A JPS6265735A (en) 1985-09-18 1985-09-18 Reaction vessel

Publications (1)

Publication Number Publication Date
JPS6265735A true JPS6265735A (en) 1987-03-25

Family

ID=16488862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20433985A Pending JPS6265735A (en) 1985-09-18 1985-09-18 Reaction vessel

Country Status (1)

Country Link
JP (1) JPS6265735A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100349647C (en) * 2004-10-29 2007-11-21 中国石油化工股份有限公司 Multi-segment insulation fix bed reactor
JP2011507677A (en) * 2007-12-17 2011-03-10 イエフペ Predistribution filter plate with overflow tube for fixed bed reactors operating in gas-liquid parallel downflow mode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100349647C (en) * 2004-10-29 2007-11-21 中国石油化工股份有限公司 Multi-segment insulation fix bed reactor
JP2011507677A (en) * 2007-12-17 2011-03-10 イエフペ Predistribution filter plate with overflow tube for fixed bed reactors operating in gas-liquid parallel downflow mode

Similar Documents

Publication Publication Date Title
US3502445A (en) Apparatus for mixing fluids in concurrent downflow relationship
US5462719A (en) Method and apparatus for mixing and distributing fluids in a reactor
JP4274794B2 (en) Multiple bed downflow reactor
US3785779A (en) Gas liquid inlet distributor
US3723072A (en) Fluid contacting apparatus
US4571326A (en) Process and device for hydroconversion of hydrocarbons
AU631658B2 (en) Two direction inlet fluid distributor for downflow vessel containing bed of solid particles
US3598541A (en) Fluid contacting apparatus for fluid-solid contacting chambers
US6180068B1 (en) Interbed gas-liquid mixing system for cocurrent downflow reactors
EP0241966B1 (en) Apparatus for contacting particulate solids with a fluid
EP2767333A1 (en) Mixing device with tangential inlets for two-phase concurrent vessels
JP2004237283A (en) Improved multiphase mixing device with staged gas introduction
US3498755A (en) Means for effecting a multiple stage contact of a reactant stream
US4702891A (en) Fluid flow distribution system for fluidized bed reactor
JP2000506924A (en) Gas pocket distributor and method for hydrotreating a hydrocarbon feed stream
US20040134836A1 (en) Mixing device for two-phase concurrent vessels
US3652451A (en) Fluid distribution for fluid-solids contacting chambers
US5098690A (en) Method for distributing fluids in a downflow reactor
US5534233A (en) Liquid flow control device, reactor using same and liquid flow control method
US4673552A (en) Downwardly directed fluid flow distribution system for ebullated bed reactor
KR102532376B1 (en) A novel device for dispensing a multiphase mixture in a chamber containing a fluidizing medium
US5904907A (en) Mixing system for mixing and distributing fluids in a reactor
JPS6265735A (en) Reaction vessel
US3723300A (en) Fluid contacting method for fluidsolid contacting
US2449601A (en) Apparatus for contacting solids and gasteous fluids