JPS6263802A - Optical measuring method for physical quantity - Google Patents

Optical measuring method for physical quantity

Info

Publication number
JPS6263802A
JPS6263802A JP20298485A JP20298485A JPS6263802A JP S6263802 A JPS6263802 A JP S6263802A JP 20298485 A JP20298485 A JP 20298485A JP 20298485 A JP20298485 A JP 20298485A JP S6263802 A JPS6263802 A JP S6263802A
Authority
JP
Japan
Prior art keywords
light
mirror
reflected
physical quantity
array sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20298485A
Other languages
Japanese (ja)
Inventor
Suezo Nakatate
中楯 末三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP20298485A priority Critical patent/JPS6263802A/en
Publication of JPS6263802A publication Critical patent/JPS6263802A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To detect with a high stability and with a high accuracy a variation quantity of a physical quantity including an optical path length of a wavelength of light or below, by detecting a variation of an interference fringe formed by reference light and reflected light, by a phase variation of the reflected light from an object to be measured. CONSTITUTION:Light 2 which has been emitted from a laser light source 1 is split into beams 2a, 2b by a semi-transparent mirror 3, and the beam 2a is made incident on an object mirror 5 which is moved by an electrostrictive element PZT 4. Also, the beam 2b is made incident on a reference mirror 6 which has been inclined a little. Next, the object light 2c which has been reflected by the mirror 5 and the reference light 2d which has been reflected by the mirror 6 are projected to an array sensor 8 consisting of plural photodetectors, through an objective lens 7, an interference fringe 9 of the light 2c and 2d is detected, and it is sent to a signal processing circuit 10. In this state, a displacement quantity of the PZT is derived by an operation of equations I, II and III. In this regard, I(x):L: and (f) denote an output of the photodetector which is installed in a position (x), length of a measuring range of the array sensor, and the number of fringes contained in the photodetecting range.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は物理量の変化量を光学的に測定する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for optically measuring the amount of change in a physical quantity.

(従来の技術) 電子線および光リソグラフィー法を用いた半導体製造装
置をはじめ、最近の多(の超精密機械においては、精密
位置検出ならびに位置決め技術が必要不可欠な技術とな
っている。
(Prior Art) Precise position detection and positioning technology has become an indispensable technology in many recent ultra-precision machines, including semiconductor manufacturing equipment using electron beam and optical lithography methods.

現在それらの装置で使われている方法は、周波数のわず
かに異なる光を発生し、参照光と物体光との干渉によっ
てできるビート信号の位相を検出する、光ヘテロゲイン
干渉法である。、−れらの装置では、レーザーや信号処
理系などを含め装置が大掛りになる欠点がある。
The method currently used in these devices is optical heterogain interferometry, which generates light with slightly different frequencies and detects the phase of the beat signal created by interference between the reference light and object light. , - These devices have the disadvantage that they require large-scale equipment including lasers, signal processing systems, and the like.

一方、現在光ファイバーや微小光学素子を用いた光セン
サーの研究が盛んに行なわれており、電磁界、変位、圧
力やジャイロなどが実用化されて来ている。
On the other hand, research on optical sensors using optical fibers and microscopic optical elements is currently being actively conducted, and sensors such as electromagnetic fields, displacement, pressure, and gyros are being put into practical use.

(発明が解決しようとする問題点) 現在考えられているそれらの光センサーの基本原理は、
種々の物理量が引き起こすその位相差を干渉縞の1点で
の強度変化として検出するものであり、光の波長の1/
100程度といった高感度、高精度センサーは期待でき
ない。
(Problems to be solved by the invention) The basic principles of these optical sensors currently being considered are:
This method detects the phase difference caused by various physical quantities as a change in intensity at one point of the interference fringe, which is 1/1 of the wavelength of light.
We cannot expect high sensitivity and high precision sensors of around 100.

そこで本発明では、従来の光センサーの構造をあまり変
えることなく、簡単な光センサ一部と、信号処理装置に
より、高安定、高感度に物理量の変化量を検出すること
のできる光学式測定方法を提出することを目的とする。
Therefore, the present invention provides an optical measurement method that can detect changes in physical quantities with high stability and high sensitivity using a simple part of the optical sensor and a signal processing device without changing the structure of the conventional optical sensor. The purpose is to submit.

(問題点を解決するための手段) 上記目的は、以下本発明によって達成される。(Means for solving problems) The above objects are achieved by the present invention as follows.

即ち、本発明は、参照光と、被測定対象の物理量の変化
に応じて、前記参照光との間の位相差が変化する物体光
とを干渉して干渉縞を形成し、この干渉縞を複数の受光
素子から構成されるアレイセンサで受け、位置Xに設置
される受光素子の出力I (x)に対して、次の積分を
行い(但し、Lはアレイセンサの測定範囲の長さ、fは
この受光範囲に含まれる縞の本数である。)、 このC1Sに対して次の演算を行い、 ψ’  −tan−’ (S/C) このψ′の値に基づいて前記物理量の変化量を検出する
ものである。
That is, the present invention forms interference fringes by interfering between a reference light and an object light whose phase difference between the reference light and the reference light changes according to a change in the physical quantity of the object to be measured. The following integration is performed on the output I (x) of the light receiving element, which is received by an array sensor composed of multiple light receiving elements and installed at position f is the number of fringes included in this light receiving range), perform the following calculation on this C1S, and calculate the change in the physical quantity based on the value of ψ' (S/C). It detects the amount.

このような測定を行うことによって、光の波長以下の光
路長の変化も高精度に測定することができる。
By performing such measurements, changes in optical path length that are less than the wavelength of light can also be measured with high precision.

(作 用) 本発明を図面を用いて更に説明する。第1図は本発明を
説明するための基本的干渉計としてのマイケルソン干渉
計の平面図である。He−Neレーザー光源1から放出
された光2は半透鏡3によって2つの光2aと2bとに
分けられる。一方の光2aは、電歪素子PZT4によっ
て移動される物体ミラー5に入射され物体光2Cとして
反射される。他方の光2dは、わずかに傾けた参照ミラ
ー6に入射され参照光2dとして反射される。これら物
体光2cおよび参照光2dは半透鏡3を透過あるいは反
射し、更に対物レンズ7を通して複数の受光素子を所定
ピッチで配することにより構成されるアレイセンサ8上
に投影される。アレイセンサ8上には物体光2cと参照
光2dとの干渉によって等間隔直線状の干渉縞9が形成
されるので、アレイセンサ8からの出力は第2図に示さ
れるようなものになる。この第2図において、横軸Xは
アレイセンサ8を構成する受光素子の設置位置を表わし
、縦軸I (x)は位置Xに設置された受光素子からの
出力信号を表わしている。アレイセンサ8からの出力は
信号処理回路10へ送られ、以下の処理が施される。こ
こで、アレイセンサ8における測定範囲を0〜Lとし、
この範囲内に含まれる縞の本数をfとする。
(Function) The present invention will be further explained using drawings. FIG. 1 is a plan view of a Michelson interferometer as a basic interferometer for explaining the present invention. Light 2 emitted from a He-Ne laser light source 1 is divided into two lights 2a and 2b by a semi-transparent mirror 3. One light 2a is incident on the object mirror 5 moved by the electrostrictive element PZT4 and is reflected as object light 2C. The other light 2d is incident on a slightly tilted reference mirror 6 and is reflected as a reference light 2d. These object light 2c and reference light 2d are transmitted or reflected by a semi-transparent mirror 3, and then projected through an objective lens 7 onto an array sensor 8, which is constructed by arranging a plurality of light receiving elements at a predetermined pitch. Since linear interference fringes 9 are formed on the array sensor 8 by the interference between the object beam 2c and the reference beam 2d, the output from the array sensor 8 is as shown in FIG. 2. In FIG. 2, the horizontal axis X represents the installation position of the light receiving elements that constitute the array sensor 8, and the vertical axis I (x) represents the output signal from the light receiving element installed at the position X. The output from the array sensor 8 is sent to the signal processing circuit 10 and subjected to the following processing. Here, the measurement range in the array sensor 8 is 0 to L,
Let the number of stripes included in this range be f.

まず、干渉縞を表わす信号1 (x)に対して、次の積
分が行われ、 更に、このC9Sに対して次の演算が行われ、ψ′が求
められる。
First, the following integration is performed on the signal 1 (x) representing the interference fringe, and then the following calculation is performed on this C9S to obtain ψ'.

ψ’  = tan−’ (S/C)        
 (3)ここで求めたψ′は、実際の光の位相変化ψに
対して誤差を含んでいるが、fが10以上であれば、3
60″′変化した時のI(x)かもとの強度にもどる場
合のψを測定していた。したがって、本発明では約90
倍精度が向上したことになる。(1)〜(3)式の計算
は、実際はアレイセンサ8の電気信号をA/D変換し、
これによって得られたデジタル値を、(1)および(2
)式に従って数値積分し、その後(3)式に従ってψ′
を求めることによって行われる。
ψ' = tan-' (S/C)
(3) ψ′ obtained here includes an error with respect to the actual phase change ψ of light, but if f is 10 or more, 3
We measured I(x) when the intensity changed by 60'' and ψ when it returned to the original intensity. Therefore, in the present invention, the
This means that double precision has been improved. The calculations of equations (1) to (3) are actually performed by A/D converting the electrical signal of the array sensor 8.
The digital values obtained by this are (1) and (2)
), and then ψ′ according to equation (3).
This is done by asking for.

第3図に被測定対象としてのPZTの変位量の測定結果
を示す。横軸は、PZTの印加電圧を制御する制御電圧
を示しており、縦軸は、PZTの変位量を示している。
FIG. 3 shows the measurement results of the amount of displacement of PZT as the object to be measured. The horizontal axis represents a control voltage that controls the voltage applied to PZT, and the vertical axis represents the amount of displacement of PZT.

実際にPZTに印加される電圧は、制御電圧を高圧アン
プで約70倍したものとなっている。曲線AがPZTへ
の印加電圧を徐々に上げていった時に対応し、曲線Bが
PZTへの印加電圧を徐々に下げていった時に対応する
The voltage actually applied to the PZT is approximately 70 times the control voltage using a high voltage amplifier. Curve A corresponds to when the voltage applied to PZT is gradually increased, and curve B corresponds to when the voltage applied to PZT is gradually decreased.

PZTの電圧変化によるヒステリシスがあるのが良くわ
かる。この光学系では、0.3μmの物体変位により光
の位相は2π[rad ]変化するので、第3図から、
波長以下の変位が測定されているのが良くわかる。
It is clearly seen that there is hysteresis due to voltage changes in PZT. In this optical system, the phase of light changes by 2π [rad] due to an object displacement of 0.3 μm, so from Fig. 3,
It can be clearly seen that displacements smaller than the wavelength are measured.

(実施例) このような測定方法は次に示すような物理量の高安定、
高精度センサーに応用できる。第4図には圧力センサー
のだめのマイクロ干渉計を示した。
(Example) This measurement method provides high stability of physical quantities as shown below.
Can be applied to high-precision sensors. Figure 4 shows a micro interferometer as a pressure sensor.

光源(レーザーダイオード等)11から出た光を単一モ
ードファイバー12で圧力センサ一部であるダイヤフラ
ム13に導き、光結合器14により、参照光15と物体
光16とに分ける。圧力が変化するとダイヤフラム13
の形が変化し、それにより物体光16の位相が変化する
。この位相変化を受けた物体光16と、参照光15とを
光ファイバーのコアが近接して接着しである二重コア単
一モードファイバー17により導き、イメージセンサ−
18上に投影すると干渉縞19が形成される。
Light emitted from a light source (such as a laser diode) 11 is guided through a single mode fiber 12 to a diaphragm 13 that is part of a pressure sensor, and is split into a reference beam 15 and an object beam 16 by an optical coupler 14 . When the pressure changes, the diaphragm 13
The shape of the object beam 16 changes, thereby changing the phase of the object beam 16. The object light 16 that has undergone this phase change and the reference light 15 are guided through a double-core single mode fiber 17 whose optical fiber cores are closely bonded to each other, and are guided to the image sensor.
When projected onto 18, interference fringes 19 are formed.

この干渉縞19は参照光15と物体光16との位相変化
によって横移動するので、イメージセンサ−18の出力
を信号処理回路20に送り、上述と同様の方法により処
理すると、高精度で位相差が検出できる。したがって圧
力も高精度で検出できる。
Since this interference fringe 19 moves laterally due to a phase change between the reference beam 15 and the object beam 16, if the output of the image sensor 18 is sent to the signal processing circuit 20 and processed in the same manner as described above, the phase difference can be detected with high precision. can be detected. Therefore, pressure can also be detected with high precision.

第4図に示された干渉計では光ファイバー12および1
7を用いているが、微小光学技術、リソグラフィー技術
により、光源11、イメージセンサ−18などを一基板
上に構成することもでき、小型、高安定、高精度センサ
ーとすることができる。
In the interferometer shown in FIG.
7 is used, but the light source 11, image sensor 18, etc. can also be configured on one substrate using micro-optical technology and lithography technology, making it possible to create a small, highly stable, and highly accurate sensor.

さらに、圧力センサ一部を光フアイバージャイロ、温度
センサー、電磁界センサーなどの干渉計とすれば、被測
定物の回転角、温度、電界、磁界などを高感度で求める
ことができる。
Furthermore, if part of the pressure sensor is an interferometer such as an optical fiber gyro, a temperature sensor, or an electromagnetic field sensor, the rotation angle, temperature, electric field, magnetic field, etc. of the object to be measured can be determined with high sensitivity.

(発明の効果) 以上詳細に説明したように、本発明の方法によると、光
の波長以下の光路長の変化も高精度、高安定に測定する
ことができる。
(Effects of the Invention) As described above in detail, according to the method of the present invention, changes in optical path length that are less than the wavelength of light can be measured with high precision and high stability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を説明するための基本的干渉計としての
マイケルソン干渉計の平面図、第2図はアレイセンサか
らの出力を示す図、第3図は被測定対象としてのPZT
の変位量の測定結果を示すグラフ、 第4図は本発明の方法を使用する圧力センサーのだめの
マイクロ干渉計の概略図である。 1・・・・・・He−Neレーザー光源、2c・・・・
・・物体光、  2d・・・・・・参照光、4・・・・
・・電歪素子PZT。 5・・・・・・物体ミラー、 6・・・・・・参照ミラー、 7・・・・・・対物レンズ、 8・・・・・・アレイセンサ、 9・・・・・・干渉縞、 10・・・・・・信号処理回路、 11・・・・・・光源、12・・・・・・単一モードフ
ァイバー、13・・・・・・ダイヤフラム、  14・
・・・・・光結合器、15・・・・・・参照光、   
  16・・・・・・プローブ光、17・・・・・・二
重コア単一モードファイバー、18・・・・・・イメー
ジセンサ、 19・・・・・・干渉縞、 20・・・・・・信号処理回路。 第1図 第2図 ニー−− 電圧(V)
Figure 1 is a plan view of a Michelson interferometer as a basic interferometer for explaining the present invention, Figure 2 is a diagram showing the output from an array sensor, and Figure 3 is a diagram of PZT as an object to be measured.
FIG. 4 is a schematic diagram of a pressure sensor reservoir microinterferometer using the method of the present invention. 1... He-Ne laser light source, 2c...
...Object light, 2d...Reference light, 4...
...Electrostrictive element PZT. 5...Object mirror, 6...Reference mirror, 7...Objective lens, 8...Array sensor, 9...Interference fringe, 10...Signal processing circuit, 11...Light source, 12...Single mode fiber, 13...Diaphragm, 14.
...Optical coupler, 15...Reference light,
16...Probe light, 17...Double core single mode fiber, 18...Image sensor, 19...Interference fringe, 20... ...Signal processing circuit. Figure 1 Figure 2 Knee - Voltage (V)

Claims (1)

【特許請求の範囲】 参照光と、被測定対象の物理量の変化に応じて、前記参
照光との間の位相差が変化する物体光とを干渉して干渉
縞を形成し、この干渉縞を複数の受光素子から構成され
るアレイセンサで受け、位置xに設置される受光素子の
出力I(x)に対して、次の積分を行い(但し、Lはア
レイセンサの測定範囲の長さ、fはこの受光範囲に含ま
れる縞の本数である。)、 ▲数式、化学式、表等があります▼ ▲数式、化学式、表等があります▼ このC、Sに対して次の演算を行い、 ψ′=tan^−^1(S/C) このψ′の値に基づいて前記物理量の変化量を検出する
物理量の光学式測定方法。
[Claims] Interfering between a reference light and an object light whose phase difference between the reference light and the reference light changes according to a change in a physical quantity of the object to be measured, and forming interference fringes. The following integration is performed on the output I(x) of the light receiving element, which is received by an array sensor composed of a plurality of light receiving elements and installed at position x (where, L is the length of the measurement range of the array sensor, f is the number of fringes included in this light receiving range.), ▲There are mathematical formulas, chemical formulas, tables, etc.▼ ▲There are mathematical formulas, chemical formulas, tables, etc.▼ Perform the following calculation on these C and S, and ψ '=tan^-^1 (S/C) An optical measuring method for a physical quantity that detects the amount of change in the physical quantity based on the value of ψ'.
JP20298485A 1985-09-13 1985-09-13 Optical measuring method for physical quantity Pending JPS6263802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20298485A JPS6263802A (en) 1985-09-13 1985-09-13 Optical measuring method for physical quantity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20298485A JPS6263802A (en) 1985-09-13 1985-09-13 Optical measuring method for physical quantity

Publications (1)

Publication Number Publication Date
JPS6263802A true JPS6263802A (en) 1987-03-20

Family

ID=16466404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20298485A Pending JPS6263802A (en) 1985-09-13 1985-09-13 Optical measuring method for physical quantity

Country Status (1)

Country Link
JP (1) JPS6263802A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH045524A (en) * 1990-04-23 1992-01-09 Nippon Steel Corp Alternating current magneto-striction measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH045524A (en) * 1990-04-23 1992-01-09 Nippon Steel Corp Alternating current magneto-striction measuring method
JPH0585849B2 (en) * 1990-04-23 1993-12-09 Nippon Steel Corp

Similar Documents

Publication Publication Date Title
US8330963B2 (en) Optical method for precise three-dimensional position measurement
US3885875A (en) Noncontact surface profilometer
Yamaguchi et al. Active phase-shifting interferometers for shape and deformation measurements
US5218424A (en) Flying height and topography measuring interferometer
Gao et al. Development of an optical probe for profile measurement of mirror surfaces
US9518816B2 (en) Dual beam splitter interferometer measuring 3 degrees of freedom, system and method of use
CN110631483B (en) Orthogonal grating three-degree-of-freedom magnetic levitation measurement sensor, detector and detection method thereof
Ren et al. A three-dimensional small angle measurement system based on autocollimation method
US4758090A (en) Optical wavelength monitor using blazed diffraction grating
JPH048724B2 (en)
Ren et al. A novel enhanced roll-angle measurement system based on a transmission grating autocollimator
JP2023171867A (en) Multiaxis laser interference length measurer
CN111174735A (en) Two-dimensional straightness and linear displacement simultaneous measurement interference device and measurement method
US4395123A (en) Interferometric angle monitor
Markweg et al. Development of a miniaturized multisensory positioning device for laser dicing technology
CN115540744A (en) Microgravity measuring device and method
JPS6263802A (en) Optical measuring method for physical quantity
Wilhelm et al. A novel low coherence fibre optic interferometer for position and thickness measurements with unattained accuracy
CN111121614A (en) Two-dimensional straightness and linear displacement simultaneous measurement interference device
CN112284299A (en) Five-degree-of-freedom simultaneous measurement interference device
Hu et al. A Dual-Axis Optoelectronic Inclinometer Based on Wavefront Interference Fringes
CN113405474B (en) Flexible swing sheet displacement testing device and testing method
Rana et al. A Non-contact Method for Rod Straightness Measurement Based on Quadrant Laser Sensor
Weichert et al. A straightness measuring interferometer characterised with different wedge prisms
JP2009186254A (en) Beam angle detector