JPS6263692A - Method for reducing quadrivalent tin ion - Google Patents

Method for reducing quadrivalent tin ion

Info

Publication number
JPS6263692A
JPS6263692A JP28900385A JP28900385A JPS6263692A JP S6263692 A JPS6263692 A JP S6263692A JP 28900385 A JP28900385 A JP 28900385A JP 28900385 A JP28900385 A JP 28900385A JP S6263692 A JPS6263692 A JP S6263692A
Authority
JP
Japan
Prior art keywords
electrode
soluble metal
solution
plating
reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28900385A
Other languages
Japanese (ja)
Other versions
JPH0576555B2 (en
Inventor
Hiroki Uchida
廣記 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uemera Kogyo Co Ltd
C Uyemura and Co Ltd
Original Assignee
Uemera Kogyo Co Ltd
C Uyemura and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uemera Kogyo Co Ltd, C Uyemura and Co Ltd filed Critical Uemera Kogyo Co Ltd
Publication of JPS6263692A publication Critical patent/JPS6263692A/en
Publication of JPH0576555B2 publication Critical patent/JPH0576555B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/60Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of tin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To reduce Sn<4+> in an Sn<4+> -contg. soln. to Sn<2+> with a simple operation by immersing a soluble metal and inactive electrode into the soln. to form a battery. CONSTITUTION:The soluble metal 3 as a negative electrode is immersed into the Sn<4+> -contg. soln. 2 in a reduction tank 1 and the inactive electrode 4 as a positive electrode is immersed therein. These electrodes are connected by a conductor 5 or the soluble metal 3 is brought into direct contact with the inactive electrode 4 to form the battery. The soluble metal 3 which is the negative electrode is thereby oxidized to metallic ions which are dissolved in the Sn<4+> -contg. soln.; at the same time, Sn<4+> is reduced to Sn<2+> in the positive electrode (inactive electrode) 4. Sn and Sn alloy, etc. are used for the soluble metal 3 and Au, Pt, carbon fibers, etc. are selectively used for the inactive electrode 4. The increase of Sn<3+> in a tin (alloy) plating liquid, etc. is suppressed and the generation of precipitate is prevented by the above-mentioned method.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は種々の溶液中に含まれる4価の錫イオン(S 
n”)を2価の錫イオン(Sn”)に還元する方法に関
し、例えばSn2÷を主成分とする錫めっき液やはんだ
めっき液等の錫合金めっき液、プラスチックめっきのセ
ンシタイジング液、アルミニウムの電解着色液中に生じ
たSn’十をSn”に還元してこれら溶液を再生する場
合などに好適に採用される4価の錫イオンの還元方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to the use of tetravalent tin ions (S) contained in various solutions.
Regarding the method of reducing n") to divalent tin ions (Sn"), for example, tin alloy plating solutions such as tin plating solutions and solder plating solutions whose main component is Sn2÷, sensitizing solutions for plastic plating, aluminum This invention relates to a method for reducing tetravalent tin ions, which is suitably employed in cases where Sn' produced in electrolytically colored solutions is reduced to Sn'' to regenerate these solutions.

従来の技術スーび11児プソ良迭」ム走A考工粂泗幕住
従来より、錫めっき或いははんだめっき等の錫合金めっ
きが種々の用途に使用されている。これら錫めっきや錫
合金めっきは、めっき液中のSn”+を金xiに還元、
析出することをめっき原理とするもので、Sn2+をめ
っき金属源とするものである。しかし、錫めっき液或い
は錫合金めっき液中のSn”+は空気酸化、電解酸化等
によりSn’+に酸化され、めっき液中にSn’十が生
じ。
BACKGROUND OF THE INVENTION Tin alloy plating, such as tin plating or solder plating, has been used for various purposes. These tin plating and tin alloy plating reduce Sn"+ in the plating solution to gold xi,
The plating principle is precipitation, and Sn2+ is used as the plating metal source. However, Sn''+ in the tin plating solution or tin alloy plating solution is oxidized to Sn'+ by air oxidation, electrolytic oxidation, etc., and Sn'+ is generated in the plating solution.

このSn’+は酸性溶液中にあっても一過によって除去
し難い白色コロイド状の水酸化物となって蓄積し、めっ
き液を白濁させる。この場合、上記のようにSn’+は
水酸化物となって白色コロイド状沈殿を生成するので、
金属イオン不純物としての問題は少ないが、めっき液に
沈殿物が共存することは好ましくなく、このためSn’
十或いはその水酸化物を除去することが要求される。
This Sn'+ accumulates as a white colloidal hydroxide that is difficult to remove even if it is in an acidic solution, making the plating solution cloudy. In this case, as mentioned above, Sn'+ turns into hydroxide and forms a white colloidal precipitate, so
Although there are few problems as metal ion impurities, it is undesirable for precipitates to coexist in the plating solution, and for this reason, Sn'
It is required to remove the hydroxide or its hydroxide.

従来、このような水酸化物(水酸化第2錫)の除去方法
としては、上述したようにこの水酸化物がコロイド状で
、そのままでは−過により除去し難いので、凝集剤を添
加して水酸化物を凝集沈降させ、濾過する方法が採用さ
れているが、この方法は完全に水酸化物を除去し難(、
また操作も比較的面倒であり、更に溶液の種類によって
は凝集剤を添加するのが好ましくない場合がある上、水
酸化物を除去してもまた直ちにSn”+のS n ’+
への酸化、水酸化物の生成が生じる問題があった。
Conventionally, as a method for removing such hydroxide (stannic hydroxide), as mentioned above, this hydroxide is in a colloidal form and is difficult to remove by filtration as it is, so a flocculant is added. A method has been adopted in which hydroxide is coagulated and sedimented and filtered, but this method is difficult to completely remove hydroxide (
In addition, the operation is relatively troublesome, and depending on the type of solution, it may not be preferable to add a flocculant, and even if the hydroxide is removed, the Sn'+ of Sn'+ is immediately removed.
There was a problem of oxidation and generation of hydroxide.

また、アルミニウムの電解着色液中のSn4+の除去方
法としては、イオン交換膜を用いて対極とアルミニウム
材を隔離して電解する方法も提案されている(特開昭5
7−92199号)が、この方法は装置が大がかりにな
る等の問題がある。
In addition, as a method for removing Sn4+ from an electrolytic coloring solution for aluminum, a method has been proposed in which the counter electrode and the aluminum material are separated and electrolyzed using an ion exchange membrane (Japanese Patent Application Laid-Open No.
No. 7-92199), but this method has problems such as requiring a large-scale apparatus.

本発明は上記事情に鑑みなされたもので、Sn’十或い
はその水酸化物を濾過等の分離手段によるのではなく、
Sn’+をS nz4に還元することによりSn’十を
除去し、更にはその水酸化物沈殿を再溶解し、Sn2+
に還元することにより除去することができ、しかも設備
費用も安価であり、かつ操作も簡単な4価の錫イオンの
還元方法を提供することを目的とする。
The present invention was made in view of the above circumstances, and does not involve separating Sn' or its hydroxide by means of separation such as filtration.
By reducing Sn'+ to Snz4, Sn'+ is removed, and the hydroxide precipitate is redissolved to form Sn2+.
It is an object of the present invention to provide a method for reducing tetravalent tin ions, which can be removed by reducing to

腿苅−1Q玉M−彼も友だめ−9千貫囁μ滌−朋即ち、
本発明者は上記目的を達成するため鋭意研究を行った結
果、Sn”を含む溶液中に負極として可溶性金属を浸漬
すると共に、正極として不活性電極を浸漬し、これら可
溶性金属と不活性電極とを直接又は導体により接続して
電池を形成した場合、溶液中の5n44′がSn”十に
還元され、これにより溶液中の5n44′が減少するこ
とを知見し。
Thigh Calf - 1Q Ball M - He's not my friend either - 9,000 Kan whisper μ - Tomo, that is.
As a result of intensive research to achieve the above object, the inventors of the present invention immersed a soluble metal as a negative electrode in a solution containing Sn'' and immersed an inert electrode as a positive electrode. It has been found that when a battery is formed by connecting the two directly or through a conductor, the 5n44' in the solution is reduced to Sn'', thereby reducing the amount of 5n44' in the solution.

本発明をなすに至ったものである。This is what led to the present invention.

従って、本発明はSn’+を含む溶液中に可溶性金属と
不活性電極とをそれぞれ浸漬すると共に、これら可溶性
金属と不活性電極とを直接又は導体により接続して可溶
性金属を負極、不活性電極を正極とする電池を形成し、
前記可溶性金属を金属イオンに酸化してSn’+を含む
溶液中に溶解させると共に、この溶液中のSn’十をS
n”十に還元させることを特徴とする4価の錫イオンの
還元方法を提供する。
Therefore, in the present invention, a soluble metal and an inert electrode are respectively immersed in a solution containing Sn'+, and the soluble metal and the inert electrode are connected directly or through a conductor to connect the soluble metal to the negative electrode and the inert electrode. form a battery with as the positive electrode,
The soluble metal is oxidized into metal ions and dissolved in a solution containing Sn'+, and the Sn'+ in this solution is converted into S
Provided is a method for reducing tetravalent tin ions characterized by reducing them to n''10.

以下、本発明につき更に詳しく説明する。The present invention will be explained in more detail below.

本発明に係るSn’+のSn2”への還元方法は、第1
〜3図に示したように、還元槽1内のSn”含有溶液2
中に負極として可溶性金属3を浸漬し。
The method for reducing Sn'+ to Sn2'' according to the present invention includes the first
~ As shown in Figure 3, the Sn''-containing solution 2 in the reduction tank 1
A soluble metal 3 is immersed therein as a negative electrode.

正極として不活性電極4を浸漬し、これらを導体5で接
続して電池を形成したり(第1図)、この場合絶縁被覆
した導体5′をSn’+含有溶液2中に浸漬した状態で
用いて可溶性金属3と不活性電極4とを接続し、電池を
形成したり(第2図)、或いは可溶性金属3と不活性電
極4とを直接接触して電池を形成するものである(第3
図)。
An inert electrode 4 is immersed as a positive electrode and these are connected with a conductor 5 to form a battery (Fig. 1), or in this case, an insulated conductor 5' is immersed in a Sn'+-containing solution 2. The soluble metal 3 and the inert electrode 4 are connected to each other to form a battery (Fig. 2), or the soluble metal 3 and the inert electrode 4 are directly contacted to form a battery (Fig. 2). 3
figure).

これにより下式のように負極の可溶性金属が金属イオン
に酸化され、Sn’十含有溶液中に溶解すると共に、正
極(不活性電極)においてSn’十がSn”十に還元さ
れるものである。
As a result, the soluble metal at the negative electrode is oxidized into metal ions as shown in the formula below, which are dissolved in the Sn'0-containing solution, and at the same time Sn'0 is reduced to Sn'0 at the positive electrode (inert electrode). .

負極: M −ne     −+Mn”  −(1)
正極: Sn”+2e   −+Snz◆−12)全体
:2M、+nSn’+→2Mn”+nSn”・・・ (
3) (式中Mは可溶性金属を示す6) この場合、可溶性金属Mを錫とすると、下式のようにS
n’(可溶性金属)がSn”jこ酸化されると共に、S
n’+がSn”十に還元される。
Negative electrode: M −ne −+Mn” −(1)
Positive electrode: Sn"+2e -+Snz◆-12) Overall: 2M, +nSn'+→2Mn"+nSn"... (
3) (In the formula, M represents a soluble metal6) In this case, if the soluble metal M is tin, S as shown in the formula below
n' (soluble metal) is oxidized to Sn"j, and S
n′+ is reduced to Sn″+.

負極: S n’ −2e   →Sn”÷−(1’)
正極: S n”+ 2e   −+S n”÷−(2
’)全体: Sn”+Sn”  →2Sn” −(3’
 )また、沈殿している4価の錫は、(4)式のような
平衡にあるので、Sn’+のSn2+への還元につれて
徐々に再溶解し、上記(3)式に従ってSn”に還元す
る。
Negative electrode: Sn' -2e →Sn"÷-(1')
Positive electrode: S n”+ 2e −+S n”÷−(2
') Whole: Sn"+Sn"→2Sn" - (3'
) Also, since the precipitated tetravalent tin is in an equilibrium as shown in equation (4), it gradually redissolves as Sn'+ is reduced to Sn2+, and is reduced to Sn'' according to equation (3) above. do.

5n(OH)、↓!Sn(OH)4gsn4÷+40H
−沈殿     溶解      ・・・(4)ここで
、本発明方法が適用されるSn’+含有溶液としては、
Sn’十を不純物又は不要成分とし、S n”を必要成
分又は無害成分とする溶液、例えば錫めっき液、はんだ
めっき液等の錫合金めっき液、プラスチックめっきのセ
ンシタイジング液、アルミニウムの電解着色液などが挙
げられる。
5n (OH), ↓! Sn(OH)4gsn4÷+40H
-Precipitation Dissolution...(4) Here, the Sn'+-containing solution to which the method of the present invention is applied is as follows:
Solutions containing Sn' as an impurity or unnecessary component and Sn'' as a necessary or harmless component, such as tin plating solution, tin alloy plating solution such as solder plating solution, sensitizing solution for plastic plating, electrolytic coloring of aluminum Examples include liquid.

また、可溶性金属及び不活性′正極は全体としてSn’
+含有溶液内でSn’“をS n”に還元できる組合せ
になるようにする((3)式の反応が進むような組合せ
にする)もので、負極として用いられる可溶性金属の材
質としては前記(1)式の電位が(2)式の電位より低
ければいずれのものでもよく、特に限定されるものでは
ないが、Sn”含有溶液に溶解しても不純物にならない
もの5例えば錫めっき液の場合は錫金属、錫合金めっき
液の場合であれば錫金属や錫と合金化される金属、その
合金が好ましい。また、正極として用いられる不活性電
極としては、単に電子を渡すだけの電極として作用する
ものが好ましく、Sn’◆含有溶液の種類等によって適
宜選択され、特に制限されないが、金、白金、鉛、チタ
ン、ニオブ、タンタル、ジルコニウム、ステンレススチ
ール、炭素、黒鉛、カーボンペースト、グラッシーカー
ボン、炭素繊維などを有効に使用することができる。
In addition, the soluble metal and the inert positive electrode are Sn' as a whole.
The material of the soluble metal used as the negative electrode is the above-mentioned material. Any material may be used as long as the potential of the formula (1) is lower than the potential of the formula (2).It is not particularly limited, but it does not become an impurity even when dissolved in a Sn''-containing solution. In the case of a tin metal plating solution, tin metal, a metal alloyed with tin, or an alloy thereof is preferable.In addition, as an inert electrode used as a positive electrode, it is preferable to use an electrode that simply transfers electrons. Those that act on Sn'◆ are preferred, and are appropriately selected depending on the type of Sn'◆-containing solution. Examples include, but are not limited to, gold, platinum, lead, titanium, niobium, tantalum, zirconium, stainless steel, carbon, graphite, carbon paste, and glassy carbon. , carbon fiber, etc. can be effectively used.

この場合、負極と正極との表面積比は適宜選択されるが
、負極を1とし、た時に正極を1以上、特に5以上の表
面積比とすることが好ましい。
In this case, the surface area ratio of the negative electrode to the positive electrode is appropriately selected, but it is preferable that the negative electrode has a surface area ratio of 1 and the positive electrode has a surface area ratio of 1 or more, particularly 5 or more.

本発明方法は、以−ヒのようにS n ’+をSn2+
に還元ずべき溶液中に可溶性金属及び不活性電極を浸漬
し、電池を形成すればよく、その実施態様は特に制限さ
れない6例えば、錫め・つき液や錫合金めっき液中のS
n”不純物をS n24に還元する場合は、めっき槽中
で直接電池を形成するようにしてもよいが、第4.5図
に示したようにめ−〕き糟6とは別個に還元槽1を配設
し、これら両槽1゜6間をめっき液送出管7及びめっき
液返送管8により接続し、返送管8にポンプ9を介装し
て、めっき液(S n’+含有液)2をポンプ9により
両槽1.6間に循環させなからSn’+をSn2÷に還
元させつつめっきを行うようにすることもできる。
The method of the present invention converts Sn'+ into Sn2+ as shown below.
A battery may be formed by immersing a soluble metal and an inert electrode in a solution to be reduced to
When reducing n'' impurities to S n24, a cell may be formed directly in the plating tank, but as shown in Figure 4.5, a reduction tank is formed separately from the plating tank 6. 1, and these two tanks 1°6 are connected by a plating solution delivery pipe 7 and a plating solution return pipe 8, and a pump 9 is installed in the return pipe 8, and the plating solution (S n'+ containing solution ) 2 is circulated between the two tanks 1 and 6 by the pump 9, and plating can be carried out while reducing Sn'+ to Sn2÷.

なお5図示していないが、めっき槽中には陽極板等の必
要なめっき設備が設置される。
Although not shown in the figure, necessary plating equipment such as an anode plate is installed in the plating tank.

次に実施例を示し、本発明を具体的に説明するが、本発
明は下記の実施例に制限されるものではない。
EXAMPLES Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to the following Examples.

去蛎1汀よ 建浴してから3週間経過した酸性錫めっき液を第4図に
示す如き装置のめっき槽に入れ、このめっき槽と還元槽
との間を循環させた。この場合、還元槽の負極の可溶性
金属としては錫を使用し、正極の不活性電極としては多
孔性カーボン板を使用し、これら両極を接続する導体(
導線)に電流計を介装して電流計のふれをチェックした
An acidic tin plating solution that had been used for 3 weeks after bathing was put into the plating tank of the apparatus shown in FIG. 4, and circulated between the plating tank and the reduction tank. In this case, tin is used as the soluble metal for the negative electrode of the reduction tank, a porous carbon plate is used as the inert positive electrode, and a conductor (
An ammeter was inserted into the conductor (conductor wire) and the fluctuation of the ammeter was checked.

前記酸性錫めっき液の外観は全体に少し濁っており、め
っき槽底部に若干沈殿がある状態であったが、上記の状
態で一晩放置したところ、めっき液は完全に透明な状態
となった。また、可溶性金属(a)と不活性電極(カー
ボン板)との電池形成による初期電流値は約0.025
A/Qであったが、−晩放置後は0.005A/Qであ
った。
The appearance of the acidic tin plating solution was a little cloudy overall, and there was some sediment at the bottom of the plating tank, but when it was left in the above condition overnight, the plating solution became completely transparent. . In addition, the initial current value due to the formation of a battery between the soluble metal (a) and the inert electrode (carbon plate) is approximately 0.025
The A/Q was 0.005 A/Q after being left for one night.

実施例2 2週間の使用でかなり濁った状態になっていた硫酸第1
錫を含むアルミニウムの電解着色液を使用し、不活性電
極としてチタン製ラス上に溶融白金を付けたものを用い
た以外は実施例1と同様な実験を行った。
Example 2 Sulfuric acid No. 1 had become quite cloudy after two weeks of use.
An experiment was carried out in the same manner as in Example 1, except that an electrolytic coloring solution for aluminum containing tin was used and a titanium lath coated with molten platinum was used as an inert electrode.

その結果、−晩の放置により着色液はかなり透明になっ
たが、若干の濁りがあった。このため。
As a result, the colored liquid became quite transparent after being left for one night, but there was some turbidity. For this reason.

更に一晩放置したところ完全に透明になった。また、電
池の初期電流値は約0.02A/fl、二晩放置後は0
.005A/Qであった。
When left overnight, it became completely transparent. In addition, the initial current value of the battery is approximately 0.02A/fl, and after being left for two nights it is 0.
.. It was 005A/Q.

失鹿桝附 実施例1と同様の建浴をしてから3週間経過した酸性錫
めっき液を第5図に示す如き装置のめっき槽にいれ、こ
のめっき槽と還元槽との間を循環させた。この場合、還
元槽の正極の不活性電極としては多孔性カーボン板にド
リルで貫通孔を設けたものを使用し、負極の可溶性金属
として錫仮にドリルで貫通孔を設けたものに塩化ビニル
製のボルトとナツトを使用して錫板とカーボン板が直接
に接触するようにそれぞれの貫通孔にボルトを挿入し、
ナツトで締めることで電池を形成した。
The acidic tin plating solution that had been prepared for three weeks in the same manner as in Example 1 was put into the plating tank of the apparatus shown in Figure 5, and circulated between the plating tank and the reduction tank. Ta. In this case, a porous carbon plate with drilled through holes is used as the positive inert electrode of the reduction tank, and a vinyl chloride plate is used as the negative electrode's soluble metal. Using bolts and nuts, insert the bolts into each through hole so that the tin plate and carbon plate are in direct contact.
A battery was formed by tightening with a nut.

前記、酸性錫めっき液の外観は全体に少し濁っており、
めっき槽底部に若干沈殿があったが、上記の状態で一晩
放置したところ、めっき液は完全に透明な状態になった
As mentioned above, the overall appearance of the acidic tin plating solution is a little cloudy,
Although there was some precipitate at the bottom of the plating tank, the plating solution became completely transparent after being left in the above conditions overnight.

従って、以上の結果から、本発明法により溶液中のSn
’+による沈殿をSn’+をSn”+に還元することで
再溶解することができ、また常にSn”をSn”に還元
することにより、Sn’+の蓄積を防ぎ、沈殿の生成を
防止できることが認められた。
Therefore, from the above results, it is clear that Sn in the solution can be reduced by the method of the present invention.
The precipitate caused by '+ can be redissolved by reducing Sn'+ to Sn"+, and by constantly reducing Sn" to Sn", the accumulation of Sn'+ is prevented and the formation of precipitates is prevented. It was recognized that it could be done.

発明の詳細 な説明したように、本発明によれば単に可溶性金属と不
活性電極とをSn’+含有溶液に浸漬し、電池を形成す
るだけでよいので設備費用が安価であり、またこれら可
溶性金属と不溶性電極とを溶液に浸漬するだけでSn←
がSn”+に還元するので、非常に簡便に実施できるも
のである。しかも、本発明によれば一過等の分離手段を
用いることなく S n’十による沈殿を減少し、或い
は除去し得るものである。
As described in detail, according to the present invention, it is sufficient to simply immerse a soluble metal and an inert electrode in a Sn'+-containing solution to form a battery, so the equipment cost is low. Sn← by simply immersing the metal and insoluble electrode in a solution
is reduced to Sn"+, so it can be carried out very easily. Moreover, according to the present invention, precipitation due to Sn'+ can be reduced or removed without using any separation means such as transient separation. It is something.

【図面の簡単な説明】 第1図乃至第5図はそれぞれ本発明の実施に用いる装置
の一例を示す概略図である。 1・・・還元槽、   2・・・Sn’十含有溶液、3
・・・可溶性金属、 4・・・不活性電極、5・・・導
 体。 出願人  上 村 工 業 株式会社 代理人  弁理士  小 島 隆 同 第1図 第2図    第3図
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 to 5 are schematic diagrams each showing an example of an apparatus used for carrying out the present invention. 1... Reduction tank, 2... Sn'10-containing solution, 3
... Soluble metal, 4 ... Inert electrode, 5 ... Conductor. Applicant Uemura Kogyo Co., Ltd. Agent Patent Attorney Takashi Kojima Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、4価の錫イオンを含む溶液中に可溶性金属と不活性
電極とをそれぞれ浸漬すると共に、これら可溶性金属と
不活性電極とを直接又は導体により接続して可溶性金属
を負極、不活性電極を正極とする電池を形成し、前記可
溶性金属を金属イオンに酸化して4価の錫イオンを含む
溶液中に溶解させると共に、この溶液中の4価の錫イオ
ンを2価の錫イオンに還元することを特徴とする4価の
錫イオンの還元方法。
A soluble metal and an inert electrode are respectively immersed in a solution containing monovalent and tetravalent tin ions, and the soluble metal and the inert electrode are connected directly or with a conductor to form a negative electrode and an inert electrode. Forming a battery as a positive electrode, oxidizing the soluble metal to metal ions and dissolving them in a solution containing tetravalent tin ions, and reducing the tetravalent tin ions in this solution to divalent tin ions. A method for reducing tetravalent tin ions, characterized by the following.
JP28900385A 1985-05-10 1985-12-20 Method for reducing quadrivalent tin ion Granted JPS6263692A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9937485 1985-05-10
JP60-99374 1985-05-10

Publications (2)

Publication Number Publication Date
JPS6263692A true JPS6263692A (en) 1987-03-20
JPH0576555B2 JPH0576555B2 (en) 1993-10-22

Family

ID=14245756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28900385A Granted JPS6263692A (en) 1985-05-10 1985-12-20 Method for reducing quadrivalent tin ion

Country Status (1)

Country Link
JP (1) JPS6263692A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129359A (en) * 2000-10-26 2002-05-09 Mec Kk Method for etching metallic tin or tin alloy, and etching solution for metallic tin or tin alloy
JP2004190042A (en) * 2002-03-05 2004-07-08 Daiwa Fine Chemicals Co Ltd (Laboratory) Pretreatment solution for providing catalyst for electroless plating, pretreatment method using the solution, and electroless plated film and/or plated object produced by use of the method
WO2024116456A1 (en) * 2022-11-28 2024-06-06 株式会社村田製作所 Method and device for regenerating plating composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129359A (en) * 2000-10-26 2002-05-09 Mec Kk Method for etching metallic tin or tin alloy, and etching solution for metallic tin or tin alloy
JP4580085B2 (en) * 2000-10-26 2010-11-10 メック株式会社 Method for etching metal tin or tin alloy and metal tin or tin alloy etchant
JP2004190042A (en) * 2002-03-05 2004-07-08 Daiwa Fine Chemicals Co Ltd (Laboratory) Pretreatment solution for providing catalyst for electroless plating, pretreatment method using the solution, and electroless plated film and/or plated object produced by use of the method
WO2024116456A1 (en) * 2022-11-28 2024-06-06 株式会社村田製作所 Method and device for regenerating plating composition
WO2024117086A1 (en) * 2022-11-28 2024-06-06 株式会社村田製作所 Plating method, and method for manufacturing electronic component

Also Published As

Publication number Publication date
JPH0576555B2 (en) 1993-10-22

Similar Documents

Publication Publication Date Title
El Din et al. On the anodic passivity of tin in alkaline solutions
EP0040243A1 (en) Process and apparatus for producing metals at porous hydrophobic catalytic barriers.
Zhang et al. Lead-silver anode behavior for zinc electrowinning in sulfuric acid solution
KR20030081511A (en) Method and apparatus for recovering metals by means of pulsating cathode currents, also in combination with anodic coproduction processes
JPS6263692A (en) Method for reducing quadrivalent tin ion
CN213570782U (en) Treatment device for micro-etching waste liquid and copper sulfate waste liquid
Dignam et al. Anodic behavior of silver in alkaline solutions
Toschev et al. On the activity of platinum electrodes during the process of electrolytic nucleation—I
Littauer et al. Anodic oxidation of Pb2+→ PbO2 in chloride solutions
JPH06330368A (en) Electrode for electrolysis
CN1008543B (en) Process for electrolysis of water
JPS6213589A (en) Method and apparatus for preventing inverse current in electrolytic cell
JP2623267B2 (en) Manufacturing method of low-purity high-purity electrolytic copper
Afifi et al. The formation of lead dioxide electrodes by the planté process
JP2001049480A (en) Electrolytic cell
JPS5877598A (en) Etching method for transparent conductive film
Stanković The Effect of Fe (II) ions on kinetics and mechanism of anodic dissolution and cathodic deposition of copper
KR101514997B1 (en) Noble metal electrolysis collecting method
CN115432787A (en) Method for removing hydrogen sulfide from salt lake brine through electrolysis
Albert et al. Copper electrowinning in chloride aqueous solutions
SE7501837L (en)
JPS6289880A (en) Treatment of tin removing solution
JPH0251983B2 (en)
JPH0510440B2 (en)
Li Application of Anodic Stripping Voltammetry in Light Nonferrous Metal Analysis