JPS6261675B2 - - Google Patents

Info

Publication number
JPS6261675B2
JPS6261675B2 JP57092196A JP9219682A JPS6261675B2 JP S6261675 B2 JPS6261675 B2 JP S6261675B2 JP 57092196 A JP57092196 A JP 57092196A JP 9219682 A JP9219682 A JP 9219682A JP S6261675 B2 JPS6261675 B2 JP S6261675B2
Authority
JP
Japan
Prior art keywords
nickel
nickel plating
sulfur
plating
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57092196A
Other languages
Japanese (ja)
Other versions
JPS58210185A (en
Inventor
Takashi Mori
Setsuo Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP57092196A priority Critical patent/JPS58210185A/en
Publication of JPS58210185A publication Critical patent/JPS58210185A/en
Publication of JPS6261675B2 publication Critical patent/JPS6261675B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、低過電圧を示し、また充分な耐久
性、耐食性を有す電極の製造法に関するものであ
り、さらに詳しくは、クロム、ニツケル又はこれ
らを含む合金相を表面組成として持つ金属基体表
面上にメツキ法により上記電極を製造する方法に
関するものである。 本発明により得られる電極は、水素発生用電
極、酸素発生用電極等、種々の電極としての用途
に適しているが、特にアルカリ溶液中の水素発生
反応を主反応とする陰極としての用途に適する。 従来、水素発生反応を陰極の主反応とする水電
解あるいは塩化アルカリ水溶液の電解において
は、主に鉄陰極が使用されてきた。鉄は、陰極材
料としてコスト的にも安価でありまたかなり低い
水素過電圧を示すものであるが、近年さらにこれ
を改良する必要性が生じている。 特に、陽イオン交換膜法食塩電解技術の発展と
共に、省エネルギーの面から水素過電圧の一層の
低下が望まれ、また高温、高アルカリ濃度という
電解条件のため、鉄の耐食性等が問題視されてい
る。このため、鉄陰極に比べて低い水素過電圧を
示し、経済的でしかも充分な耐久性、耐食性を有
する新しい陰極の出現が望まれ、各所で種々の検
討がなされており、いくつかの方法が提案されて
いる。 この中で、従来の水電解技術の発展の過程で提
案されてきた低水素過電圧を与えるニツケルメツ
キ、例えば、硫黄を含むニツケルメツキ(例えば
特公昭25−2305、あるいは吉沢四郎・渡辺信淳共
著「電気化学」共立全書出版の水電解の章、
P69)が古くより知られており、白金族等を被覆
した電極に比べコスト的にも安価であり、注目さ
れている。 本発明者らは、上記手法により得られるメツキ
被膜につき詳細な検討を行つた結果、これらのメ
ツキ被膜のもついくつかの欠点、即ち、基材との
密着性が不良であること、表面被膜がもろく弱い
こと、更には水素過電圧の低下が未だ不充分であ
ること、等の欠点を克服した電解用陰極の製法を
見出し先に特許出願を行つた(特願昭55−
092295、同56−000305)。しかしながら、硫黄を
含むニツケルメツキは、内部にピンホールが存在
するため、メツキを施す基体材料は、電極として
用いられる条件下で耐久性、耐食性を示すことが
必要となる。例えば、鉄を基体材料として用い、
その上に直接硫黄を含むニツケルメツキを施した
電極を、イオン交換膜法食塩電解の陰極として用
いた場合、高温、高アルカリ濃度という条件のた
めに、電解時あるいは切電時に基材中の鉄の溶解
がおこる。このように基材と被膜界面が侵食され
てくると、電解により発生したガスにより被膜の
ふくれ、更には被膜の剥離がおこる場合があり、
また基材より溶出した鉄イオンが電極に付着する
等々の理由により電極性能が劣化してくる。更
に、基材より溶出した鉄イオンがイオン交換膜の
膜性能を劣化させたり、更には得られる苛性ソー
ダの製品品質を低下させるおそれがある。 このような問題を解決するためには、硫黄を含
むニツケルメツキが施される基材表面は、電極と
して用いられる条件下で、耐食性、耐久性を示す
ことが要求される。本発明者らは、従来の知見に
加えて、いくつかの検討を行つたところ、高価な
白金属族金属を除いて、クロム、ニツケル又はこ
れらを含む合金相を表面組成として持つ金属基体
表面が、鉄に比較して優れた耐食性、耐久性を示
すことを確認した。 このような理由により、本発明者らは、クロ
ム、ニツケル又はこれらを含む合金相を表面組成
として持つ金属基体表面上の、硫黄を含むニツケ
ルメツキについて種々検討したところ、これらの
表面には必ずしも満足のいく密着性の良い被膜が
得られないことがわかつた。 本発明者らは、先に硫黄を含むニツケルメツキ
の下地メツキとして、アンモニウムイオンを含む
ニツケルメツキが良好な密着性を示すことを見い
出し、先に特許出願を行つた(特願昭57−
027510)。この方法を更に詳細に検討したとこ
ろ、クロム又はクロムを含む合金、例えばステン
レスのような表面組成をもつ基材には、中性領域
のPH(PH4前後よりPH6までの範囲)を示すアン
モニウムイオンを含むニツケルメツキは、密着不
良を生じ、メツキが剥離するという問題があるこ
とがわかつた。更に、ニツケル又はニツケルを含
む合金を表面組成として持つ基材においても、ク
ロム又はクロムを含む合金相ほど極端な密着不良
を生ずることはないが、時折、充分な密着性が得
られないことがわかつた。 これは、上記表面組成を持つ金属基体表面が不
働態皮膜を形成するためである。クロム又はクロ
ムを含む合金、例えばステンレスのような表面が
不働態皮膜を形成することはよく知られている
が、ニツケルの場合も又、不働態皮膜を形成する
場合がある。従つて、この不働態皮膜を除去しな
いと密着性の良いメツキを得ることはできない。 本発明者らは、このような問題点を解決するた
めに、上記表明組成を持つ金属基体表面上に硫黄
を含むニツケルメツキを行うために、その下地メ
ツキについて詳細な検討を続け、特に工業的な見
地から経済的で、確実かつ連続的な電極製造プロ
セスに適した下地メツキ浴並びに下地メツキ法に
ついて検討した結果、以下の二つの方法を取るこ
とにより、充分な密着性を示し、その結果、良好
な耐食性、耐久性を示し、かつ、優れた特性を有
す電極を得ることに成功した。 本発明により得られる電極は、以下の二つの方
法により製作される。 一つの方法は、上記基体表面にアンモニウムイ
オンを含み、かつPH2.5以下のニツケルメツキ浴
を用いて下地ニツケルメツキを行い、さらにその
上に硫黄を含むニツケルメツキ浴を用いてニツケ
ルメツキを施してなる電極の製造法である。 本発明者らは、アンモニウムイオンを含む下地
ニツケルメツキ浴のPHについて種々検討した結
果、下地ニツケルメツキ浴のPHを2.5以下の酸性
領域とすることにより、上記基体表面と下地ニツ
ケルメツキと硫黄を含むニツケルメツキとの密着
性が良好となることを見い出し本方法を確立し
た。 今一つの方法は、上記基体表面にアンモニウム
イオンを含まず、かつPH1以下の塩酸酸性ニツケ
ルメツキ浴を用いて、第一の下地ニツケルメツキ
を行い、さらにその上にアンモニウムイオンを含
むニツケルメツキ浴を用いて第二の下地ニツケル
メツキを行い、さらにその上に硫黄を含むニツケ
ルメツキ浴を用いてニツケルメツキを施してなる
電極の製造法である。 この第一の下地ニツケルメツキのための、塩酸
酸性のニツケルメツキ浴の典型はストライクニツ
ケルと呼ばれる塩化ニツケルと塩酸よりなるメツ
キ浴である。不働態皮膜を形成する表面にメツキ
をつける場合、下地メツキとしてストライクニツ
ケルを用いることは公知である。確かに、このス
トライクニツケルメツキは、上記表面組成を持つ
金属基体表面と充分な密着性を示す皮膜を得るこ
とができるが、本発明者らの検討によると、その
上層の硫黄を含むニツケルメツキとの密着性が不
良である。 本発明者らは、この問題について種々検討した
結果、上記のアンモニウムイオンを含むニツケル
メツキ浴を用いた第二の下地ニツケルメツキは、
ストライクニツケルとも良好な密着性を示し、か
つ、上層の硫黄を含むニツケルメツキとも良好な
密着性を示すことを見い出し本方法を確立した。 従つて、本発明は、クロム、ニツケル又はこれ
らを含む合金相を表面組成として持つ金属基体表
面に、アンモニウムイオンを含み、かつPH2.5以
下のニツケルメツキ浴を用いて下地ニツケルメツ
キを施すか、あるいはアンモニウムイオンを含ま
ず、かつPH1以下の塩酸酸性ニツケルメツキ浴を
用いて第一の下地ニツケルメツキを行い、さらに
その上にアンモニウムイオンを含むニツケルメツ
キ浴を用いて第二の下地ニツケルメツキを施した
後に、硫黄を含むニツケルメツキ浴を用いてニツ
ケルメツキを行うことを特徴とする電極の製造法
に関し、特に優れた耐食性、耐久性を有し、かつ
長期間にわたり低い水素過電圧を維持する電極を
与えることを特徴とするものである。 本発明で示す、クロム、ニツケル又はこれらを
含む合金相を表面組成として持つ金属基体表面と
は、クロム、ニツケル、クロム合金、ニツケル合
金又はクロム、ニツケルを含む合金、例えばステ
ンレス等の基体材料表面、あるいは金属表面にメ
ツキ法、溶射法、蒸着法等によりクロム、ニツケ
ル又はこれらを含む合金を緻密に被覆した金属基
体材料表面を意味する。これらの基体材料は、例
えば、高温、高アルカリ濃度の条件で電極基材と
して用いた場合、良好な耐食性、耐久性を示し、
かつ経済的な材料である。さらに、基体形状につ
いては、平板、メツシユ状、多孔状等、いかなる
形状のものでも良いが、高電流密度での水素発生
電極として用いる場合、特にエキスパンドメタ
ル、パンチングメタル、金網状等の基体形状を用
いることが好ましい。 本発明の電極の製造法は、上記基体表面上に、
前記した二つの方法により、下地ニツケルメツキ
を施すことが必要である。この二つの方法の効果
はほとんど同じであり、実際のメツキ作業におい
て都合の良い方法を選択することが可能である。
下地ニツケルメツキを行う一つの方法は、アンモ
ニウムイオンを含み、かつPH2.5以下のニツケル
メツキ浴を用いて下地ニツケルメツキを行う方法
である。 ニツケル塩は可溶性の塩であれば良く、塩化ニ
ツケル、硫酸ニツケル、酢酸ニツケル,スルフア
ミン酸ニツケル等が用いられ、その濃度は特に制
限を受けないが、通常0.05モル濃度から2.0モル
濃度の範囲で用いられる。 アンモニウムイオンは、塩化物、硫酸塩等の可
溶性アンモニウム塩、あるいは水酸化アンモニウ
ム、その他のアンモニウム塩によつてメツキ浴中
に加えられる。アンモニウムイオンを加えること
により、下地メツキ層と硫黄を含むニツケルメツ
キ層との密着性は著しく向上する。メツキ浴中に
加えられるアンモニウムイオン濃度は、0.05モル
濃度以上、上限は特に制限されず、飽和濃度まで
許される。アンモニウムイオン濃度が上記濃度以
下の場合は、得られるニツケルメツキ層と硫黄を
含むニツケルメツキ層との密着性は不充分とな
る。下地ニツケルメツキ浴のPHは2.5以下に制限
される。下地ニツケルメツキ浴のPHが2.5を越え
ると、クロム、ニツケル又はこれらを含む合金相
を表面組成として持つ金属基体表面と、下地ニツ
ケルメツキ層との密着性が不充分となる。PHの調
整は、塩酸、硫酸等の酸により容易に行われる。
なお、下地メツキ層を与えるメツキ浴中には得ら
れる表面被膜を不都合ならしめない限り、上記成
分の他に他の可溶性塩を加えることも許される。
例えば、通常のニツケルメツキに用いられる界面
活性剤やホウ酸等の緩衝剤を使用しても良い。さ
らに、下地メツキ層を形成するためのメツキの操
作条件は、特に厳密な制限を受けないが、好まし
くは、室温より70℃程度の温度範囲、0.1/
10A/dm2程度の電流密度範囲で撹拌下のもとで
メツキを行うことが望ましい。 下地ニツケルメツキを行う今一つの方法は、ア
ンモニウムイオンを含まず、かつPH1以下の塩酸
酸性ニツケルメツキ浴を用いて第一の下地ニツケ
ルメツキを行い、さらにその上にアンモニウムイ
オンを含むニツケルメツキ浴を用いて第二の下地
ニツケルメツキを行う方法である。 第一の下地ニツケルメツキ浴の組成は、一般に
塩酸と塩化ニツケルを含む。塩化ニツケルの濃度
は特に制限を受けないが、一般に1モル濃度前後
の範囲で用いられる。さらに塩酸を添加してPH1
以下の範囲、好ましくはPH0以下の範囲までPHを
低下させる。又、この第一の下地メツキの操作条
件は、特に厳密な制限を受けないが、一般に室温
下で数A/dm2〜10A/dm2程度の電流密度範囲
で行われる。 第二の下地ニツケルメツキは、アンモニウムイ
オンを含むニツケルメツキ浴を用いることが必要
である。なお、この場合のメツキ浴のPHは特に制
限を受けず、通常の建浴時のPH3.5〜6の範囲で
用いられる。 ニツケル塩は可溶性の塩であれば良く、塩化ニ
ツケル、硫酸ニツケル、酢酸ニツケル、スルフア
ミン酸ニツケル等が用いられ、その濃度は特に制
限を受けないが、通常0.05モル濃度から2.0モル
濃度の範囲が用いられる。 アンモニウムイオンは塩化物、硫酸塩等の可溶
性アンモニウム塩、あるいは水酸化アンモニウ
ム、その他のアンモニウム塩によつてメツキ浴中
に加えられる。アンモニウムイオンを加えること
により、この第二の下地メツキ層と硫黄を含むニ
ツケルメツキ層との密着性は著しく向上し、か
つ、第一の下地メツキ層とも良好な密着性を示
す。 メツキ浴中に加えられるアンモニウムイオンの
濃度は0.05モル濃度以上、上限は特に制限されず
飽和濃度まで許される。アンモニウムイオン濃度
が上記濃度以下の場合は、得られるニツケルメツ
キ層と硫黄を含むニツケルメツキ層との密着性は
不充分となる。 なお、第二の下地メツキ層を与えるメツキ浴中
には、得られる表面被膜を不都合ならしめない限
り、上記成分の他に他の可溶性塩を加えることも
許される。例えば、通常のニツケルメツキに用い
られる界面活性剤やホウ酸等の緩衝剤を使用して
も良い。さらに、下地メツキ層を形成するための
メツキの操作条件は、特に厳密な制限を受けない
が、好ましくは室温より70℃程度の温度範囲、
0.1〜10A/dm2程度の電流密度範囲で撹拌下の
もとでメツキを行うことが望ましい。 本発明の電極を与えるためには、上記二つのい
ずれかの方法により施した下地ニツケルメツキ層
の上に、硫黄を含むニツケルメツキ層を形成する
ことが必要である。 硫黄を含むニツケルメツキは、可溶性のニツケ
ル塩と適量の可溶性含硫黄化合物を含むニツケル
メツキ浴により与えられる。さらに好ましくは、
ニツケルメツキ浴に適量のアンモニウムイオンを
加えることが望ましい。 ニツケル塩は可溶性の塩であれば良く、通常、
0.1モル濃度から2.0モル濃度の範囲で用いること
が望ましい。 メツキ浴中に用いられる可溶性含硫黄化合物
は、チオシアン酸塩、チオ尿素、硫黄の酸化数が
5以下のオキソ酸塩を意味し、特に低水素過電圧
を示すメツキ被膜を与えるという効果をもつ。 硫黄の酸化数が5以下のオキソ酸塩とは、例え
ば、亜硫酸、重亜硫酸、チオ硫酸、亜ジチオン酸
等の塩を意味する。 メツキ浴中に加えられるチオシアン酸塩,チオ
尿素硫黄の酸化数が5以下のオキソ酸塩の濃度
は、化合物中の硫黄の量で0.01モル濃度以上、
1.0モル濃度以下、好ましくは0.05モル濃度以上
1モル濃度以下の範囲で用いることが望ましい。 硫黄化合物の濃度が0.01モル濃度未満の場合
は、得られるニツケルメツキ表面の水素過電圧の
低下が不充分であり、また1.0モル濃度をこえる
と下地メツキとメツキ被膜との密着性が不良とな
る。さらに、硫黄を含むニツケルメツキを与える
ニツケルメツキ浴中に適量のアンモニウムイオン
を加えることにより、得られるメツキ被膜の密着
性は良好となり、またメツキの被覆力も増大し、
さらに強固な特性をもつ被膜表面を得ることがき
る。メツキ浴中に加えられるアンモニウムイオン
の濃度は、チオシアン酸塩、チオ尿素、硫黄の酸
化数が5以下のオキソ酸塩等の硫黄化合物中の硫
黄の量に対し少なくとも0.5倍モル濃度以上用い
ることが好ましく、上限は特に制限されず、飽和
濃度まで許される。 メツキ浴のPHは6以下が好ましく、PHが6をこ
えると得られるメツキ表面は、もろい電析になり
やすく、剥離しやすい傾向を持つ。 なお、硫黄を含むニツケルメツキ層を形成する
際に用いられるメツキ浴中には、上記の成分の他
に、得られる表面被膜を不都合ならしめない限り
通常のメツキで用いられる界面活性剤や他の可溶
性塩を加えることも許される。例えば、ニツケル
メツキ浴によく用いられるホウ酸等の緩衝剤の使
用は、本発明で用いるニツケルメツキ被膜の特性
を一層良好ならしめる場合もあり、好適成分とし
て本発明で用いるメツキ浴に加えられる場合もあ
る。また、硫黄を含むニツケルメツキ層を形成す
るためのメツキの操作条件は、特に厳密な制限を
受けないが、好ましくは室温より70℃程度の温度
範囲、0.1〜10A/dm2程度の電流密度範囲で撹
拌下のもとでメツキを行うことが望ましい。 さらに、本発明の電極を与えるために、メツキ
後の処理として適当な加熱処理を行うことはメツ
キの密着性を一層良好ならしめる場合もあり、表
面被膜の持つ特性を失わない範囲においてこれら
の処理を行つても良い。 以上のように、クロム、ニツケル又はこれらを
含む合金相を表面組成として持つ金属基体表面
に、アンモニウムイオンを含み、かつPH2.5以下
のニツケルメツキ浴を用いて下地ニツケルメツキ
を施すか、あるいはアンモニウムイオンを含ま
ず、かつPH1以下の塩酸酸性ニツケルメツキ浴を
用いて第一の下地ニツケルメツキを行い、さらに
その上にアンモニウムイオンを含むニツケルメツ
キ浴を用いて第二の下地ニツケルメツキを施した
後に、硫黄を含むニツケルメツキ浴を用いてニツ
ケルメツキを行うことにより、優れた耐食性、耐
久性を有し、特に低い水素過電圧を長期間にわた
り維持することにより、水電解、食塩電解用陰極
としてエネルギー効率の極めて高い電極を与える
ことができる。 以下、実施例を述べるが、本発明はこれに限定
されるものではない。 実施例1、比較例1〜3 基体材料としてクロムを含む合金であるステン
レス(SUS304)の平板(3mm×5mm)を用い、
脱脂酸洗等の通常の前処理の後に、表1に示すメ
ツキ浴組成を用いて下地ニツケルメツキを行い、
その上に硫黄を含むニツケルメツキを行つた。こ
れらの試料につき密着度試験として良く知られた
90゜曲げ試験の測定結果もあわせて表1に示す。 表より明らかなように、アンモニウムイオンを
含み、PH2.5以下の下地ニツケルメツキ浴を用い
た本発明の実施例1は良好な密着性を示す。一
方、下地メツキを行わない比較例3、下地ニツケ
ルメツキ浴中にアンモニウムイオンを含まない比
較例2、下地ニツケルメツキ浴中のPHが2.5を越
えている比較例1は、いずれも密着性が不良であ
ることがわかる。 次に、この実施例1の試料を30wt%NaOH溶液
中で白金を陽極とし、温度90℃、15A/dm2の電
解条件で100日間陰極として使用し、陰極電位を
測定した。
The present invention relates to a method for manufacturing an electrode that exhibits low overvoltage and has sufficient durability and corrosion resistance. The present invention relates to a method of manufacturing the above-mentioned electrode by a plating method. The electrode obtained by the present invention is suitable for use as a variety of electrodes such as an electrode for hydrogen generation and an electrode for oxygen generation, but is particularly suitable for use as a cathode whose main reaction is a hydrogen generation reaction in an alkaline solution. . Conventionally, iron cathodes have been mainly used in water electrolysis or electrolysis of aqueous alkali chloride solutions in which hydrogen generation reaction is the main reaction at the cathode. Iron is inexpensive as a cathode material and exhibits a fairly low hydrogen overvoltage, but in recent years there has been a need to further improve this. In particular, with the development of cation exchange membrane salt electrolysis technology, a further reduction in hydrogen overvoltage is desired from the perspective of energy conservation, and due to the electrolytic conditions of high temperature and high alkali concentration, the corrosion resistance of iron is becoming a problem. . For this reason, there is a desire for a new cathode that exhibits lower hydrogen overvoltage than iron cathodes, is economical, and has sufficient durability and corrosion resistance. Various studies have been conducted in various places, and several methods have been proposed. has been done. Among these, nickel metals that provide a low hydrogen overvoltage that have been proposed in the process of development of conventional water electrolysis technology, for example, nickel metals containing sulfur (for example, nickel metals containing sulfur (for example, Japanese Patent Publication No. 25-2305, or "Electrochemistry" co-authored by Shiro Yoshizawa and Nobuyuki Watanabe) Water electrolysis chapter published by Kyoritsu Zensho Publishing,
P69) has been known for a long time and is attracting attention because it is cheaper than electrodes coated with platinum group metals, etc. The present inventors conducted a detailed study on the plating films obtained by the above method, and found that these plating films have several drawbacks, namely, poor adhesion to the base material, and poor surface coating. He discovered a method for manufacturing an electrolytic cathode that overcomes the disadvantages of being brittle and weak, and furthermore, that hydrogen overvoltage is still insufficiently reduced.
092295, 56-000305). However, since nickel plating containing sulfur has pinholes inside, the base material to which the plating is applied needs to exhibit durability and corrosion resistance under the conditions used as an electrode. For example, using iron as the base material,
When an electrode directly coated with sulfur-containing nickel plating is used as a cathode in ion-exchange membrane salt electrolysis, iron in the base material is removed during electrolysis or power cut due to the conditions of high temperature and high alkali concentration. Dissolution occurs. If the interface between the base material and the coating is eroded in this way, the gas generated by electrolysis may cause the coating to bulge or even peel off.
Further, the electrode performance deteriorates due to reasons such as iron ions eluted from the base material adhering to the electrode. Furthermore, iron ions eluted from the base material may deteriorate the membrane performance of the ion exchange membrane, and furthermore, there is a risk that the product quality of the resulting caustic soda may be reduced. In order to solve these problems, the surface of the base material to which sulfur-containing nickel plating is applied is required to exhibit corrosion resistance and durability under the conditions used as an electrode. In addition to conventional knowledge, the present inventors conducted several studies and found that, with the exception of expensive platinum group metals, the surface of a metal substrate has a surface composition of chromium, nickel, or an alloy phase containing these. It was confirmed that it exhibits superior corrosion resistance and durability compared to iron. For these reasons, the present inventors have conducted various studies on sulfur-containing nickel plating on the surface of metal substrates having surface compositions of chromium, nickel, or alloy phases containing these, and have found that these surfaces are not necessarily satisfactory. It was found that a film with good adhesion could not be obtained. The present inventors have previously discovered that nickel plating containing ammonium ions exhibits good adhesion as a base plating for sulfur-containing nickel plating, and has previously filed a patent application (Japanese Patent Application No.
027510). A more detailed study of this method revealed that ammonium ions with a pH in the neutral range (range from around PH4 to PH6) can be used on substrates with surface compositions such as chromium or alloys containing chromium, such as stainless steel. It has been found that the nickel plating contained therein causes a problem of poor adhesion and peeling of the plating. Furthermore, it has been found that even with a substrate having a surface composition of nickel or an alloy containing nickel, adhesion failure is not as extreme as with chromium or an alloy containing chromium, but sometimes sufficient adhesion cannot be obtained. Ta. This is because the surface of the metal substrate having the above surface composition forms a passive film. It is well known that surfaces such as chromium or alloys containing chromium, such as stainless steel, form a passive film, but nickel may also form a passive film. Therefore, plating with good adhesion cannot be obtained unless this passive film is removed. In order to solve these problems, the present inventors have continued to conduct detailed studies on the base plating in order to perform sulfur-containing nickel plating on the surface of the metal substrate having the above-mentioned composition. As a result of studying base plating baths and base plating methods that are economical from a viewpoint and suitable for reliable and continuous electrode manufacturing processes, the following two methods showed sufficient adhesion and resulted in good results. We succeeded in obtaining an electrode with excellent corrosion resistance and durability, as well as excellent properties. The electrode obtained according to the present invention can be manufactured by the following two methods. One method is to manufacture an electrode by performing base nickel plating on the surface of the substrate using a nickel plating bath containing ammonium ions and having a pH of 2.5 or less, and then applying nickel plating on top of that using a nickel plating bath containing sulfur. It is the law. As a result of various studies on the pH of the base nickel plating bath containing ammonium ions, the present inventors found that by setting the PH of the base nickel plating bath to an acidic region of 2.5 or less, the substrate surface, the base nickel plating, and the sulfur-containing nickel plating were We found that this method provides good adhesion and established this method. Another method is to perform the first base nickel plating on the surface of the substrate using a nickel plating bath containing no ammonium ions and containing hydrochloric acid with a pH of 1 or less, and then apply a second nickel plating bath on top of that using a nickel plating bath containing ammonium ions. In this method, an electrode is manufactured by applying nickel plating to the base layer, and then applying nickel plating thereon using a sulfur-containing nickel plating bath. A typical example of a hydrochloric acid acidic nickel plating bath for this first base nickel plating is a plating bath made of nickel chloride and hydrochloric acid called strike nickel. When plating the surface on which a passive film is to be formed, it is known to use strike nickel as the base plating. It is true that this strike nickel plating can produce a film that exhibits sufficient adhesion to the surface of a metal substrate having the above-mentioned surface composition, but according to the studies of the present inventors, it is possible to obtain a film that exhibits sufficient adhesion to the surface of the metal substrate having the above-mentioned surface composition. Adhesion is poor. As a result of various studies on this problem, the present inventors found that the second base nickel plating using the above-mentioned nickel plating bath containing ammonium ions:
The present method was established by discovering that it exhibits good adhesion to strike nickel and also to the upper layer of sulfur-containing nickel. Therefore, in the present invention, the surface of a metal substrate having a surface composition of chromium, nickel, or an alloy phase containing these is subjected to base nickel plating using a nickel plating bath that contains ammonium ions and has a pH of 2.5 or less, or A first base nickel plating is performed using a hydrochloric acid nickel plating bath that does not contain ions and has a pH of 1 or less, and then a second base nickel plating is applied thereon using a nickel plating bath containing ammonium ions, and then a sulfur-containing nickel plating bath is applied. This invention relates to a method for producing an electrode characterized by performing nickel plating using a nickel plating bath, and is characterized in that it provides an electrode that has particularly excellent corrosion resistance and durability, and maintains a low hydrogen overvoltage for a long period of time. be. In the present invention, the surface of a metal substrate having a surface composition of chromium, nickel, or an alloy phase containing these refers to the surface of a substrate material such as chromium, nickel, a chromium alloy, a nickel alloy, or an alloy containing chromium or nickel, such as stainless steel, Alternatively, it refers to the surface of a metal base material whose metal surface is densely coated with chromium, nickel, or an alloy containing these by plating, thermal spraying, vapor deposition, or the like. These base materials exhibit good corrosion resistance and durability when used as electrode base materials under conditions of high temperature and high alkali concentration, for example.
It is also an economical material. Furthermore, the shape of the substrate may be any shape such as a flat plate, mesh shape, porous shape, etc., but when used as a hydrogen generating electrode at high current density, the shape of the base material such as expanded metal, punched metal, wire mesh shape, etc. is particularly suitable. It is preferable to use The method for manufacturing an electrode of the present invention includes, on the surface of the substrate,
It is necessary to apply the base nickel plating using the two methods described above. The effects of these two methods are almost the same, and it is possible to select a convenient method in actual plating work.
One method for performing base nickel plating is to perform base nickel plating using a nickel plating bath containing ammonium ions and having a pH of 2.5 or less. The nickel salt may be any soluble salt, and nickel chloride, nickel sulfate, nickel acetate, nickel sulfamate, etc. are used.The concentration is not particularly limited, but is usually used in the range of 0.05 molar to 2.0 molar. It will be done. Ammonium ions are added to the plating bath by soluble ammonium salts such as chloride, sulfate, or ammonium hydroxide or other ammonium salts. By adding ammonium ions, the adhesion between the base plating layer and the sulfur-containing nickel plating layer is significantly improved. The ammonium ion concentration added to the plating bath is 0.05 molar or more, and the upper limit is not particularly limited, and a saturation concentration is allowed. If the ammonium ion concentration is below the above concentration, the adhesion between the resulting nickel plating layer and the sulfur-containing nickel plating layer will be insufficient. The pH of the base nickel metal bath is limited to 2.5 or less. When the pH of the base nickel plating bath exceeds 2.5, the adhesion between the base nickel plating layer and the surface of the metal substrate having a surface composition of chromium, nickel, or an alloy phase containing these becomes insufficient. Adjustment of pH is easily carried out using acids such as hydrochloric acid and sulfuric acid.
In addition to the above-mentioned components, other soluble salts may be added to the plating bath for forming the base plating layer, as long as they do not cause any inconvenience to the resulting surface coating.
For example, a surfactant or a buffer such as boric acid used in ordinary nickel plating may be used. Further, the operating conditions for plating to form the base plating layer are not subject to any particular strict limitations, but are preferably within a temperature range of about 70°C from room temperature, and at a temperature of 0.1/
It is desirable to perform plating under stirring at a current density range of about 10 A/dm 2 . Another method for performing base nickel plating is to perform the first base nickel plating using a hydrochloric acid nickel plating bath that does not contain ammonium ions and has a pH of 1 or less, and then to apply the second base nickel plating using a nickel plating bath containing ammonium ions. This is a method of performing nickel plating on the base. The composition of the first base nickel plating bath generally includes hydrochloric acid and nickel chloride. The concentration of nickel chloride is not particularly limited, but is generally used in a range of about 1 molar concentration. Furthermore, add hydrochloric acid to PH1
The PH is lowered to the following range, preferably PH0 or lower. Further, the operating conditions for this first base plating are not subject to any particular strict limitations, but it is generally carried out at room temperature and in a current density range of about several A/dm 2 to 10 A/dm 2 . For the second base nickel plating, it is necessary to use a nickel plating bath containing ammonium ions. Note that the pH of the plating bath in this case is not particularly limited, and is used within the range of PH 3.5 to 6 at the time of normal bath preparation. The nickel salt may be any soluble salt, and nickel chloride, nickel sulfate, nickel acetate, nickel sulfamate, etc. are used.The concentration is not particularly limited, but is usually in the range of 0.05 molar to 2.0 molar. It will be done. Ammonium ions are added to the plating bath by soluble ammonium salts such as chloride, sulfate, or ammonium hydroxide or other ammonium salts. By adding ammonium ions, the adhesion between the second base plating layer and the sulfur-containing nickel plating layer is significantly improved, and also shows good adhesion to the first base plating layer. The concentration of ammonium ions added to the plating bath is 0.05 molar or more, and the upper limit is not particularly limited, and a saturation concentration is allowed. If the ammonium ion concentration is below the above concentration, the adhesion between the resulting nickel plating layer and the sulfur-containing nickel plating layer will be insufficient. In addition to the above-mentioned components, other soluble salts may be added to the plating bath for forming the second base plating layer, as long as they do not make the resulting surface coating undesirable. For example, a surfactant or a buffer such as boric acid used in ordinary nickel plating may be used. Furthermore, the operating conditions for plating to form the base plating layer are not subject to any particular strict limitations, but preferably a temperature range of about 70°C from room temperature;
It is desirable to perform plating under stirring at a current density range of about 0.1 to 10 A/dm 2 . In order to provide the electrode of the present invention, it is necessary to form a sulfur-containing nickel plating layer on the base nickel plating layer applied by either of the above two methods. Nickel plating containing sulfur is provided by a nickel plating bath containing a soluble nickel salt and an appropriate amount of a soluble sulfur-containing compound. More preferably,
It is desirable to add an appropriate amount of ammonium ions to the Nickelmecki bath. Nickel salt can be any soluble salt, usually
It is desirable to use the concentration in the range of 0.1 molar to 2.0 molar. The soluble sulfur-containing compound used in the plating bath means a thiocyanate, a thiourea, or an oxoacid salt having a sulfur oxidation number of 5 or less, and is particularly effective in providing a plating film exhibiting a low hydrogen overvoltage. The oxoacid salt having a sulfur oxidation number of 5 or less means, for example, salts of sulfite, bisulfite, thiosulfite, dithionite, and the like. The concentration of thiocyanates and thiourea oxoacid salts with an oxidation number of sulfur of 5 or less to be added to the bath is 0.01 molar or more based on the amount of sulfur in the compound,
It is desirable to use it in a range of 1.0 molar or less, preferably 0.05 molar or more and 1 molar or less. If the concentration of the sulfur compound is less than 0.01 molar concentration, the hydrogen overvoltage on the resulting nickel plating surface will be insufficiently reduced, and if it exceeds 1.0 molar concentration, the adhesion between the base plating and the plating film will be poor. Furthermore, by adding an appropriate amount of ammonium ions to the nickel plating bath that provides the nickel plating containing sulfur, the adhesion of the resulting plating film is improved, and the covering power of the plating is also increased.
A coating surface with even stronger properties can be obtained. The concentration of ammonium ions added to the plating bath should be at least 0.5 times the molar concentration relative to the amount of sulfur in sulfur compounds such as thiocyanates, thioureas, and oxoacids with a sulfur oxidation number of 5 or less. Preferably, the upper limit is not particularly limited and is allowed up to saturation concentration. The pH of the plating bath is preferably 6 or less; when the pH exceeds 6, the resulting plating surface tends to become brittle and easily peel off. In addition to the above-mentioned components, the plating bath used to form the sulfur-containing nickel plating layer may contain surfactants and other soluble materials used in normal plating, as long as they do not make the resulting surface coating inconvenient. It is also permissible to add salt. For example, the use of a buffer such as boric acid, which is often used in nickel plating baths, may improve the properties of the nickel plating film used in the present invention, and may be added as a suitable component to the nickel plating bath used in the present invention. . Furthermore, the operating conditions for plating to form a sulfur-containing nickel plating layer are not subject to any particular strict limitations, but preferably a temperature range of about 70°C from room temperature and a current density range of about 0.1 to 10 A/dm2. It is desirable to perform plating under stirring. Furthermore, in order to provide the electrode of the present invention, appropriate heat treatment as a treatment after plating may improve the adhesion of the plating, and these treatments may be carried out to the extent that the characteristics of the surface coating are not lost. You may also do so. As described above, the surface of a metal substrate having a surface composition of chromium, nickel, or an alloy phase containing these is subjected to base nickel plating using a nickel plating bath that contains ammonium ions and has a pH of 2.5 or less, or is coated with ammonium ions. After performing the first base nickel plating using an acidic nickel plating bath containing no sulfur and having a pH of 1 or less, and then applying the second base nickel plating using a nickel plating bath containing ammonium ions, a nickel plating bath containing sulfur is applied. By performing nickel plating using nickel plating, it has excellent corrosion resistance and durability, and by maintaining particularly low hydrogen overvoltage over a long period of time, it is possible to provide an electrode with extremely high energy efficiency as a cathode for water electrolysis and salt electrolysis. can. Examples will be described below, but the present invention is not limited thereto. Example 1, Comparative Examples 1 to 3 A flat plate (3 mm x 5 mm) of stainless steel (SUS304), which is an alloy containing chromium, was used as the base material.
After normal pretreatment such as degreasing and pickling, base nickel plating is performed using the plating bath composition shown in Table 1.
On it he made a sulfur-containing nickel-meck. A well-known adhesion test was performed on these samples.
Table 1 also shows the measurement results of the 90° bending test. As is clear from the table, Example 1 of the present invention using a base nickel plating bath containing ammonium ions and having a pH of 2.5 or less shows good adhesion. On the other hand, Comparative Example 3 in which base plating was not performed, Comparative Example 2 in which ammonium ions were not included in the base nickel plating bath, and Comparative Example 1 in which the PH in the base nickel plating bath exceeded 2.5 all had poor adhesion. I understand that. Next, the sample of Example 1 was used as a cathode in a 30 wt % NaOH solution using platinum as an anode under electrolytic conditions of 90° C. and 15 A/dm 2 for 100 days, and the cathode potential was measured.

【表】 陰極電位の測定は、酸化水銀電極に、照合して
ルギン毛管法で測定した。この測定の間、陰極電
位は、−1.07〜−1.09Vvs.Hg/HgOでほぼ一定の
値を示し、剥離の問題もなく、密着性も良好であ
つた。なお、基材として用いたステンレス平板の
陰極電位は、同一の条件で、−1.42Vvs.Hg/HgO
であり、本発明の実施例1の試料は基材に比較し
て約340mVも低い水素過電圧を示すことがわか
る。 以上のように本発明の実施例1は、極めて低い
水素過電圧を長期間維持しており、優れた耐久
性、耐食性を示すことがわかる。 実施例2、比較例4 実施例1で示した基体材料を用い、脱脂、酸洗
等の通常の前処理の後に表2に示すメツキ浴組成
を用いて下地ニツケルメツキを行い、さらにその
上に実施例1と同様の浴組成の硫黄を含むニツケ
ルメツキを行つた。これらの試料につき密着度試
験として良く知られた90゜曲げ試験の測定結果も
あわせて表2に示す。 表より明らかなように、PH0以下の塩酸酸性ニ
ツケルメツキ浴を用い第一の下地メツキを行い、
その後アンモニウムイオンを含むニツケルメツキ
浴を用い第二の下地メツキを行い、さらにその上
に硫黄を含むニツケルメツキを施した本発明の実
施例2は良好な密着性を示す。一方、第一の下地
メツキを行い、第二の下地メツキを行わず、直接
に硫黄を含むニツケルメツキを施した比較例4
は、密着性が不良であることがわかる。
[Table] Cathode potential was measured using the Luggin capillary method using a mercury oxide electrode. During this measurement, the cathode potential showed a nearly constant value of -1.07 to -1.09V vs. Hg/HgO, and there was no problem of peeling, and the adhesion was good. The cathode potential of the stainless steel plate used as the base material was -1.42V vs. Hg/HgO under the same conditions.
It can be seen that the sample of Example 1 of the present invention exhibits a hydrogen overpotential that is about 340 mV lower than that of the base material. As described above, it can be seen that Example 1 of the present invention maintains an extremely low hydrogen overvoltage for a long period of time and exhibits excellent durability and corrosion resistance. Example 2, Comparative Example 4 Using the base material shown in Example 1, after normal pretreatment such as degreasing and pickling, base nickel plating was performed using the plating bath composition shown in Table 2, and then the plating was carried out on top of that. Nickel plating containing sulfur was carried out with the same bath composition as in Example 1. Table 2 also shows the measurement results of a 90° bending test, which is a well-known adhesion test, for these samples. As is clear from the table, the first base plating was performed using a hydrochloric acid acidic nickel plating bath with a pH of 0 or less,
Example 2 of the present invention, in which a second base plating was then performed using a nickel plating bath containing ammonium ions, and a nickel plating containing sulfur was further applied thereon, had good adhesion. On the other hand, Comparative Example 4 in which the first base plating was performed, the second base plating was not performed, and nickel plating containing sulfur was directly applied.
It can be seen that the adhesion is poor.

【表】【table】

【表】 次に、この実施例2の試料を実施例1と同一の
条件で50日間陰極として使用し、陰極電位を測定
した。この測定の間、陰極電位は−1.08〜
1.10Vvs.Hg/HgOで、ほぼ実施例1と同一の結
果を示した。 以上のように、本発明の実施例2は極めて低い
水素過電圧を維持しており、優れた耐久性、耐食
性を示すことがわかる。 実施例3、比較例5 基体材料として鉄平板(5cm×3cm)上に、カ
ニゼン社のブルーシユーマー液を用いて緻密な無
電解ニツケルメツキを施したものを用い、以下の
ような試料を作成した。即ち、実施例3において
は表3に示したニツケルメツキ浴を用いて表4に
示した条件で下地ニツケルメツキを行つた。 表3 ニツケルメツキ浴組成 塩化ニツケル 0.5M/ 塩化アンモニウム 0.5M/ 塩酸(36%) 2ml/ PH 約1.5 表4 ニツケルメツキ条件 温度 40℃ 電流密度 2A/dm2 時間 10分 その後、表5に示したニツケルメツキ浴を用い
て表6に示した条件で、硫黄を含むニツケルメツ
キを行つた。 表5 ニツケルメツキ浴組成 塩化ニツケル 0.5M/ チオシアン酸ナトリウム 0.2M/ 塩化アンモニウム 1.0M/ ホウ酸 0.49M/ 表6 ニツケルメツキ条件 温度 60℃ 電流密度 1A/dm2 メツキ時間 2時間 一方、比較例5においては、無電解ニツケルメ
ツキした試料上に下地ニツケルメツキを行わず、
直接実施例3と同一のメツキ浴、メツキ条件で、
硫黄を含むニツケルメツキを行つた。 これらの試料を陰極として実施例1に示した条
件で10日間使用した。表7に各例の陰極電位の測
定結果、並びに10日後の表面状態を示す。なお、
基材として用いた無電解ニツケルメツキを行つた
試料の陰極電位は−1.48Vvs.Hg/HgOであつ
た。
[Table] Next, the sample of Example 2 was used as a cathode for 50 days under the same conditions as Example 1, and the cathode potential was measured. During this measurement, the cathode potential is −1.08~
Almost the same results as in Example 1 were shown at 1.10V vs. Hg/HgO. As described above, it can be seen that Example 2 of the present invention maintains an extremely low hydrogen overvoltage and exhibits excellent durability and corrosion resistance. Example 3, Comparative Example 5 The following samples were prepared using a steel plate (5 cm x 3 cm) as a base material, which was coated with dense electroless nickel plating using Kanigen's Blue Schumer solution. did. That is, in Example 3, base nickel plating was performed using the nickel plating bath shown in Table 3 under the conditions shown in Table 4. Table 3 Nickel plating bath composition Nickel chloride 0.5M / Ammonium chloride 0.5M / Hydrochloric acid (36%) 2ml / PH approx. 1.5 Table 4 Nickel plating conditions Temperature 40℃ Current density 2A/dm 2 hours 10 minutes After that, the nickel plating bath shown in Table 5 was applied. Nickel plating containing sulfur was performed under the conditions shown in Table 6. Table 5 Nickel plating bath composition Nickel chloride 0.5M / Sodium thiocyanate 0.2M / Ammonium chloride 1.0M / Boric acid 0.49M / Table 6 Nickel plating condition temperature 60℃ Current density 1A/dm 2 Plating time 2 hours On the other hand, in Comparative Example 5 , without performing base nickel plating on the electroless nickel plated sample,
Directly using the same plating bath and plating conditions as in Example 3,
They performed nickel-metal removal containing sulfur. These samples were used as cathodes under the conditions shown in Example 1 for 10 days. Table 7 shows the measurement results of the cathode potential of each example and the surface condition after 10 days. In addition,
The cathode potential of the sample used as a base material and subjected to electroless nickel plating was -1.48V vs. Hg/HgO.

【表】 上表に示したように、本発明の実施例3は良好
な密着性を示し、極めて低い水素過電圧を維持し
ている。一方、比較例5においては、密着性が不
良であり、メツキ被膜が剥離し、電極性能も劣化
している。さらにこの実施例3の試料を100日間
連続して同一の条件で電解試験を行つたところ、
陰極電位はほぼ一定であり、かつメツキ層が剥離
するような問題もなかつた。 以上のように本発明の実施例3は、極めて低い
水素過電圧を長期間維持しており、優れた耐食
性、耐久性を示す電極を与えることがわかる。 実施例 4 基体材料としてクロム平板(3mm×5mm)を用
い、脱脂、酸洗等の通常の前処理の後に、実施例
2と同様のメツキ浴、メツキ条件にて第一、第二
の下地ニツケルメツキを行い、その上に表8に示
したニツケルメツキ浴を用い、表9に示した条件
で硫黄を含むニツケルメツキを行つた。 表8 ニツケルメツキ浴組成 硫酸ニツケル 0.57M/ チオシアン酸ナトリウム 0.20M/ 塩化アンモニウム 0.50M/ ホウ酸 0.24M/ 表9 ニツケルメツキ条件 温 度 50℃ 電流密度 1A/dm2 メツキ時間 2時間 この試料を実施例1で示した条件で30日間陰極
として使用し、陰極電位を測定した。この測定の
間、陰極電位は−1.09〜−1.10Vvs.Hg/HgOで
ほぼ一定であり、かつメツキ層が剥離するような
問題もなかつた。なお、基材として用いたクロム
の陰極電位は−1.49Vvs.Hg/HgOであつた。 以上のように本発明の実施例4は極めて低い水
素過電圧を維持しており、優れた耐食性、耐久性
を示す電極を与えることがわかる。 実施例5、比較例6 基材としてニツケル製で14cm×14cmの大きさの
半インチサイズのエキスパンドメタル(短径7.0
mm、長径12.7mm)を用いて、実施例5として表10
に示したニツケルメツキ浴を用いて、表11に示し
た条件で第一の下地メツキを行い、さらに表12に
示したニツケルメツキ浴を用いて、表13に示した
条件で第二の下地メツキを行い、その後に表14に
示したニツケルメツキ浴を用いて、表15に示した
条件で硫黄を含むニツケルメツキを施した。 表10 ニツケルメツキ浴組成 塩化ニツケル 1.2M/ 塩 酸 120ml/ PH 0以下 表11 ニツケルメツキ条件 温 度 25℃ 電流密度 2A/dm2 メツキ時間 10分 表12 ニツケルメツキ浴組成 硫酸ニツケル 0.91M/ 塩化ニツケル 0.19M/ ホウ酸 0.49M/ 塩化アンモニウム 0.15M/ 表13 ニツケルメツキ条件 温 度 40℃ 電流密度 1A/dm2 メツキ時間 1時間 表14 ニツケルメツキ浴組成 硫酸ニツケル 0.91M/ 塩化ニツケル 0.19M/ チオ尿素 0.10M/ ホウ酸 0.49M/ 表15 ニツケルメツキ条件 温 度 50℃ 電流密度 0.5A/dm2 メツキ時間 4時間 一方、比較例6として第二の下地ニツケルメツ
キ浴の浴組成、即ち表12に示したニツケルメツキ
浴組成から塩化アンモニウムを除いたメツキ浴を
用いた他は、全く実施例5と同様の方法で、第一
の下地ニツケルメツキ、第二の下地ニツケルメツ
キ、さらに硫黄を含むニツケルメツキを施した。
これらの試料を陰極として30wt%NaOH溶液中
で、同一の基体形状のニツケル極を陽極として、
温度90℃、試料の外周面積に対し20A/dm2の電
流密度で100日間、水電解を行つた。表16に各例
の陰極電位の測定結果並びに100日後の表面状態
を示す。なお、基材として用いたニツケル極の陰
極電位は−1.30Vvs.Hg/HgOであつた。
[Table] As shown in the above table, Example 3 of the present invention exhibits good adhesion and maintains an extremely low hydrogen overvoltage. On the other hand, in Comparative Example 5, the adhesion was poor, the plating film peeled off, and the electrode performance deteriorated. Furthermore, when the sample of Example 3 was subjected to an electrolytic test under the same conditions for 100 consecutive days,
The cathode potential was almost constant, and there was no problem of peeling of the plating layer. As described above, it can be seen that Example 3 of the present invention maintains an extremely low hydrogen overvoltage for a long period of time and provides an electrode exhibiting excellent corrosion resistance and durability. Example 4 A chrome flat plate (3 mm x 5 mm) was used as the base material, and after normal pretreatment such as degreasing and pickling, the first and second bases were plated with nickel using the same plating bath and plating conditions as in Example 2. Then, using the nickel plating bath shown in Table 8, nickel plating containing sulfur was carried out under the conditions shown in Table 9. Table 8 Nickel plating bath composition Nickel sulfate 0.57M / Sodium thiocyanate 0.20M / Ammonium chloride 0.50M / Boric acid 0.24M / Table 9 Nickel plating conditions Temperature 50℃ Current density 1A/dm 2 Plating time 2 hours This sample was used in Example 1 It was used as a cathode for 30 days under the conditions shown in , and the cathode potential was measured. During this measurement, the cathode potential was approximately constant at -1.09 to -1.10V vs. Hg/HgO, and there was no problem of peeling of the plating layer. Note that the cathode potential of chromium used as the base material was -1.49V vs. Hg/HgO. As described above, it can be seen that Example 4 of the present invention maintains an extremely low hydrogen overvoltage and provides an electrode exhibiting excellent corrosion resistance and durability. Example 5, Comparative Example 6 Half-inch expanded metal made of nickel and measuring 14 cm x 14 cm (minor diameter 7.0
mm, major axis 12.7 mm), Table 10 is used as Example 5.
First base plating was performed using the nickel plating bath shown in Table 11 under the conditions shown in Table 11, and second base plating was performed using the nickel plating bath shown in Table 12 under the conditions shown in Table 13. Then, using the nickel plating bath shown in Table 14, nickel plating containing sulfur was applied under the conditions shown in Table 15. Table 10 Nickel plating bath composition Nickel chloride 1.2M / Hydrochloric acid 120ml / PH 0 or less Table 11 Nickel plating condition temperature 25℃ Current density 2A/dm 2 plating time 10 minutes Table 12 Nickel plating bath composition Nickel sulfate 0.91M / Nickel chloride 0.19M / Boric acid 0.49M / Ammonium chloride 0.15M / Table 13 Nickel plating condition temperature 40℃ Current density 1A/dm 2 plating time 1 hour Table 14 Nickel plating bath composition Nickel sulfate 0.91M / Nickel chloride 0.19M / Thiourea 0.10M / Boric acid 0.49M/ Table 15 Nickel plating condition Temperature 50℃ Current density 0.5A/dm 2 Plating time 4 hours On the other hand, as Comparative Example 6, ammonium chloride was extracted from the bath composition of the second base nickel plating bath, that is, the nickel plating bath composition shown in Table 12. The first base nickel plating, the second base nickel plating, and the sulfur-containing nickel plating were applied in the same manner as in Example 5, except that a plating bath other than .
These samples were used as cathodes in a 30wt% NaOH solution, and a nickel electrode with the same substrate shape was used as an anode.
Water electrolysis was performed for 100 days at a temperature of 90° C. and a current density of 20 A/dm 2 relative to the peripheral area of the sample. Table 16 shows the measurement results of the cathode potential of each example and the surface condition after 100 days. The cathode potential of the nickel electrode used as the base material was -1.30V vs. Hg/HgO.

【表】【table】

【表】 以上のように、本発明の実施例5は、わずかな
劣化はあるが極めて低い水素過電圧を100日間維
持しており、メツキ層の剥離の問題もなく、良好
な密着性を示し、優れた耐食性、耐久性を有する
ことがわかる。一方、比較例6においては、電極
電位が明らかに卑方向にずれ、電極性能が著しく
劣化している。100日経過後、この電極は端部よ
り剥離しており、又、少しこすると全てのメツキ
が剥離した。 以上のように、本発明の実施例5は極めて低い
水素過電圧を維持しており優れた耐食性、耐久性
を示すことがわかる。 実施例 6 電極基材として、SUS304製で14cm×14cmの大
きさの半インチサイズのエキスパンドメタル(短
径7.0mm、長径12.7mm)を用い、実施例1に示し
た方法で下地ニツケルメツキ、硫黄を含むニツケ
ルメツキを行つた。なお硫黄を含むニツケルメツ
キは4時間メツキを行つた。 この試料を陰極として陽イオン交換膜を使用
し、陽極としてTi上にRuO2―TiO2被膜を有する
DSAタイプのエキスパンドメタルを用いて、下
記の条件で食塩水を電解した。なお比較のため陰
極としてSUS304製エキスパンドメタルを用いて
同一の条件で電解を行つた。 電解条件; 温度 90℃ 電流密度 30A/dm2(電極外周面積) 陰極室NaOH濃度 32〜33wt% 表17に基材として用いたSUS304製陰極の場合
と、本発明の陰極について通電初の陰極電位値と
1年間経過後の陰極電位値、さらには浴電圧の値
を示す。
[Table] As described above, Example 5 of the present invention maintained an extremely low hydrogen overvoltage for 100 days, although there was slight deterioration, and exhibited good adhesion without any problem of peeling of the plating layer. It can be seen that it has excellent corrosion resistance and durability. On the other hand, in Comparative Example 6, the electrode potential was clearly shifted toward the base direction, and the electrode performance was significantly deteriorated. After 100 days, this electrode had peeled off from the end, and all the plating peeled off when rubbed a little. As described above, it can be seen that Example 5 of the present invention maintains an extremely low hydrogen overvoltage and exhibits excellent corrosion resistance and durability. Example 6 A half-inch expanded metal made of SUS304 and measuring 14 cm x 14 cm (minor axis 7.0 mm, major axis 12.7 mm) was used as the electrode base material, and the base material was nickel plated and sulfur coated using the method shown in Example 1. I performed a nickel-metuki including. The nickel plating containing sulfur was used for 4 hours. A cation exchange membrane was used with this sample as the cathode, and a RuO 2 -TiO 2 film was used on Ti as the anode.
Salt water was electrolyzed using DSA type expanded metal under the following conditions. For comparison, electrolysis was performed under the same conditions using an expanded metal made of SUS304 as a cathode. Electrolysis conditions: Temperature: 90°C Current density: 30 A/dm 2 (electrode peripheral area) Cathode chamber NaOH concentration: 32 to 33 wt% Table 17 shows the cathode potential at the beginning of energization for the case of the SUS304 cathode used as the base material and the cathode of the present invention. The value, the cathode potential value after one year, and the bath voltage value are shown.

【表】【table】

【表】 以上のように本発明の実施例6は優れた耐久
性、耐食性を示し、極めて低い水素過電圧を長期
間維持し、比較SUS304製の陰極に比べて300mV
程、低い水素過電圧、さらには浴電圧を示しエネ
ルギー効率の高い、優れた陰極であることがわか
る。 実施例 7 電極基材として実施例5で用いたニツケル製の
エキスパンドメタル(半インチサイズ、14cm×14
cm角)を用い、これをSUS304製の陰極室に取に
つけ、陰極室内全面、電極部全面に実施例2で示
した第一の下地メツキ、第二の下地メツキ、さら
に硫黄を含むニツケルメツキを施した。なお、硫
黄を含むニツケルメツキは4時間行つた。 この試料を陰極として実施例6と同様の条件で
食塩水を電解した。表18にニツケル製陰極の場合
と、本発明の陰極について通電初期の陰極電位値
と1年間経過後の陰極電位値、さらには浴電圧の
値を示す。
[Table] As described above, Example 6 of the present invention exhibited excellent durability and corrosion resistance, and maintained an extremely low hydrogen overvoltage for a long period of 300 mV compared to the comparative SUS304 cathode.
It can be seen that this is an excellent cathode with low hydrogen overvoltage and bath voltage, and high energy efficiency. Example 7 The expanded nickel metal used in Example 5 as an electrode base material (half-inch size, 14 cm x 14
cm square), and placed it in a cathode chamber made of SUS304, and applied the first base plating, second base plating, and sulfur-containing nickel plating to the entire surface of the cathode chamber and the electrode section as shown in Example 2. did. Incidentally, the nickel removal containing sulfur was carried out for 4 hours. Using this sample as a cathode, saline solution was electrolyzed under the same conditions as in Example 6. Table 18 shows the cathode potential value at the initial stage of energization, the cathode potential value after one year, and the bath voltage value for the cathode made of nickel and the cathode of the present invention.

【表】 以上のように本発明の実施例7は、優れた耐久
性、耐食性を示し、極めて低い水素過電圧を長期
間維持し、比較ニツケル製の陰極に比べて
250mV〜300mV程、低い水素過電圧、さらには
浴電圧を示し、エネルギー効率の高い優れた陰極
であることがわかる。
[Table] As described above, Example 7 of the present invention exhibited excellent durability and corrosion resistance, maintained an extremely low hydrogen overvoltage for a long period of time, and was superior to the comparative nickel cathode.
It shows a low hydrogen overvoltage and bath voltage of about 250mV to 300mV, indicating that it is an excellent cathode with high energy efficiency.

Claims (1)

【特許請求の範囲】 1 クロム、ニツケル又はこれらを含む合金相を
表面組成として持つ金属基体表面に、アンモニウ
ムイオンを含み、かつPH2.5以下のニツケルメツ
キ浴を用いてニツケルメツキを施し、次いで硫黄
を含むニツケルメツキ浴を用いてニツケルメツキ
を施すことを特徴とする電極の製造法。 2 0.05モル濃度以上のアンモニウムイオンを含
むニツケルメツキ浴を用いてニツケルメツキを行
なう特許請求の範囲第1項に記載の電極の製造
法。 3 硫黄を含むニツケルメツキ浴が、(イ)ニツケル
塩及び(ロ)チオ尿素、チオシアン酸塩及び硫黄の酸
化数が5以下のオキソ酸塩からなる群から選ばれ
た少なくとも一種の硫黄含有化合物を含む特許請
求の範囲第1又は2項に記載の電極の製造法。 4 硫黄を含むニツケルメツキ浴が、(イ)ニツケル
塩,(ロ)チオ尿素、チオシアン酸塩及び硫黄の酸化
数が5以下のオキソ酸塩からなる群から選ばれた
少なくとも一種の硫黄含有化合物及び(ハ)アンモニ
ウムイオンを含む特許請求の範囲第1から3項の
いずれかの項に記載の電極の製造法。 5 クロム、ニツケル又はこれらを含む合金相に
表面組成として持つ金属基体表面に、PH1以下の
塩酸酸性ニツケル浴を用いて第一の下地にニツケ
ルメツキを行ない、さらにその上にアンモニウム
イオンを含むニツケルメツキ浴を用いて第二の下
地ニツケルメツキを施した後、硫黄を含むニツケ
ルメツキ浴を用いてニツケルメツキを施すことを
特徴とする電極の製造法。 6 硫黄を含むニツケルメツキ浴が、(イ)ニツケル
塩及び(ロ)チオ尿素、チオシアン酸塩及び硫黄の酸
化数が5以下のオキソ酸塩からなる群から選ばれ
た少なくとも一種の硫黄含有化合物を含む特許請
求の範囲第5項に記載の電極の製造法。 7 硫黄を含むニツケルメツキ浴が、(イ)ニツケル
塩、(ロ)チオ尿素、チオシアン酸塩及び硫黄の酸化
数が5以下のオキソ酸塩からなる群から選ばれた
少なくとも一種の硫黄含有化合物及び(ハ)アンモニ
ウムイオンを含む特許請求の範囲第5又は6項に
記載の電極の製造法。
[Scope of Claims] 1. Nickel plating is applied to the surface of a metal substrate having a surface composition of chromium, nickel, or an alloy phase containing these, using a nickel plating bath containing ammonium ions and a pH of 2.5 or less, and then containing sulfur. A method for manufacturing an electrode characterized by applying nickel plating using a nickel plating bath. 2. The method for producing an electrode according to claim 1, wherein nickel plating is performed using a nickel plating bath containing ammonium ions at a concentration of 0.05 molar or more. 3. The sulfur-containing nickel metal bath contains at least one sulfur-containing compound selected from the group consisting of (a) nickel salts and (b) thioureas, thiocyanates, and oxoacid salts with a sulfur oxidation number of 5 or less. A method for manufacturing an electrode according to claim 1 or 2. 4. The sulfur-containing nickel metal bath contains at least one sulfur-containing compound selected from the group consisting of (a) nickel salts, (b) thioureas, thiocyanates, and oxoacid salts with a sulfur oxidation number of 5 or less, and ( c) A method for producing an electrode according to any one of claims 1 to 3, which contains ammonium ions. 5. On the surface of a metal substrate having a surface composition of chromium, nickel, or an alloy phase containing these, nickel plating is performed as a first base using a hydrochloric acid acidic nickel bath with a pH of 1 or less, and then a nickel plating bath containing ammonium ions is applied on top of that. 1. A method for producing an electrode, which comprises applying a second base nickel plating using a sulfur-containing nickel plating bath, and then applying nickel plating using a sulfur-containing nickel plating bath. 6. The sulfur-containing nickel metal bath contains at least one sulfur-containing compound selected from the group consisting of (a) nickel salts and (b) thioureas, thiocyanates, and oxoacid salts with a sulfur oxidation number of 5 or less. A method for manufacturing an electrode according to claim 5. 7. The sulfur-containing nickel metal bath contains at least one sulfur-containing compound selected from the group consisting of (a) nickel salts, (b) thioureas, thiocyanates, and oxoacid salts with a sulfur oxidation number of 5 or less, and ( c) A method for producing an electrode according to claim 5 or 6, which contains ammonium ions.
JP57092196A 1982-06-01 1982-06-01 Manufacture of electrode Granted JPS58210185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57092196A JPS58210185A (en) 1982-06-01 1982-06-01 Manufacture of electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57092196A JPS58210185A (en) 1982-06-01 1982-06-01 Manufacture of electrode

Publications (2)

Publication Number Publication Date
JPS58210185A JPS58210185A (en) 1983-12-07
JPS6261675B2 true JPS6261675B2 (en) 1987-12-22

Family

ID=14047686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57092196A Granted JPS58210185A (en) 1982-06-01 1982-06-01 Manufacture of electrode

Country Status (1)

Country Link
JP (1) JPS58210185A (en)

Also Published As

Publication number Publication date
JPS58210185A (en) 1983-12-07

Similar Documents

Publication Publication Date Title
US4105531A (en) Plated metallic cathode
US4162204A (en) Plated metallic cathode
JP2020534444A (en) Method of manufacturing electrode catalyst
US5665218A (en) Method of producing an oxygen generating electrode
JPS6261675B2 (en)
JP4992229B2 (en) Method for producing oxygen generating electrode
US4190514A (en) Electrolytic cell
Sheela et al. Electrodeposition of iridium
US4177129A (en) Plated metallic cathode
JPS6045710B2 (en) electrolytic cell
JPH0260759B2 (en)
KR970003073B1 (en) Process for the production of alkali dichromates and chromic acid
JPS6017096A (en) Production of electrode
JPH01176087A (en) Manufacture of electrode
JPS6211075B2 (en)
JP7291858B2 (en) Electrolytic processor for preparing plastic parts to be metallized and method for etching plastic parts
JPS5830956B2 (en) Cathode manufacturing method
JPS6261676B2 (en)
JPS63162892A (en) Production of cathode having low hydrogen overvoltage
US3373092A (en) Electrodeposition of platinum group metals on titanium
JPH041079B2 (en)
JPH0124228B2 (en)
JPS6046387A (en) Reactivation of active electrode
JPS5927394B2 (en) Manufacturing method of insoluble electrode for electrolysis
JPS6213588A (en) Production of highly durable activated electrode