JPS6265731A - Vacuum vessel for composite material - Google Patents

Vacuum vessel for composite material

Info

Publication number
JPS6265731A
JPS6265731A JP20419585A JP20419585A JPS6265731A JP S6265731 A JPS6265731 A JP S6265731A JP 20419585 A JP20419585 A JP 20419585A JP 20419585 A JP20419585 A JP 20419585A JP S6265731 A JPS6265731 A JP S6265731A
Authority
JP
Japan
Prior art keywords
vacuum
vacuum container
vessel
aluminum alloy
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20419585A
Other languages
Japanese (ja)
Inventor
Hajime Ishimaru
石丸 肇
Fumihiko Takasaki
高崎 史彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOUENERUGII BUTSURIGAKU KENKYUSHO
Original Assignee
KOUENERUGII BUTSURIGAKU KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOUENERUGII BUTSURIGAKU KENKYUSHO filed Critical KOUENERUGII BUTSURIGAKU KENKYUSHO
Priority to JP20419585A priority Critical patent/JPS6265731A/en
Publication of JPS6265731A publication Critical patent/JPS6265731A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/006Processes utilising sub-atmospheric pressure; Apparatus therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pressure Vessels And Lids Thereof (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To enhance the permeability of high-energy particles and to maintain an ultrahigh vacuum by sticking an inorg. fibrous cloth impregnated with a synthetic resin on the outer periphery of a thin-walled metallic airtight vessel constituting the titled vacuum vessel of a composite material and reinforcing the vessel. CONSTITUTION:An aluminum alloy thick-walled part 2 having about 5mm thickness is provided on both ends of the aluminum alloy thin-walled pipe 1 and an aluminum alloy flange 3 having about 253mm outer diameter is further mounted thereon to form the vacuum vessel of a composite material. The vacuum vessel is resistant to an ultrahigh vacuum of 10<-10>Torr on the inside and is also resistant to the heating at 120 deg.C. Consequently, the ultrahigh vacuum can be maintained. The composite material of an aluminum alloy and a carbon fiber epoxy-impregnated cloth 1b having a high Young's modulus is used as the vessel wall-forming material to form the vacuum vessel.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高エネルギー粒子検出などに用いる高真空も
しくは超高真空の真空容器に関し、特に、構成材料を複
合にして補強し、用途に適合させたものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a high vacuum or ultra-high vacuum vacuum container used for high-energy particle detection, etc., and in particular, to a container reinforced with a composite of constituent materials to suit the application. This is what I did.

(従来の技術) 一般に、高真空もしくは超高真空における高エネルギー
粒子検出用や極低温の液化ガス保存用の真空容器として
は、容器の肉厚をできるだけ薄くし、軽量化することが
要求される。
(Prior art) In general, vacuum containers for detecting high-energy particles in high vacuum or ultra-high vacuum or for storing liquefied gas at extremely low temperatures are required to have the wall thickness of the container as thin as possible and to be lightweight. .

しかして、薄肉の真空容器を要求された場合に、従来は
、ステンレス鋼もしくはチタンを用いてコルゲート管を
構成し、管壁を構成する金属材料の強度によって薄肉真
空容器の外圧による潰れを抑えるようにし、あるいは、
真空容器の内部に棒やワイヤによって補強を施していた
。また、高エネルギー粒子検出用の薄肉真空容器には粒
子透過の良好な金属べIJ IJウムを器壁構成材料と
していた。
Therefore, when a thin-walled vacuum container is required, conventionally, a corrugated tube is constructed using stainless steel or titanium, and the strength of the metal material that makes up the tube wall is used to prevent the thin-walled vacuum container from collapsing due to external pressure. or,
The inside of the vacuum vessel was reinforced with rods and wire. In addition, the thin-walled vacuum vessel for detecting high-energy particles was made of metal aluminum, which has good particle permeability, as the vessel wall material.

(発明が解決しようとする問題点) しかしながら、管壁を構成する金属材料の強度や内部補
強によって外圧に耐えるようにした従来の薄肉真空容器
では、内部で発生した粒子の透過能が充分でなく、さら
に、超高真空を得るために高温加熱による脱ガス処理を
必要とし、ステンレス鋼で300°C1アルミニウム合
金で100℃の加熱処理を要するので、熱に弱い粒子検
出用の真空容器としては問題があった。また、特に粒子
検出用として金属べIJ IJウムを用いた真空容器で
は、金属ぺIJ IJウム材が高価であるのみならず、
脆性破壊が生じ易く、毒性を有するなどの問題があった
(Problem to be solved by the invention) However, in conventional thin-walled vacuum containers that are made to withstand external pressure through the strength of the metal materials that make up the tube wall and internal reinforcement, the permeability of particles generated inside is insufficient. Furthermore, in order to obtain an ultra-high vacuum, degassing treatment by high-temperature heating is required, and stainless steel requires heat treatment of 300°C and aluminum alloy requires heat treatment of 100°C, which is problematic as a vacuum container for detecting heat-sensitive particles. was there. In addition, especially in vacuum containers using metal aluminum for particle detection, the metal aluminum material is not only expensive, but also
There were problems such as easy brittle fracture and toxicity.

(問題点を解決するための手段) 本発明の目的は、上述した従来の問題を除去し、高エネ
ルギー衝突実験用粒子検出器の真空ビームダクトを構成
する真空容器の器壁を充分に薄肉化して粒子透過性を向
上させるとともに、軽量の真空容器によって超高真空を
保持し得るようにすること属ある。
(Means for Solving the Problems) An object of the present invention is to eliminate the above-mentioned conventional problems and to sufficiently reduce the thickness of the wall of the vacuum container constituting the vacuum beam duct of a particle detector for high-energy collision experiments. In addition to improving particle permeability, it is also possible to maintain an ultra-high vacuum using a lightweight vacuum container.

すなわち、本発明の真空容器は、薄肉金属気密容器の外
周に合成樹脂含浸無機材繊維布を接着して補強したこと
を特徴とする複合材真空容器である。
That is, the vacuum container of the present invention is a composite vacuum container characterized in that the outer periphery of a thin metal airtight container is reinforced by adhering an inorganic fiber cloth impregnated with a synthetic resin.

(作用) したがって、本発明複合材真空容器においては、。(effect) Therefore, in the composite vacuum container of the present invention.

器壁な構成する金属材を、合成樹脂含浸無機材繊維布で
補強するので充分に薄肉化することができ、一般に交流
電磁界中の金属性真空容器に生ずる渦電流による発熱や
磁場の乱れを充分に回避することができ、しかも、外圧
による潰れを充分に抑えることができる。さらに、金属
材と複合する無機材繊維布が軽量であるため、真空容器
全体を軽量化することができ、例えば、分析試料などを
真空状態に保持したまま移動させる等の便宜が得られる
The metal material that makes up the container wall is reinforced with synthetic resin-impregnated inorganic fiber cloth, so it can be made sufficiently thin to prevent heat generation and magnetic field disturbances caused by eddy currents that generally occur in a metal vacuum container in an alternating current electromagnetic field. This can be sufficiently avoided, and furthermore, collapse due to external pressure can be sufficiently suppressed. Furthermore, since the inorganic fiber cloth composited with the metal material is lightweight, the entire vacuum container can be made lightweight, making it convenient to move, for example, an analysis sample while maintaining it in a vacuum state.

かかる作用効果に基づき、本発明複合材真空容器は、高
エネルギー粒子衝突実験用真空ビームダクト、繰返し周
期の速い電磁場内の真空ビームダクト、プラズマ発生器
、携帯型真空容器、クライオスタット、宇宙用真空機器
などに適用することができる。
Based on these effects, the composite vacuum vessel of the present invention can be used as a vacuum beam duct for high-energy particle collision experiments, a vacuum beam duct in an electromagnetic field with a fast repetition cycle, a plasma generator, a portable vacuum vessel, a cryostat, and a space vacuum device. It can be applied to etc.

(実施例) 以下に図面を参照して実施例につき本発明の詳細な説明
する。
(Example) The present invention will be described in detail below with reference to the drawings.

本発明複合材真空容器の好適な構成例としては、超高真
空を維持するために、粒子透過性のよい原子査号の小さ
い金属材料、例えばアルミニウム合金により複合材器壁
の内側を構成し、可能な限り薄肉化するとともに、その
外側に、ヤング率が大きくて外圧に耐える無機材繊維、
例えば、カーボンファイバよりなるエポキシ含浸布を巻
付け、熱処理を施してアルミニウム合金の内壁に接着し
て一体化し、極薄肉の真空容器を外圧に対して補強する
。なお、本発明真空容器を真空ビームダクトに適用する
場合には、アルミニウム合金薄肉管の外周をカーボンフ
ァイバ・エポキシ含浸布により補強するとともに、薄肉
管の両端部を一体構成により厚肉にし、その厚肉部に同
じくアルミニウム合金よりなるフランジを溶接して接合
し、真空ビームダクトとして他の真空機器に接続するの
が好適である。
As a preferred example of the structure of the composite vacuum vessel of the present invention, in order to maintain an ultra-high vacuum, the inside of the composite vessel wall is made of a metal material with a small atomic number that has good particle permeability, such as an aluminum alloy, In addition to making the wall as thin as possible, on the outside there is an inorganic fiber that has a high Young's modulus and can withstand external pressure.
For example, an epoxy-impregnated cloth made of carbon fiber is wrapped, heat-treated, and bonded to and integrated with the aluminum alloy inner wall, thereby reinforcing the ultra-thin vacuum container against external pressure. In addition, when applying the vacuum vessel of the present invention to a vacuum beam duct, the outer periphery of the aluminum alloy thin-walled tube is reinforced with carbon fiber epoxy-impregnated cloth, and both ends of the thin-walled tube are made thick by integral construction, and the thickness is increased. It is preferable to weld and join a flange made of aluminum alloy to the flesh part and connect it to other vacuum equipment as a vacuum beam duct.

かかる真空ビームダクトとしての本発明真空容管の外周
にカーボンファイバ・エポキシ含浸布を多層に巻付けて
1.5mmの厚さにし、熱処理により両者を接着する。
Carbon fiber epoxy-impregnated cloth is wound in multiple layers around the outer periphery of the vacuum vessel tube of the present invention, which serves as such a vacuum beam duct, to a thickness of 1.5 mm, and the two are bonded together by heat treatment.

しかして、第1図(a)に示すように、かかる構成のア
ルミニウム合金薄肉管lの両端に肉厚5 mmのアルミ
ニウム合金厚肉部2を設け、さらに、その厚肉部2に外
径258mmのアルミニウム合金フランジ8を溶接して
取付ける。なお、第1図(a)に示した本発明真空容器
の要部の構成を拡大して示すと同図Ib)のとおりであ
る。
As shown in FIG. 1(a), aluminum alloy thick-walled parts 2 with a wall thickness of 5 mm were provided at both ends of the aluminum alloy thin-walled tube l having such a structure, and the thick-walled parts 2 were further provided with an outer diameter of 258 mm. Attach the aluminum alloy flange 8 by welding. Note that FIG. 1(a) shows an enlarged view of the configuration of the essential parts of the vacuum container of the present invention shown in FIG. 1(a).

かかる構成の本発明複合材真空容器は、大気中において
10−” Torrの内部超高真空に耐え、さらに、1
20℃の加熱にも耐えてその超高真空を維持することが
できた。なお、かかる外圧容器については、器壁構成材
料としてヤング率の大きい材料を選択するほど、外圧に
よる潰れに対して有利であり、上述した構成例に用いた
アルミニウム合金は、軽量で、小さい原子番号に基づく
粒子透過性の点では有利であるが、ヤング率が小さい点
では不利である。
The composite vacuum container of the present invention having such a configuration can withstand an internal ultra-high vacuum of 10-” Torr in the atmosphere, and
It was able to withstand heating to 20°C and maintain its ultra-high vacuum. In addition, for such an external pressure vessel, the higher the Young's modulus material selected as the container wall constituent material, the more advantageous it is against collapse due to external pressure.The aluminum alloy used in the above-mentioned configuration example is lightweight and has a small atomic number Although it is advantageous in terms of particle permeability based on , it is disadvantageous in that Young's modulus is small.

本発明においては、かかるアルミニウム合金にヤング率
の大きいカーボンファイバ・エポキシ含浸布(0FRP
 )を組合わせた複合材料により真空容器を構成し、双
方の材料の利点を兼ね備えて良好な粒子透過性を有する
軽量の超高真空容器を実現している。
In the present invention, carbon fiber epoxy-impregnated cloth (0FRP) having a high Young's modulus is used in the aluminum alloy.
) The vacuum container is made of a composite material that combines the advantages of both materials to create a lightweight ultra-high vacuum container with good particle permeability.

特に、高エネルギー粒子検出用とするに好適な本発明複
合材真空容器においては、超高真空に接する内壁構成材
料として、ガス放出が少なく、器内の電子流に感応して
器壁が滞電し、微電流が生ずることのない金属材料を用
いるのが好適であり、前述したアルミニウム合金のほか
、ステンレス鋼などを用いるのが好適である。また、か
かる薄肉金属容器を外圧に対して補強する合成樹脂含浸
無機材繊維布としては、前述したカーボンファイバ・エ
ポキシ含浸布のほか、ガラスファイバ・エポキシ含浸布
(FRP)を用いるのも用途により【は好適である。
In particular, in the composite vacuum container of the present invention, which is suitable for detecting high-energy particles, as the material for forming the inner wall in contact with ultra-high vacuum, there is little gas release, and the container wall is charged with electricity in response to the electron flow inside the container. However, it is preferable to use a metal material that does not generate a microcurrent, and in addition to the above-mentioned aluminum alloy, it is also preferable to use stainless steel or the like. In addition to the above-mentioned carbon fiber epoxy-impregnated cloth, glass fiber epoxy-impregnated cloth (FRP) may also be used as the synthetic resin-impregnated inorganic fiber cloth for reinforcing such thin-walled metal containers against external pressure. is suitable.

なお、高エネルギー粒子衝突実験用としては、いずれの
材料についても原子番号が小さいものを選択するのが有
利である。
Note that for high-energy particle collision experiments, it is advantageous to select materials with small atomic numbers for all materials.

(発明の効果) 本発明複合材真空容器は、その特質を活かし、つぎのよ
うな各種の用途に適用してそれぞれ顕著な効果を挙げる
ことができる。
(Effects of the Invention) By taking advantage of its characteristics, the composite vacuum container of the present invention can be applied to the following various uses and achieve remarkable effects.

(a)  高エネルギー粒子衝突実験用真空ビームダク
トとしては、従来の金属ベリリウム薄肉真空容器に比し
、複合材による器壁の高エネルギー粒子に対する透過能
が大きいのみならず、低価格、無毒、超高真空性能良好
などの点で格段に優れている。
(a) As a vacuum beam duct for high-energy particle collision experiments, compared to conventional metal beryllium thin-walled vacuum vessels, the vessel wall made of composite materials not only has a greater permeability to high-energy particles, but is also low-cost, non-toxic, and super It is extremely superior in terms of high vacuum performance and other aspects.

(b)  交流磁場内真空ビームダクトもしくはプラズ
マ発生器としては、極めて薄肉の金属性器壁を備えてい
るので 渦電流損失を従来に比し格段に低減することが
できる。
(b) As a vacuum beam duct or plasma generator in an AC magnetic field, it is equipped with an extremely thin metal genital wall, so eddy current loss can be significantly reduced compared to conventional systems.

(C1携帯型真空容器としては、分析試料などを真空状
態に保持したまま移動し、輸送し得る携帯型の超高真空
容器を、従来に比して格段に軽量化することができる。
(The C1 portable vacuum container is a portable ultra-high vacuum container that can be moved and transported while holding an analysis sample in a vacuum state, and can be significantly lighter than conventional containers.

(C1)  宇宙用真空容器としては、従来に比し格段
に軽量の超高真空容器を実現したことが極めて有利でち
る。
(C1) As a space vacuum vessel, it is extremely advantageous to realize an ultra-high vacuum vessel that is much lighter than conventional ones.

田) タライオスタットとしては、複合材の使用による
@量化により真空容器の熱容量を大幅に低減することが
できるので、液体ヘリウムなどの寒剤の初期充填による
損失を大幅に軽減することができる。
As for the thaliostat, the heat capacity of the vacuum container can be significantly reduced by quantification through the use of composite materials, and the loss caused by the initial filling of cryogens such as liquid helium can be greatly reduced.

なお、本発明複合材真空容器は、上述した各種の用途に
応じ、それぞれ任意の所要形状に構成し得ること勿論で
ある。
It goes without saying that the composite vacuum container of the present invention can be configured into any desired shape depending on the various uses mentioned above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図仏)および(b)は本発明複合材真空容器の構成
例および拡大したその一部をそれぞれ示す縦断面図であ
る。
FIGS. 1(b) and 1(b) are longitudinal cross-sectional views showing an example of the structure of the composite vacuum container of the present invention and an enlarged part thereof, respectively.

Claims (1)

【特許請求の範囲】 1、薄肉金属気密容器の外周に合成樹脂含浸無機材繊維
布を接着して補強したことを特徴とする複合材真空容器
。 2、特許請求の範囲第1項記載の真空容器において、前
記薄肉気密容器を構成する金属をアルミニウム合金また
はステンレス鋼としたことを特徴とする複合材真空容器
。 3、特許請求の範囲第1項または第2項記載の真空容器
において、前記合成樹脂含浸無機材繊維布をカーボンフ
ァイバ・エポキシ含浸布またはガラスファイバ・エポキ
シ含浸布としたことを特徴とする複合材真空容器。 4、特許請求の範囲第1項、第2項または第8項記載の
真空容器において、薄肉金属管の両端に厚肉金属部を設
け、当該厚肉金属部に金属フランジを取付けたことを特
徴とする複合材真空容器。 5、特許請求の範囲前記各項のいずれかに記載の真空容
器において、前記薄肉金属気密容器および前記合成樹脂
含浸無機材繊維布の少なくともいずれか一方をヤング率
の大きい材料により構成したことを特徴とする複合材真
空容器。
[Scope of Claims] 1. A composite vacuum container, characterized in that the outer periphery of a thin metal airtight container is reinforced by adhering a synthetic resin-impregnated inorganic fiber cloth. 2. A composite vacuum container according to claim 1, wherein the metal constituting the thin-walled airtight container is an aluminum alloy or stainless steel. 3. The vacuum container according to claim 1 or 2, wherein the synthetic resin-impregnated inorganic fiber cloth is a carbon fiber epoxy-impregnated cloth or a glass fiber epoxy-impregnated cloth. vacuum container. 4. The vacuum container according to claim 1, 2, or 8, characterized in that a thick metal portion is provided at both ends of the thin metal tube, and a metal flange is attached to the thick metal portion. Composite vacuum container. 5. Scope of Claims The vacuum container according to any of the above items, characterized in that at least one of the thin metal airtight container and the synthetic resin-impregnated inorganic fiber cloth is made of a material having a large Young's modulus. Composite vacuum container.
JP20419585A 1985-09-18 1985-09-18 Vacuum vessel for composite material Pending JPS6265731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20419585A JPS6265731A (en) 1985-09-18 1985-09-18 Vacuum vessel for composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20419585A JPS6265731A (en) 1985-09-18 1985-09-18 Vacuum vessel for composite material

Publications (1)

Publication Number Publication Date
JPS6265731A true JPS6265731A (en) 1987-03-25

Family

ID=16486402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20419585A Pending JPS6265731A (en) 1985-09-18 1985-09-18 Vacuum vessel for composite material

Country Status (1)

Country Link
JP (1) JPS6265731A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110234A (en) * 1987-10-23 1989-04-26 Showa Alum Corp Analyzer for gas contained in metal material
JPH01110235A (en) * 1987-10-23 1989-04-26 Showa Alum Corp Analyzer for gas contained in metal material
US5591267A (en) * 1988-01-11 1997-01-07 Ohmi; Tadahiro Reduced pressure device
US5789086A (en) * 1990-03-05 1998-08-04 Ohmi; Tadahiro Stainless steel surface having passivation film
US5906688A (en) * 1989-01-11 1999-05-25 Ohmi; Tadahiro Method of forming a passivation film
GB2460487A (en) * 2008-05-23 2009-12-09 Tesla Engineering Ltd A vacuum chamber with multi-layered walls
CN102278342A (en) * 2011-06-28 2011-12-14 北京航空航天大学 Method for bonding carbon fiber pipe with metal flanges internally and externally

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121471A (en) * 1984-07-06 1986-01-30 Mitsubishi Electric Corp Fiber reinforced plastic vacuum vessel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121471A (en) * 1984-07-06 1986-01-30 Mitsubishi Electric Corp Fiber reinforced plastic vacuum vessel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110234A (en) * 1987-10-23 1989-04-26 Showa Alum Corp Analyzer for gas contained in metal material
JPH01110235A (en) * 1987-10-23 1989-04-26 Showa Alum Corp Analyzer for gas contained in metal material
US5591267A (en) * 1988-01-11 1997-01-07 Ohmi; Tadahiro Reduced pressure device
US5906688A (en) * 1989-01-11 1999-05-25 Ohmi; Tadahiro Method of forming a passivation film
US5789086A (en) * 1990-03-05 1998-08-04 Ohmi; Tadahiro Stainless steel surface having passivation film
GB2460487A (en) * 2008-05-23 2009-12-09 Tesla Engineering Ltd A vacuum chamber with multi-layered walls
CN102278342A (en) * 2011-06-28 2011-12-14 北京航空航天大学 Method for bonding carbon fiber pipe with metal flanges internally and externally

Similar Documents

Publication Publication Date Title
US8319588B2 (en) Hollow cylindrical thermal shield for a tubular cryogenically cooled superconducting magnet
US4394929A (en) Cryogenic liquid storage container having an improved access conduit
EP1016815B1 (en) Superconducting magnet suspension assembly
US5084219A (en) Method of fabricating composite structures
JPS6265731A (en) Vacuum vessel for composite material
JP2005249195A (en) Double wall container
US3358463A (en) Integrated superconducting magnetcryostat system
JPH0330312B2 (en)
US5225782A (en) Eddy current free MRI magnet with integrated gradient coils
US3415408A (en) Insulated tank
Deslattes et al. Demountable High Power Source for Soft X‐Ray Region
GB2487813A (en) Cylindrical support for cryoshield
US4622824A (en) Cryostat suspension system
JPS5838619Y2 (en) cryogenic equipment
JP2021077811A (en) Superconducting coil device
Nicol SSC 50 mm collider dipole cryostat single tube support post conceptual design and analysis
JPH05243624A (en) Heat-insulating support for superconducting magnet
JPH01304036A (en) Panel for holding vacuum channel and vacuum chamber
JP2022108794A (en) Superconducting coil device
JPH07280186A (en) Portable type super low temperature liquefied gas container
JPH07245199A (en) Superconducting accelerator
JP2021077810A (en) Superconducting coil device and current lead structure of superconducting coil
Birmingham et al. Experimental dewars developed by the national bureau of standards
JPH04137708A (en) Cryogenic container
JPH0367326B2 (en)