JPS6264976A - Method for measuring withstand voltage of neutron detector - Google Patents

Method for measuring withstand voltage of neutron detector

Info

Publication number
JPS6264976A
JPS6264976A JP20480485A JP20480485A JPS6264976A JP S6264976 A JPS6264976 A JP S6264976A JP 20480485 A JP20480485 A JP 20480485A JP 20480485 A JP20480485 A JP 20480485A JP S6264976 A JPS6264976 A JP S6264976A
Authority
JP
Japan
Prior art keywords
voltage
discharge
circuit
current
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20480485A
Other languages
Japanese (ja)
Inventor
Makoto Kasai
葛西 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20480485A priority Critical patent/JPS6264976A/en
Publication of JPS6264976A publication Critical patent/JPS6264976A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

PURPOSE:To enable a highly accurate withstand voltage test, by making it possible to neglect a charge current from a practical aspect by raising voltage to be applied from zero voltage in a ratio of 100V or less/sec. CONSTITUTION:The voltage applied to a neutron detector 1 is linearly raised from zero volt at a rising ratio of 25V/sec. By this mild application of voltage, the charge current to the capacitance component of the detector 11 can be almost neglected. For example, when abnormal discharge is generated in the detector 11 at the point of time exceeding 500V, the current thereof is detected by a current detecting circuit 21 and a current level is electrically compared and judged by a discharge detecting/ comparing circuit 22. When the discharge current level is equal to or more than a predetermined level, a voltage drop control circuit 24 is operated by the signal of said circuit 22. Subsequently, a voltage variable circuit 17 is driven through a voltage control circuit 26 and voltage to be applied is gradually dropped. Further, voltage is again applied from zero voltage at a rising ratio of 25V/sec. When the discharge current level is equal to or less than the predetermined level, the detector 11 is cleaned up by the discharge thereof and a withstand voltage characteristic is enhanced and, therefore, the rising of voltage is continued.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、中性子検出器の耐電圧測定方法に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a method for measuring withstand voltage of a neutron detector.

〔発明の技術的背景およびその問題点〕例えば沸騰水形
原子炉の中性子検出には、核***形電離箱からなる中性
子検出器を複数個設置し、それらに例えば10(lル)
 (V)の直流電圧を印加し、電離電流を検出して測定
する。
[Technical background of the invention and its problems] For example, to detect neutrons in a boiling water reactor, a plurality of neutron detectors each consisting of a fission chamber are installed, and each
(V) is applied, and the ionization current is detected and measured.

このような中性子検出器は、当然高い信頼性が要求され
、とくに検出器自身での異常放電は皆無でなければなら
ない。このため、中性子検出器は、動作電圧である10
0Vに対して十分高い電圧、例えば700vまで異常放
電しないように保証している。中性子検出器の製造にお
いて、この耐電圧特性の測定は、非破壊的に行なうこと
が望ましい。
Such a neutron detector is naturally required to have high reliability, and in particular, there must be no abnormal discharge within the detector itself. For this reason, the neutron detector has an operating voltage of 10
It is guaranteed that abnormal discharge will not occur up to a voltage sufficiently high compared to 0V, for example 700V. In manufacturing neutron detectors, it is desirable to measure this withstand voltage characteristic non-destructively.

一方、このような中性子検出器は、内部に絶縁体からな
るスペーサを有し、長尺な同軸状の電極導出端子構造で
あるため、陰極、陽極端子間の静電容量が、およそ20
00乃至3000 pFもある。このため、耐電圧測定
の電圧を不用意九印加すると、この静1!容量成分への
充電電流と異常放電電流とを混同しやすく、正確な測定
ができないという不都合がある。
On the other hand, such a neutron detector has a spacer made of an insulator inside and has a long coaxial electrode lead-out terminal structure, so the capacitance between the cathode and anode terminals is approximately 20
00 to 3000 pF. For this reason, if you inadvertently apply a voltage for measuring withstand voltage, this static voltage of 1! There is a problem in that it is easy to confuse the charging current to the capacitive component with the abnormal discharge current, making accurate measurement impossible.

〔発明の目的〕[Purpose of the invention]

この発明は、以上のような不都合を解消し高精度で非破
壊的に耐電圧特性を測定しうる中性子検出器の耐電圧測
定方法を提供するものである。
The present invention provides a method for measuring withstand voltage of a neutron detector, which eliminates the above-mentioned inconveniences and enables highly accurate and non-destructive measurement of withstand voltage characteristics.

〔発明の概要〕[Summary of the invention]

この発明は、0ゴルトから毎秒100?ルト以下の割合
で電極導出端子への印加電圧を上昇し、異常放電の発生
による放電電流が所定レベル以上である場合は電圧を低
減し、再度上記割合で電圧上昇し、被破壊的に耐電圧を
測定することを特徴とする中性子検出器の耐電圧測定方
法である。
This invention can move from 0 Gault to 100 per second? The voltage applied to the electrode lead-out terminal is increased at a rate below the current level, and if the discharge current due to abnormal discharge is above a predetermined level, the voltage is reduced, and the voltage is increased again at the above rate to prevent damage. This is a method for measuring withstand voltage of a neutron detector, which is characterized by measuring the withstand voltage of a neutron detector.

これによって、検出器の静電容量成分への充電電流がほ
とんど無視でき、異常放電を正確に検出でき、放電によ
る破壊を防止しつつ所定レベルの耐電圧特性をもたせる
ことが容易にでき、信頼性の高い検出器を得ることがで
きる。
As a result, the charging current to the capacitance component of the detector can be almost ignored, abnormal discharge can be detected accurately, and it is easy to provide a predetermined level of withstand voltage characteristics while preventing damage due to discharge, increasing reliability. A high detector can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照してその実施例を説明する。 Examples thereof will be described below with reference to the drawings.

なお同一部分は同一符号であられす。Identical parts are designated by the same reference numerals.

この発明は第1図に例示するような測定回路構成で測定
する。同図において11は被測定中性子検出器、Z2は
陽極、13は陰極を兼ねる外囲器、14は絶縁体ス(−
サ(図示せず)により同軸状に配置された電極導出端子
、1sFi耐電圧測定器、16は測定用リード、17は
交流電圧可変器、18は高圧トランス、19は整流回路
、R1は平滑用抵抗素子、Cは平滑コンデンサ、R2は
保護抵抗、R3はプリダ抵抗、R4は電圧検出用抵抗、
R5は電流検出用抵抗、20は電圧検出回路、2ノは電
流検出回路、22は放電検出・比較回路、23F”iレ
コーダ、24は電圧下降制御回路、25は電圧上昇ステ
ップ切換回路、26は電圧制御回路をあられしている。
In the present invention, measurements are performed using a measurement circuit configuration as illustrated in FIG. In the figure, 11 is a neutron detector to be measured, Z2 is an anode, 13 is an envelope that also serves as a cathode, and 14 is an insulator (-
1sFi withstand voltage measuring device, 16 is a measurement lead, 17 is an AC voltage variable device, 18 is a high-voltage transformer, 19 is a rectifier circuit, and R1 is for smoothing. Resistance element, C is a smoothing capacitor, R2 is a protection resistor, R3 is a pre-da resistor, R4 is a voltage detection resistor,
R5 is a current detection resistor, 20 is a voltage detection circuit, 2 is a current detection circuit, 22 is a discharge detection/comparison circuit, 23 is a F''i recorder, 24 is a voltage drop control circuit, 25 is a voltage increase step switching circuit, 26 is a The voltage control circuit is damaged.

同図のように回路構成して測定するが、中性子検出器に
印加する電圧は、電圧上昇ステップ切換回路25により
、電圧制御回路を26を制御し、それによりトランスの
一次側の電圧可変器を駆動して電圧上昇度合を可変でき
るようになっている。すなわち第2図に示すように、例
えば直線S−7のように毎秒25vで上昇するステップ
、S−2のように毎秒50Vで上昇するステップ、S−
3のように毎秒1oovで上昇するステップなど、およ
そ毎秒100V以下の上昇率でいくつかのステップが選
択できるように構成されている。
The circuit is configured as shown in the figure, and the measurement is performed. The voltage applied to the neutron detector is controlled by the voltage increase step switching circuit 25, which controls the voltage control circuit 26, which controls the voltage variable device on the primary side of the transformer. It can be driven to vary the degree of voltage rise. That is, as shown in FIG. 2, for example, a step that increases at 25V per second as shown by straight line S-7, a step that increases at 50V per second as shown in S-2, and a step that increases at 50V per second as shown in line S-2.
The configuration is such that several steps can be selected at a rate of increase of approximately 100 V per second or less, such as the step shown in No. 3 which increases at 100 V per second.

なお、電圧制御は、パルスモータのようなサーゲ機構に
より交流電圧可変トランスを駆動する構成を取ることも
できるし、あるいはSCHのような半導体素子やマイコ
ンによる電圧可変回路にすることもできる。またlI流
流電電圧直接電圧可変する回路にすることもできる。
Note that the voltage control can be configured to drive an AC voltage variable transformer using a serge mechanism such as a pulse motor, or can be a voltage variable circuit using a semiconductor element such as an SCH or a microcomputer. It is also possible to use a circuit that directly varies the II current voltage.

次に測定例を説明する。第3図に示すように、中性子検
出器への印加電圧を直線S−1のようにOVから毎秒2
5Vの上昇率で直線的に上げて行く。このようなゆるや
かな電圧印加によると、長尺な中性子検出器の静電容量
成分への充電lt流はほとんど無視し得る程度である。
Next, a measurement example will be explained. As shown in Figure 3, the voltage applied to the neutron detector is changed from OV to
Increase the voltage linearly at a rate of increase of 5V. With such gradual voltage application, the charging current to the capacitance component of the elongated neutron detector is almost negligible.

いま、500Vを越えた時間t、で中性子検出器内で異
常放電が発生したとする。その放t’atN、iを電流
検出回路21で検出でき、その電流レベルを検出・比較
回路22で電気的に比較判定する。
Suppose now that an abnormal discharge occurs in the neutron detector at a time t when the voltage exceeds 500V. The discharge t'atN,i can be detected by the current detection circuit 21, and the current level is electrically compared and judged by the detection/comparison circuit 22.

そしてこの放電電流レベルが予め定めた所定レベルl 
以上である場合は、その信号により電圧下降制御回路2
4が動作し、電圧制御回路26を介して電圧可変器17
を駆動し、印加電圧を一徐々に下降させるようになって
いる。そして再度直線S−1のようにQVから毎秒25
Vの上昇率で電圧を印加する。放電電流が所定レベル以
下であれば、その放電で検出器はむしろクリーンアッグ
され耐電圧特性が向上するので、電圧上昇を続ける。
Then, this discharge current level is set to a predetermined level l.
If it is above, the voltage drop control circuit 2
4 operates, and the voltage variable device 17 is activated via the voltage control circuit 26.
is driven, and the applied voltage is gradually lowered. Then, again like the straight line S-1, 25 per second from QV
Apply voltage at a rate of increase of V. If the discharge current is below a predetermined level, the detector is rather cleaned up by the discharge and its withstand voltage characteristics are improved, so the voltage continues to rise.

なお異常放電が検出されない場合は、自動的に100O
Vの所定最大テスト電圧まで上昇し、一定時間保持した
うえ、徐々に下降して終了する。iた途中の放電が、所
定レベル以下で、電圧上昇を続けても中性子検出器が破
壊に至るおそれがないレベル以下であれば、上述のよう
に印加電圧上昇を続ける。また、初期には電圧上昇率を
小さく設定し、次に上昇率をステップ的に上げて数回繰
り返す。なお毎秒の電圧上昇が100v以下であれば、
実用上充電電流を無視でき、精度のよい耐電圧試験がで
きる。また必要だ応じて放電発生の電圧、波形などを各
回路やレコーダで記録し、放電の特徴や原因などを分析
することができる。
In addition, if no abnormal discharge is detected, the
The voltage rises to a predetermined maximum test voltage of V, is held for a certain period of time, and then gradually falls to end. If the discharge during the process is below a predetermined level and below a level where there is no danger of the neutron detector being destroyed even if the voltage continues to rise, the applied voltage continues to rise as described above. In addition, the voltage increase rate is initially set small, and then the increase rate is increased in steps and repeated several times. Furthermore, if the voltage rise per second is 100V or less,
In practical terms, charging current can be ignored, allowing highly accurate withstand voltage tests. In addition, if necessary, the voltage and waveform of discharge occurrence can be recorded using each circuit or recorder, and the characteristics and causes of discharge can be analyzed.

以上のようにして、中性子検出器の非破壊試験を正確く
行なうことができる。
In the manner described above, a non-destructive test of a neutron detector can be performed accurately.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明によれば、中性子検出器の
静電容量成分への充電電流をほとんど無視でき、異常放
電を正確圧検出でき、且つ放電による破壊を防止しつつ
所定レベルの耐電圧特性をもたせることができ、信頼性
の高い検出器を得ることができる・
As explained above, according to the present invention, the charging current to the capacitance component of the neutron detector can be almost ignored, abnormal discharge can be accurately detected, and the withstand voltage characteristic can be maintained at a predetermined level while preventing destruction due to discharge.・A highly reliable detector can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例に使用する測定回路図、第2
図はその電圧上昇ステツブを示す特性図、第3図はこの
発明の方法を例示する特性図である。 11・・・中性子検出器、14・・・電極導出端子、1
5・・・耐電圧測定装置、21・・・放電電流検出回路
、22・・・放電検出・比較回路、26・・・電圧制御
回路。 出願人代理人  弁理士 鈴 江 武 彦第1図 TRI闇(免)− 篇2図 第3図
Figure 1 is a measurement circuit diagram used in an embodiment of this invention;
The figure is a characteristic diagram showing the voltage increase step, and FIG. 3 is a characteristic diagram illustrating the method of the present invention. 11... Neutron detector, 14... Electrode lead terminal, 1
5... Withstand voltage measuring device, 21... Discharge current detection circuit, 22... Discharge detection/comparison circuit, 26... Voltage control circuit. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 TRI Darkness (Immunity) - Volume 2 Figure 3

Claims (1)

【特許請求の範囲】 同軸状の長尺な電極導出端子を有する中性子検出器に直
流電圧を印加して耐電圧を測定する方法において、 0ボルトから毎秒100ボルト以下の割合で印加電圧を
上昇し、異常放電の発生による放電電流が所定レベル以
上である場合は電圧を低減し、再度上記割合で電圧上昇
し、被破壊的に耐電圧を測定することを特徴とする中性
子検出器の耐電圧測定方法。
[Claims] A method for measuring withstand voltage by applying a DC voltage to a neutron detector having a coaxial elongated electrode lead-out terminal, in which the applied voltage is increased from 0 volts at a rate of 100 volts per second or less. , a withstand voltage measurement of a neutron detector characterized in that when the discharge current due to the occurrence of abnormal discharge is above a predetermined level, the voltage is reduced and the voltage is increased again at the above rate to measure the withstand voltage in a non-destructive manner. Method.
JP20480485A 1985-09-17 1985-09-17 Method for measuring withstand voltage of neutron detector Pending JPS6264976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20480485A JPS6264976A (en) 1985-09-17 1985-09-17 Method for measuring withstand voltage of neutron detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20480485A JPS6264976A (en) 1985-09-17 1985-09-17 Method for measuring withstand voltage of neutron detector

Publications (1)

Publication Number Publication Date
JPS6264976A true JPS6264976A (en) 1987-03-24

Family

ID=16496638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20480485A Pending JPS6264976A (en) 1985-09-17 1985-09-17 Method for measuring withstand voltage of neutron detector

Country Status (1)

Country Link
JP (1) JPS6264976A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446852B1 (en) * 1997-04-30 2004-11-03 현대 이미지퀘스트(주) Voltage regulating apparatus including voltage detection unit, control unit, and regulating voltage output unit
JP2006337226A (en) * 2005-06-03 2006-12-14 Furukawa Electric Co Ltd:The Residual charge measuring method for cv cable
JP2016530517A (en) * 2013-08-14 2016-09-29 ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド Method and apparatus for ion mobility

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446852B1 (en) * 1997-04-30 2004-11-03 현대 이미지퀘스트(주) Voltage regulating apparatus including voltage detection unit, control unit, and regulating voltage output unit
JP2006337226A (en) * 2005-06-03 2006-12-14 Furukawa Electric Co Ltd:The Residual charge measuring method for cv cable
JP4676255B2 (en) * 2005-06-03 2011-04-27 古河電気工業株式会社 CV cable residual charge measurement method
JP2016530517A (en) * 2013-08-14 2016-09-29 ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド Method and apparatus for ion mobility

Similar Documents

Publication Publication Date Title
Penney et al. Potentials in DC corona fields
Bartnikas A commentary on partial discharge measurement and detection
CN110275096A (en) Insulator surface defect local discharge detection device and detection method
GB2296333A (en) Improving start-up behaviour of amperometric measuring cell
US4349782A (en) Shielded differentiator for automotive ignition applications
CA2081221A1 (en) Method of detecting insulation faults and spark tester for implementing the method
JPH03209180A (en) Method and device for inspecting insulating system condition
US5502375A (en) Method and apparatus for determining orientation of polarized capacitors
Rosen et al. Double Layer Capacitance on Platinum in 1 M H 2 SO 4 from the Reversible Hydrogen Potential to the Oxygen Formation Region
JPS6264976A (en) Method for measuring withstand voltage of neutron detector
Kreuger et al. Partial discharges in gaseous voids for DC voltage
US9709606B1 (en) Smart voltmeter for electric fence
US7378857B2 (en) Methods and apparatuses for detecting the level of a liquid in a container
US2756388A (en) Method and apparatus for measuring charges on liquids
Watson et al. Charge‐storing technique for measuring small conduction currents under microsecond pulse conditions
US3566259A (en) Instrument for measuring conductance or capacitance of an electrical load during operation
JPH02103479A (en) Method for testing withstand voltage against electrostatic discharge
JP2005114356A (en) Instrument and method for measuring ultra-high resistance
Morshuis et al. A relation between time-resolved discharge parameters and ageing
RU2076331C1 (en) Device testing electric strength of insulation
SU1751702A1 (en) Apparatus for nondestructive checking of electrical strength of cable insulation
US3644187A (en) Instrument for measuring conductance or capacitance of an electrical load during operation
SU847234A1 (en) Method of determining electric strength of electro-insulation materials
JP2584093B2 (en) Insulation film reliability evaluation method
JP6621891B1 (en) DC voltage tester, DC voltage test method, and DC voltage test program