JPS6261655B2 - - Google Patents

Info

Publication number
JPS6261655B2
JPS6261655B2 JP16196181A JP16196181A JPS6261655B2 JP S6261655 B2 JPS6261655 B2 JP S6261655B2 JP 16196181 A JP16196181 A JP 16196181A JP 16196181 A JP16196181 A JP 16196181A JP S6261655 B2 JPS6261655 B2 JP S6261655B2
Authority
JP
Japan
Prior art keywords
cooling
water
steel
steel plate
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16196181A
Other languages
Japanese (ja)
Other versions
JPS5864322A (en
Inventor
Katsumi Makihara
Masaru Takemoto
Kenichi Yanagi
Atsumu Yamane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nippon Steel Nisshin Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Nisshin Steel Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16196181A priority Critical patent/JPS5864322A/en
Publication of JPS5864322A publication Critical patent/JPS5864322A/en
Publication of JPS6261655B2 publication Critical patent/JPS6261655B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】 本発明は帯状鋼板の冷却方法及び装置の改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method and apparatus for cooling a steel strip.

従来、焼鈍後のステンレス鋼板を常温まで冷却
する装置あるいは炭素鋼その他の帯状鋼板を加熱
した後、急冷する手段として第1図に示すように
加熱された鋼板を水に直接浸けて冷却するものが
ある。なお第1図において、1が帯状鋼板で同帯
状鋼板1は加熱炉2により加熱されて、炉2から
出た後、冷却水タンク3に導びかれ、その中に満
たされている冷却水4により直接冷却されるよう
になつている。5はデフレクタロールである。
Conventionally, as a means of cooling a stainless steel plate after annealing to room temperature, or as a means of rapidly cooling a carbon steel or other strip steel plate after heating, there has been a device that cools the heated steel plate by directly immersing it in water, as shown in Figure 1. be. In FIG. 1, reference numeral 1 denotes a steel strip. The steel strip 1 is heated in a heating furnace 2, and after coming out of the furnace 2, it is led to a cooling water tank 3, where cooling water 4 is filled. It is designed to be directly cooled by 5 is a deflector roll.

上記のように加熱された帯状鋼板1を冷却水4
に直接浸けると、板幅方向の不均一な冷却に起因
して「しわ」「折れ」等が発生する。次にこの原
因を説明する。一般に加熱された鋼板を水に直接
浸けると、その冷却曲線が第2図のようになる。
同第2図において、A〜B間は安定した蒸気膜が
形成されている膜沸騰領域、B〜C間は核沸騰領
域である。この核沸騰現象は、鋼板の表面温度が
400℃程度で始まるとされている。ところでこの
核沸騰を誘発する要因は板の温度が一番である
が、その他鋼板の表面疵やスケール、汚れ等によ
つても誘発される。これらの表面疵等は鋼板の幅
方向に対して均一に分布していないので、第3図
に示すように核沸騰の開始点は、板幅方向に対し
て不均一となる。また冷却水の流動状態も核沸騰
を不均一にする要因である。たとえば、第3図
(右図)のa点、b点を比較すると、a,b点の
いずれでも安定した蒸気膜のある間(たとえばτ
)は、互の温度差Δt1′が非常に小さいが、上
記の要因により、a点で先に核沸騰が始まると、
τでは互の間に200℃〜300℃の温度差Δt1を生
じ「しわ」「折れ」等が発生する。
Cooling water 4 cools the steel strip 1 heated as described above.
If the material is directly immersed in water, "wrinkles" and "bentness" will occur due to uneven cooling in the board width direction. Next, the cause of this will be explained. Generally, when a heated steel plate is directly immersed in water, its cooling curve becomes as shown in Figure 2.
In FIG. 2, the region between A and B is a film boiling region where a stable vapor film is formed, and the region between B and C is a nucleate boiling region. This nucleate boiling phenomenon occurs when the surface temperature of the steel plate
It is said to start at around 400℃. By the way, the main factor that induces this nucleate boiling is the temperature of the plate, but it can also be induced by other factors such as surface flaws, scale, and dirt on the steel plate. Since these surface flaws and the like are not uniformly distributed in the width direction of the steel plate, the starting point of nucleate boiling becomes non-uniform in the width direction of the steel plate, as shown in FIG. The flow state of the cooling water is also a factor that makes nucleate boiling non-uniform. For example, when comparing points a and b in Fig. 3 (right figure), it is found that while there is a stable vapor film at both points a and b (for example, τ
1 ), the mutual temperature difference Δt 1 ' is very small, but due to the above factors, if nucleate boiling starts at point a first,
At τ 2 , a temperature difference Δt 1 of 200° C. to 300° C. occurs between them, causing wrinkles, folds, etc.

従来、冷延薄鋼板を特定温度の水性浴中に浸漬
して冷却するに当り、沸騰水性浴の熱的不均一性
を解消し、冷却速度を増大させて処理時間を短縮
する手段として特開昭53―137020号公報に記載の
ものが知られている。この方法は、冷延薄鋼板を
その再結晶温度に加熱した後、75℃より高い温
度、できれば80℃ないし150℃に維持した水性溶
に浸漬することにより連続した2段階で冷却する
が、第1段階では水性溶による薄板の冷却速度を
25℃/秒ないし180℃/秒として、薄板を200℃な
いし425℃に冷却し且つ℃/秒で表わす冷却速度
(V)とミリメートルで表わす厚さ(e)との積を25
より大きな値〔すなわち(V×e)>25〕、で
きれば35より大きな値〔すなわち(V×e)
35〕に維持し、第2段階では水性溶による薄板の
冷却速度を90℃/秒ないし500℃/秒、できれば
150℃/秒ないし450℃/秒とし且つ℃/秒で表わ
す冷却速度(V)とミリメートルで表わす厚さ(e)
との積を75以上の値〔すなわち(V×e)
75)、できれば95以上の値〔すなわち(V×e)>
95〕に維持することを特徴とする冷延薄鋼板の連
続熱処理法であつて、上記公報には、水性溶の温
度が40℃〜60℃であれば板の幅に沿つて破断荷重
に大きなバラツキを示すが、上記のように80゜〜
98℃にすれば、このバラツキが次第に減少して行
くという事が記載されている。この発明は要旨不
明瞭で、案ずるに、前記第1段階の熱水浸漬によ
つて冷却した薄板を焼戻し(再熱)した後、別に
設けた熱水に第2段階の浸漬を行い前記冷却とは
速度の異なる冷却を行つて炭素を析出(過時効)
せしめるもののようである。しかし何れにしても
前記のような冷却速度、特に第2段階の冷却では
前述のような板幅方向の不均一性に基く板幅方向
の温度差(第3図のΔt1)が、相当大きくて、厚
さが1mm以下の薄板では「しわ」その他の変形が
発生することは避けられない。このような薄板の
熱水浸漬による冷却速度の実態については実験例
によつて後述するが、一般に鋼板の温度が150℃
〜200℃以下でなければ、薄鋼板を水中に浸漬冷
却した際、板幅方向に「しわ」その他の変形の発
生が避けられないことは周知である。
Conventionally, when cooling cold-rolled thin steel sheets by immersing them in an aqueous bath at a specific temperature, the patent application has been developed as a means to eliminate the thermal non-uniformity of the boiling aqueous bath, increase the cooling rate, and shorten the processing time. The one described in Publication No. 53-137020 is known. This method involves heating the cold-rolled sheet steel to its recrystallization temperature and then cooling it in two successive stages by immersion in an aqueous solution maintained at a temperature above 75°C, preferably between 80°C and 150°C. In the first stage, the cooling rate of the thin plate by the aqueous solution is
25°C/s to 180°C/s, cool the thin plate to 200°C to 425°C, and calculate the product of the cooling rate (V) in °C/s and the thickness (e) in millimeters by 25
A larger value [i.e. (V×e) 1 > 25], preferably a value larger than 35 [i.e. (V×e) 1 >
35], and in the second stage the cooling rate of the thin plate by the aqueous solution is increased from 90°C/s to 500°C/s, preferably
Cooling rate (V) in degrees Celsius/second and thickness (e) in millimeters from 150°C/s to 450°C/s
The product of 75 or more [i.e. (V×e) 2
75), preferably a value of 95 or higher [i.e. (V×e)>
95], the above publication states that if the temperature of the aqueous solution is 40°C to 60°C, the breaking load will be large along the width of the sheet. It shows some variation, but as above, it is 80° ~
It is stated that if the temperature is increased to 98°C, this variation will gradually decrease. The gist of this invention is unclear, and unfortunately, after tempering (reheating) the thin plate cooled by hot water immersion in the first step, a second step of immersion in hot water provided separately is carried out to complete the cooling. is cooled at different speeds to precipitate carbon (overaging)
It seems like something that is forcing me to do something. However, in any case, at the cooling rate described above, especially in the second stage of cooling, the temperature difference in the sheet width direction (Δt 1 in Fig. 3) due to the non-uniformity in the sheet width direction as described above is considerably large. Therefore, it is inevitable that "wrinkles" and other deformations will occur in thin plates with a thickness of 1 mm or less. The actual cooling rate of such a thin plate by immersion in hot water will be discussed later using experimental examples, but generally speaking, the temperature of the steel plate is 150°C.
It is well known that unless the temperature is below ~200°C, when a thin steel plate is cooled by immersion in water, the occurrence of "wrinkles" and other deformations in the width direction of the plate is unavoidable.

さらに板厚1.0mm以下の薄い鋼ストリツプを形
状よく冷却する方法及び装置として特公昭49―
4607号公報に記載のものが知られている。この方
法及び装置のうち、方法は、ストリツプ面に対し
て配置した板状噴流噴出機構において、該板状冷
却水噴流を多段に形成せしめ、しかもその水温を
60℃以下となし、0.1Kg/cm2以上のボツクス内水
圧で噴射させることを特徴とするもの、装置は、
冷却水を噴射するスプレーボツクスをストリツプ
の両側に対設し、前記スプレーボツクスに板状噴
流を形成するスリツトを多段に形成したことを特
徴とするもので、この発明によれば、ストリツプ
が一般に膜沸騰の下限とされている400℃以下に
冷却されるまでストリツプをストリツプの幅方向
において均一に冷却し、それによつてストリツプ
の形状を良好に保つことができて、前述の加温水
浸漬による冷却手段よりは優れているが、冷却水
の温度が60℃以下であるため、鋼板の冷却初期に
おける膜沸騰による冷却速度が可成り速く、スト
リツプを700〜800℃の高温より450℃以下に500
℃/sec〜300℃/secの速度で冷却する必要のあ
るシエルフ処理には適しているかも知れないが、
鋼ストリツプの熱影響に基く変形を皆無とするこ
とはできない。なお、ラミナーフロー冷却による
実験例ではあるが、65℃以下の冷却水による初期
冷却速度が相当速いものであることを確認してい
るので、後に実例を挙げて前述の核沸騰開始時に
おける板幅方向の温度差に基く変形量が大となる
ことを立証する。また上記噴射圧力は0.1Kg/cm2
以上、実施例では0.18Kg/cm2〜0.72Kg/cm2、最適
条件はボツクス内水圧0.36Kg/cm2であると記載し
ているように可成り圧力の高い噴射冷却である。
噴射冷却では、冷却水の噴射により蒸気膜の破ら
れることがあり、膜沸騰が安定せず、部分的に核
沸騰が生じ易いことは周知である。出願人自身も
上記発明では、幅方向に一様な強さをもつ板状噴
流が安定して噴射し得ることが必須要件であり、
噴流がストリツプに衝突した後、ストリツプの表
面を流れることにより不均一な蒸気膜が生じて、
不均一冷却が起る旨を記載しており(上記公報第
2頁4欄〜第3頁5欄参照)、これを防ぐために
ストリツプの進行方向に狭い間隔で板状噴流を形
成すべきことや、ヘツダー内にそらせ板を傾斜し
て設け、流れを迂回せしめて、ストリツプの幅方
向に均一な流れとして噴射させるとともに各噴流
の強さを一様にする必要があると説明している。
さらにスリツトの間隔、間隙、方向を任意に選択
できる特殊構造のノズル板やヘツダー内の水圧を
歪ゲージ式圧力変換器で計測し、その常用圧を所
定の値に設定せしめるような複雑な噴水構成を用
いる旨を説明している。しかも、このような対策
の外に、ストリツプの形状をさらに良好にするた
めには、最上部のスリツトを下向きにし、噴流が
ストリツプに衝突した後、上方に跳ね上るのを抑
制する必要のあることも説明している。このよう
に板状噴流を多段に形成せしめる水噴射式冷却手
段においては、前記発明の出願人も認めているよ
うに、その構造が極めて複雑であり、そらせ板や
ノズル板の設計、製作、調整及び水圧の制御が困
難である。さらにこのような冷却手段では、高温
の鋼ストリツプに冷却水を噴射して急冷するため
に、ストリツプの圧延直角方向に極度の彎曲(C
反り)が生じる。なお前記特公昭49―4607号公報
の発明の出願人は、この発明を実施した際には、
スプレーボツクスの下側(出側)では、ストリツ
プが少くとも400℃以下に冷却されているので、
かなりの熱収縮を起し、この熱収縮により上部の
未冷却部のストリツプの幅方向に圧縮応力が生
じ、この応力を緩和するため、ストリツプの圧延
直角方向に反りを生じる(特公昭53―47328号公
報第2頁左方第3欄26〜31行目参照)として、前
記特公昭49―4607号公報に記載された発明の改良
発明である「連続焼鈍時における鋼ストリツプの
C反り防止方法」が前記発明と略同一の発明者に
より提案され、これが特公昭53―47328号公報に
記載されているが、この事実を見ても板状多段噴
流によるストリツプの急冷ではC反りが避けられ
ないことは明らかである。
Furthermore, a method and device for cooling thin steel strips with a plate thickness of 1.0 mm or less with good shape was published in 1973.
The one described in Publication No. 4607 is known. Among these methods and devices, the method involves forming the plate-shaped cooling water jets in multiple stages in a plate-shaped jet jetting mechanism disposed against the strip surface, and also controlling the water temperature.
Items and devices that are characterized by spraying at a temperature of 60℃ or less and a water pressure inside the box of 0.1Kg/cm2 or more :
The present invention is characterized in that spray boxes for injecting cooling water are disposed opposite to each other on both sides of the strip, and slits for forming plate-like jets are formed in multiple stages in the spray box. The strip is cooled uniformly in the width direction of the strip until it is cooled to below 400°C, which is the lower limit of boiling, and thereby the shape of the strip can be maintained well. However, since the temperature of the cooling water is below 60°C, the cooling rate due to film boiling in the early stage of cooling the steel plate is quite fast, and the strip temperature is lower than 450°C from the high temperature of 700 to 800°C.
It may be suitable for Shelf processing, which requires cooling at a rate of ℃/sec to 300℃/sec.
Deformation of the steel strip due to thermal effects cannot be completely eliminated. Although this is an experimental example using laminar flow cooling, it has been confirmed that the initial cooling rate with cooling water of 65°C or less is quite fast, so we will later give an actual example and calculate the plate width at the start of nucleate boiling as described above. It is proved that the amount of deformation based on the temperature difference in the direction becomes large. The above injection pressure is 0.1Kg/cm 2
As described above, in the embodiment, the water pressure in the box is 0.18 Kg/cm 2 to 0.72 Kg/cm 2 , and the optimum condition is 0.36 Kg/cm 2 , which is injection cooling with a fairly high pressure.
It is well known that in injection cooling, the vapor film may be broken by the injection of cooling water, film boiling is not stable, and nucleate boiling is likely to occur locally. The applicant himself said that in the above invention, it is an essential requirement that a plate-shaped jet having uniform strength in the width direction can be stably jetted.
After the jet impinges on the strip, it flows over the surface of the strip, creating a non-uniform vapor film.
It is stated that uneven cooling occurs (see page 2, column 4 to page 3, column 5 of the above-mentioned publication), and that plate-shaped jets should be formed at narrow intervals in the advancing direction of the strip to prevent this. explains that it is necessary to install a deflector plate in the header at an angle to divert the flow so that it is jetted as a uniform flow in the width direction of the strip, and to make the strength of each jet uniform.
In addition, the nozzle plate has a special structure that allows you to arbitrarily select the spacing, gap, and direction of the slits, and the water pressure inside the header is measured with a strain gauge type pressure transducer, and the water pressure is set to a predetermined value. It explains that it will be used. Moreover, in addition to these measures, in order to improve the shape of the strip, it is necessary to point the top slit downward to prevent the jet from jumping upward after colliding with the strip. is also explained. As acknowledged by the applicant of the above-mentioned invention, the water jet cooling means that forms plate-shaped jets in multiple stages has an extremely complicated structure, and the design, manufacture, and adjustment of the deflector plate and nozzle plate are difficult. and difficult to control water pressure. Furthermore, in such cooling means, in order to rapidly cool the hot steel strip by injecting cooling water, the strip has an extreme curvature (C) in the direction perpendicular to the rolling direction of the strip.
Warping) occurs. Furthermore, when the applicant of the invention of the above-mentioned Japanese Patent Publication No. 49-4607 carries out the invention,
At the bottom (outlet side) of the spray box, the strip is cooled to at least 400°C.
Considerable thermal contraction occurs, and this thermal contraction generates compressive stress in the width direction of the strip in the upper uncooled part, and to relieve this stress, the strip warps in the direction perpendicular to the rolling direction (Japanese Patent Publication No. 53-47328). ``Method for preventing C warpage of steel strip during continuous annealing,'' which is an improved invention of the invention described in the above-mentioned Japanese Patent Publication No. 49-4607 (see page 2, left, column 3, lines 26-31) was proposed by almost the same inventor as the above-mentioned invention, and is described in Japanese Patent Publication No. 53-47328. Considering this fact, C warping is unavoidable when the strip is rapidly cooled by a plate-like multi-stage jet. is clear.

本発明は前記の問題点に対処するもので、加熱
されて垂直方向に移送される帯状鋼板を冷却用水
により連続的に冷却するに当り、重量割合で0.01
〜0.2%の界面活性剤を添加し且つ80〜100℃に加
熱した冷却用水を前記鋼板の両面全域へ同時に略
均等な厚さの薄い水膜流として自然流下させなが
ら供給して、前記鋼板を冷却初期に400℃より可
成り低い温度まで比較的ゆるやかに冷却させるこ
とを特徴とした帯状鋼板の冷却方法、及び加熱さ
れて垂直方向に移送される帯状鋼板を冷却用水に
より連続的に冷却する帯状鋼板の冷却装置におい
て、幅が帯状鋼板の板幅に略等しいせきを有する
ラミナーフロー装置を、加熱されて垂直方向に移
送される前記鋼板の両側に同せきが同鋼板と距離
をおいて向い合うように設置するとともに同各ラ
ミナーフロー装置の給水系統に界面活性剤の添加
手段と給水の加熱手段とを設けたことを特徴とす
る帯状鋼板の冷却装置に係り、その目的とする処
は、加熱されて垂直方向に移送される帯状鋼板を
冷却用水により、しわ、折れ、C反りなどを発生
させずに冷却できる改良された帯状鋼板の冷却方
法及び装置を供する点にある。
The present invention addresses the above-mentioned problems, and uses cooling water of 0.01% by weight when continuously cooling a heated strip steel plate that is transported vertically with cooling water.
Cooling water to which ~0.2% surfactant has been added and heated to 80 to 100°C is simultaneously supplied to both sides of the steel plate while allowing it to flow naturally as a thin film of approximately uniform thickness. A method for cooling a steel strip, which is characterized by relatively gradual cooling to a temperature considerably lower than 400°C in the initial stage of cooling, and a method for cooling a steel strip that is heated and transported in a vertical direction continuously with cooling water. In a steel plate cooling device, a laminar flow device having a weir whose width is approximately equal to the width of a strip steel plate is placed on both sides of the steel plate that is heated and transferred in a vertical direction, and the same weir faces the steel plate at a distance. This relates to a cooling device for strip steel sheets, which is characterized in that the water supply system of each laminar flow device is equipped with a means for adding a surfactant and a means for heating the water supply. An object of the present invention is to provide an improved method and apparatus for cooling a steel strip, which can cool the steel strip by cooling water without causing wrinkles, folds, C warps, etc.

次に本発明の帯状鋼板の冷却方法及び装置を第
4,5図に示す一実施例により説明する。第4図
は焼鈍後のステンレス鋼板の冷却装置の1例を示
している。加熱された鋼板1は焼鈍炉2を出て、
ガスジエツト装置3からのガス噴流により予冷却
された後、第5図の冷却装置によつて冷却され
る。すなわち、上記ガス噴流により予冷却されて
その表面温度が500℃となつた鋼板1は、その両
側に配置されてその水面4eが冷却ゾーン内に開
放されたラミナーフロー装置4のせき4aからの
水膜流4bを受けて冷却される。冷却用水は、タ
ンク5で温度調節装置6により蒸気S、また冷水
Wの流量を加減されることによつて100℃近くに
温度調節され、かつ、界面活性剤供給装置7によ
つてその濃度が重量割合で0.01〜0.2%に調節さ
れた後、ポンプ8でラミナーフロー装置4へ供給
される。冷却に使用した水はタンク9にたまり、
ポンプ10によつて再び冷却水タンク5に戻る。
勿論冷却用水の加熱は蒸気のみならず、電熱ヒー
タその他を使用してもよく、加熱位置もタンク内
でなく、配管経路でもよい。またラミナーフロー
装置4への供給ポンプ8である必要はなく、タン
ク5を高所に配置して、ヘツドタンクとして使用
することも考えられる。タンク9は前述のように
冷却用水を循環使用するための容器の役目と、鋼
板1を冷却する役目とを持つており、タンク5に
おける温度調節装置6と同じ温度調節装置11を
有する。また12は外界と冷却装置との隔壁であ
り、冷却過程で発生した蒸気はブロワ13で排出
される。なお冷却用水に対する界面活性剤の濃度
調節は、タンク5内の濃度を検出して、界面活性
剤供給装置7からの供給量を調節すればよい。ま
た前記せき4aはラミナーフロー装置4の内側に
設けられて、前記鋼板1と対向し、せき4aの幅
は鋼板1の板幅に略等しい。また4cが冷却用水
供給管、4dは波立防止板である。なおせき4a
は装置本体を切欠いて形成されており、自由表面
を有した装置本体内の冷却用水はせき4aをオー
バーフローするかたちで鋼板1の両面全域へ同時
に略均等な厚さの薄い水膜流として自然流下させ
ながら供給する。また波立防止板4dは、供給さ
れる冷却用水によるせき4a内側の水面の波立ち
を防止して、安定した水膜流を得るために設けら
れている。
Next, the method and apparatus for cooling a steel strip according to the present invention will be explained with reference to an embodiment shown in FIGS. 4 and 5. FIG. 4 shows an example of a cooling device for a stainless steel plate after annealing. The heated steel plate 1 exits the annealing furnace 2,
After being precooled by the gas jet from the gas jet device 3, it is cooled by the cooling device shown in FIG. That is, the steel plate 1, which has been pre-cooled by the gas jet and has a surface temperature of 500°C, receives water from the weir 4a of the laminar flow device 4, which is placed on both sides and whose water surface 4e is open to the cooling zone. It is cooled by the membrane flow 4b. The temperature of the cooling water is adjusted to around 100°C by controlling the flow rate of steam S and cold water W in the tank 5 by a temperature control device 6, and its concentration is controlled by a surfactant supply device 7. After the weight ratio is adjusted to 0.01 to 0.2%, it is supplied to the laminar flow device 4 by a pump 8. The water used for cooling collects in tank 9.
The cooling water is returned to the cooling water tank 5 by the pump 10.
Of course, the cooling water may be heated not only by steam but also by an electric heater or the like, and the heating location may not be in the tank but in a piping route. Further, it is not necessary to use the supply pump 8 to the laminar flow device 4, and it is also possible to arrange the tank 5 at a high place and use it as a head tank. As mentioned above, the tank 9 has the role of a container for circulating cooling water and the role of cooling the steel plate 1, and has the same temperature control device 11 as the temperature control device 6 in the tank 5. Further, 12 is a partition wall between the outside world and the cooling device, and steam generated during the cooling process is discharged by a blower 13. The concentration of the surfactant in the cooling water can be adjusted by detecting the concentration in the tank 5 and adjusting the amount supplied from the surfactant supply device 7. The weir 4a is provided inside the laminar flow device 4 and faces the steel plate 1, and the width of the weir 4a is approximately equal to the width of the steel plate 1. Further, 4c is a cooling water supply pipe, and 4d is a ripple prevention plate. Naoseki 4a
is formed by cutting out the device body, and the cooling water in the device body having a free surface overflows the weir 4a and flows naturally over both sides of the steel plate 1 at the same time as a thin water film of approximately uniform thickness. supply while The ripple prevention plate 4d is provided to prevent ripples on the water surface inside the weir 4a due to the supplied cooling water and to obtain a stable water film flow.

次に前記ラミナーフロー装置4の作用を説明す
る。第6図の△・印は、加熱された帯状鋼板を88℃
の冷却用水に直接浸けた場合(第1図参照)の冷
却曲線を○・印は、88℃の冷却用水を帯状鋼板の両
面全域へ同時に略均等な厚さの薄い水膜流として
自然流下させながら供給して冷却した場合(第5
図参照)の冷却曲線を、それぞれ示している。以
上のデータから、第5図のラミナーフロー装置4
による方が冷却曲線がフラツトになることは明ら
かで、蒸気膜がより低温まで安定する。次に冷却
用水の温度を80〜100℃にした理由を説明する。
第7図は、ラミナーフロー装置4を使用し、しか
も冷却用水の温度を変えて、帯状鋼板1を冷却し
た場合の冷却曲線を示している。このデータか
ら、冷却用水の温度を高めると冷却曲線が次第に
ゆるやかになつて、蒸気膜が長時間またはより低
温まで安定していることは明らかで、この傾向か
らみて冷却用水の温度を80〜100℃にするのが、
蒸気膜を長時間または400℃より可成り低い温度
まで安定させるのに効果がある。次に冷却用水に
界面活性剤を重量割合で0.01〜0.2%添加する理
由を説明する。第8図のaは、ラミナーフロー装
置4を使用し、しかも重量割合で0.2%の界面活
性剤を添加した94℃の冷却用水を供給して冷却し
た場合の400℃以後の冷却曲線を、bは同じ条件
で但し界面活性剤を添加しない冷却用水を供給し
て冷却した場合の400℃以後の冷却曲線を、それ
ぞれ示している。冷却曲線aの勾配は冷却曲線b
に比べるとなだらかで、蒸気膜がより低温まで安
定している。なお本例では界面活性剤を重量割合
で0.2%添加しているが、実験の結果、この1/20
程度以上あれば、好ましくは0.01〜0.2%の範囲
にあれば、効果に差のないことが判明した。
Next, the operation of the laminar flow device 4 will be explained. The △ mark in Figure 6 indicates the temperature of the heated steel strip at 88℃.
The ○ mark indicates the cooling curve when directly immersed in cooling water (see Figure 1), where cooling water at 88°C is allowed to flow naturally over both sides of the steel strip simultaneously as a thin water film with approximately uniform thickness. (5th case)
(see figure) are shown respectively. From the above data, the laminar flow device 4 in Fig. 5
It is clear that the cooling curve is flatter and the vapor film is stable down to lower temperatures. Next, the reason why the temperature of the cooling water was set at 80 to 100°C will be explained.
FIG. 7 shows a cooling curve when the strip steel plate 1 is cooled using the laminar flow device 4 and changing the temperature of the cooling water. From this data, it is clear that as the temperature of the cooling water is increased, the cooling curve gradually becomes gentler, and the vapor film remains stable for longer periods of time or at lower temperatures. ℃ is
It is effective in stabilizing the vapor film for long periods of time or to temperatures well below 400°C. Next, the reason why 0.01 to 0.2% by weight of surfactant is added to cooling water will be explained. Fig. 8 a shows the cooling curve after 400°C when using the laminar flow device 4 and supplying 94°C cooling water containing 0.2% surfactant by weight. 1 and 2 respectively show cooling curves after 400°C when cooling was performed under the same conditions but by supplying cooling water without adding a surfactant. The slope of cooling curve a is cooling curve b
It is gentler than the previous year, and the vapor film is stable down to lower temperatures. In this example, 0.2% by weight of surfactant is added, but as a result of the experiment, 1/20 of this amount was added.
It has been found that there is no difference in effectiveness as long as the amount is above a certain level, preferably in the range of 0.01 to 0.2%.

以上の3つの相乗作用により最終的には第8図
aに示す冷却曲線が得られる。つまり本発明によ
れば、蒸気膜が安定し、より低温まで膜沸騰が維
持され、鋼板の板幅方向への温度分布の不均一が
是正されて、冷却過程で「しわ」「折れ」「C反
り」等を発生させない効果がある。なお板厚が1
mmの帯状鋼板では、400℃から200℃までの冷却速
度が約20℃/secであつた。なおまた前述の核沸
騰現象は通常、鋼板の表面温度が400℃付近で始
まるところから、本発明では400℃以上に加熱さ
れる帯状鋼板の冷却に適用して顕著な効果を有す
る。
The synergistic effect of the above three factors ultimately results in the cooling curve shown in FIG. 8a. In other words, according to the present invention, the vapor film is stabilized, film boiling is maintained down to a lower temperature, the uneven temperature distribution in the width direction of the steel sheet is corrected, and "wrinkles", "bentness", and "C" occur during the cooling process. This has the effect of preventing warping, etc. Note that the plate thickness is 1
In the case of a strip steel plate with a diameter of 1.5 mm, the cooling rate from 400°C to 200°C was approximately 20°C/sec. Furthermore, since the above-mentioned nucleate boiling phenomenon usually begins when the surface temperature of a steel plate is around 400°C, the present invention has a remarkable effect when applied to cooling a strip steel plate heated to 400°C or higher.

以上本発明を実施例について説明したが、勿論
本発明はこのような実施例にだけ局限されるもの
ではなく、本発明の精神を逸脱しない範囲内で
種々の設計の改変を施しうるものである。
Although the present invention has been described above with reference to embodiments, it goes without saying that the present invention is not limited to such embodiments, and that various design changes can be made without departing from the spirit of the present invention. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の帯状鋼板の冷却装置を示す側面
図、第2図は同冷却装置を用いて冷却した場合の
冷却曲線を示す説明図、第3図は核沸騰の開始点
を示す説明図、第4図は本発明に係る帯状鋼板の
冷却装置の一実施例を示す側面図、第5図はラミ
ナーフロー装置を拡大して示す縦断側面図、第6
図は第1図の冷却装置を用いて冷却した場合の冷
却曲線と本発明のラミナーフロー装置を用いて冷
却した場合の冷却曲線とを示す説明図、第7図は
本発明のラミナーフロー装置を用い、しかも冷却
用水の温度を変えて冷却した場合の冷却曲線を示
す説明図、第8図は本発明のラミナーフロー装置
を用い、しかも界面活性剤を添加した場合と添加
しない場合との冷却曲線を示す説明図である。 1……帯状鋼板、4……ラミナーフロー装置、
4a……せき、7……界面活性剤の添加手段、S
……給水の加熱手段。
Fig. 1 is a side view showing a conventional cooling device for steel strips, Fig. 2 is an explanatory drawing showing a cooling curve when cooling is performed using the same cooling device, and Fig. 3 is an explanatory drawing showing the starting point of nucleate boiling. , FIG. 4 is a side view showing an embodiment of the cooling device for a strip steel plate according to the present invention, FIG. 5 is a vertical sectional side view showing an enlarged view of the laminar flow device, and FIG.
The figure is an explanatory diagram showing the cooling curve when cooling is performed using the cooling device shown in FIG. 1 and the cooling curve when cooling is performed using the laminar flow device of the present invention. Fig. 8 is an explanatory diagram showing cooling curves when the laminar flow device of the present invention is used, and when a surfactant is added and when a surfactant is not added. FIG. 1... Strip steel plate, 4... Laminar flow device,
4a... Cough, 7... Surfactant addition means, S
...Means for heating the water supply.

Claims (1)

【特許請求の範囲】 1 加熱されて垂直方向に移送される帯状鋼板を
冷却用水により連続的に冷却するに当り、重量割
合で0.01〜0.2%の界面活性剤を添加し且つ80〜
100℃に加熱した冷却用水を前記鋼板の両面全域
へ同時に略均等な厚さの薄い水膜流として自然流
下させながら供給して、前記鋼板を冷却初期に
400℃より可成り低い温度まで比較的ゆるやかに
冷却させることを特徴とした帯状鋼板の冷却方
法。 2 加熱されて垂直方向に移送される帯状鋼板を
冷却用水により連続的に冷却する帯状鋼板の冷却
装置において、幅が帯状鋼板の板幅に略等しいせ
きを有するラミナーフロー装置を、加熱されて垂
直方向に移送される前記鋼板の両側に同せきが同
鋼板と距離をおいて向い合うように設置するとと
もに同各ラミナーフロー装置の給水系統に界面活
性剤の添加手段と給水の加熱手段とを設けたこと
を特徴とする帯状鋼板の冷却装置。
[Scope of Claims] 1. When continuously cooling a steel strip that is heated and transported vertically with cooling water, a surfactant of 0.01 to 0.2% by weight is added and
Cooling water heated to 100°C is supplied to the entire surface of both sides of the steel plate at the same time as a thin water film flow of approximately uniform thickness while flowing naturally, and the steel plate is initially cooled.
A method for cooling steel strips, which is characterized by relatively gradual cooling to a temperature considerably lower than 400℃. 2. In a cooling device for steel strips that continuously cools steel strips that are heated and transported in a vertical direction using cooling water, a laminar flow device having a weir whose width is approximately equal to the width of the steel strip is used to transport heated and vertically The same weirs are installed on both sides of the steel plate being transferred in the direction so as to face the steel plate at a distance, and the water supply system of each laminar flow device is provided with means for adding a surfactant and means for heating the supplied water. A cooling device for steel strips characterized by:
JP16196181A 1981-10-13 1981-10-13 Method and device for cooling of band-like steel plate Granted JPS5864322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16196181A JPS5864322A (en) 1981-10-13 1981-10-13 Method and device for cooling of band-like steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16196181A JPS5864322A (en) 1981-10-13 1981-10-13 Method and device for cooling of band-like steel plate

Publications (2)

Publication Number Publication Date
JPS5864322A JPS5864322A (en) 1983-04-16
JPS6261655B2 true JPS6261655B2 (en) 1987-12-22

Family

ID=15745354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16196181A Granted JPS5864322A (en) 1981-10-13 1981-10-13 Method and device for cooling of band-like steel plate

Country Status (1)

Country Link
JP (1) JPS5864322A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192820A (en) * 1987-02-06 1988-08-10 Sumitomo Metal Ind Ltd Cooling method for metal
JPS6442522A (en) * 1987-08-07 1989-02-14 Sumitomo Metal Ind Method for cooling metal
JPH0621466Y2 (en) * 1991-11-11 1994-06-08 キャピーインターナショナル株式会社 Stretcher
JP4239354B2 (en) * 2000-03-31 2009-03-18 Jfeスチール株式会社 Laminar flow nozzle, cooling device and cooling method for electrotinned steel sheet

Also Published As

Publication number Publication date
JPS5864322A (en) 1983-04-16

Similar Documents

Publication Publication Date Title
JP5218435B2 (en) Controlled cooling method for thick steel plate
JP2015083719A (en) Method of cooling moving metal belt by spraying liquid and section
JP4604564B2 (en) Method and apparatus for controlling cooling of thick steel plate
US3724826A (en) Method and apparatus for water quenching metal strips
JP2003094106A (en) Method and device for cooling steel plate
US3629015A (en) Method for cooling thick steel plates
JP2011025282A (en) Equipment and method for cooling thick steel plate
JPS6261655B2 (en)
US3479210A (en) Method and apparatus for controlling coating metal temperature in a hot-dip coating bath
JPS6261656B2 (en)
EP0224587A1 (en) Method of correcting warping of two-layer clad metal plate
JPS6360817B2 (en)
JPS5839210B2 (en) Cooling method of steel strip during continuous annealing
JP6086089B2 (en) Steel plate cooling method
JPH0533112A (en) Method and apparatus for producing galvannealed steel sheet
EP0210847A2 (en) Method and apparatus for cooling steel strips
JPS5944367B2 (en) Water quenching continuous annealing method
JP6981435B2 (en) Hot-rolled steel sheet manufacturing equipment
JP3282714B2 (en) Cooling method for hot steel sheet
JP4525133B2 (en) Manufacturing method of hot-rolled steel strip
JP4453522B2 (en) Steel plate cooling device and cooling method
JPH07290136A (en) Method and device for cooling wide flange shape
JP2006281220A (en) Facilities and method for cooling h-section steel
JP2005169453A (en) Method for manufacturing hot-rolled steel strip
JP4239354B2 (en) Laminar flow nozzle, cooling device and cooling method for electrotinned steel sheet