JPS626112A - Surface shape measuring method - Google Patents

Surface shape measuring method

Info

Publication number
JPS626112A
JPS626112A JP14443485A JP14443485A JPS626112A JP S626112 A JPS626112 A JP S626112A JP 14443485 A JP14443485 A JP 14443485A JP 14443485 A JP14443485 A JP 14443485A JP S626112 A JPS626112 A JP S626112A
Authority
JP
Japan
Prior art keywords
sample
electron
normal
detectors
standard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14443485A
Other languages
Japanese (ja)
Other versions
JPH0349363B2 (en
Inventor
Hisayoshi Sato
壽芳 佐藤
Masataka Ohori
大堀 眞敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP14443485A priority Critical patent/JPS626112A/en
Publication of JPS626112A publication Critical patent/JPS626112A/en
Publication of JPH0349363B2 publication Critical patent/JPH0349363B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To derive exactly a shape by detecting a reflected electron which has been obtained by projecting an electron beam to an object to be inspected, from a scan type electronic microscope, by four pieces of more of detectors, and comparing it with information for deriving a normal of the reflected electron from a standard data. CONSTITUTION:An electron from an electron gun 1 is focused by a lens 2, scanned in the X and y directions by a deflecting coil 3, and focused on a sample base 5 by an objective lens 4. The deflecting coil 3 is driven through a magnification converter 42 by a scanning use power source 41. Four pieces or more of detectors 10-13 are provided on the periphery of the sample base 5. In this state, first of all, a standard small ball 7 is placed on the sample base 5 and an electron beam scan is executed, reflected electrons are detected 10-13 and amplified 30-33, A/D-converted 34-37 and inputted to a CPU 38, and a relation of a reflecting level and a normal is derived and stored in a memory 39. In this way, a complicated surface shape can be detected easily.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、走査型電子顕微鏡を用い試料からの反射電子
を検出して微細な表面形状を測定する表面形状測定方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a surface shape measuring method for measuring minute surface shapes by detecting reflected electrons from a sample using a scanning electron microscope.

(従来技術) 切削面、研削面、半導体集積回路等のような微細な表面
形状を有する製品の製品評価においては、微細な平面形
状を正確に測定することが重要な課題となっている。
(Prior Art) In the product evaluation of products having fine surface shapes such as cut surfaces, ground surfaces, semiconductor integrated circuits, etc., it is an important issue to accurately measure the fine planar shapes.

従来、微細な表面形状を測定する方法として、被測定物
の表面を微小な針で機械的にトレースして表面形状を測
定する触針式測定装置を用いる方法や、光学的に表面形
状を測定する方法がある。
Conventionally, methods for measuring minute surface shapes include methods using a stylus-type measuring device that mechanically traces the surface of the object to be measured with a minute needle to measure the surface shape, and methods that measure surface shapes optically. There is a way to do it.

しかし、触針式の測定方法では、検出針の形状等によっ
て影響を受は易く、また測定による触針の痕跡が残って
しまう不都合が生じていた。また、光学的方法では、使
用する光ビームの波長によって分解能が制約を受け、高
い検出精度が得られない欠点があった。
However, the stylus-based measurement method is easily affected by the shape of the detection stylus and has the disadvantage that traces of the stylus remain due to measurement. Furthermore, the optical method has the disadvantage that high detection accuracy cannot be obtained because the resolution is limited by the wavelength of the light beam used.

これらの欠点を解消する方法として、電子顕微鏡を用い
て微細な表面形状を測定する方法がある。
As a method to overcome these drawbacks, there is a method of measuring minute surface shapes using an electron microscope.

この電子顕微鏡を用いて表面形状を測定する方法として
、本願人は特開昭56−150303号公報において電
子ビームの走査によって試料から発生する反射電子を検
出し、この反射電子によって形成される画像信号を電子
ビームの走査方向に亘って積分して試料の表面形状を求
める表面形状測定方法を提案している。この従来の測定
方法は、反射電子画像を構成する信号が試料の表面形状
の傾斜に比例することに基き、反射電子によって形成さ
れる画像信号を電子ビームの走査方向に亘って積分する
ことにより試料表面粗さを直′接検出しており、特に半
導体集積回路のような微細な表面形状を高精度に測定で
きる利点がある。
As a method of measuring the surface shape using this electron microscope, the applicant has disclosed in Japanese Patent Laid-Open No. 56-150303 that reflected electrons generated from a sample are detected by scanning an electron beam, and image signals formed by the reflected electrons are detected. We have proposed a surface shape measurement method in which the surface shape of the sample is determined by integrating over the scanning direction of the electron beam. This conventional measurement method is based on the fact that the signal that makes up the backscattered electron image is proportional to the slope of the surface shape of the sample. It directly detects surface roughness, and has the advantage of being able to measure fine surface shapes, such as those of semiconductor integrated circuits, with high precision.

(発明が解決しようとする問題点) 上述した従来の電子顕微鏡を用いる表面形状測定方法は
、試料からの反射電子画像信号を電子ビームの走査方向
に亘って積分して表面形状を求める構成としているため
、試料の表面形状を構成する各傾斜面が電子ビームの走
査方向以外の傾斜成分を含んでいる場合、すなわち傾斜
面が走査方向のみの傾斜面と平行になっていない場合に
は試料の表面形状を正確に検出できなくなる欠点があっ
た。従って、測定すべき試料の表面形状が電子ビームの
走査方向のみの傾斜成分を有している場合には正確に表
面形状を測定できるが、ヴイッカーズ硬さ試験の圧痕を
はじめとして任意の方向に傾斜している面から成る一般
的な試料の表面形状の測定においては正確に形状測定で
きなくなる不都合が生じていた。
(Problems to be Solved by the Invention) The above-described conventional surface shape measurement method using an electron microscope is configured to obtain the surface shape by integrating the backscattered electron image signal from the sample over the scanning direction of the electron beam. Therefore, if each of the inclined planes that make up the surface shape of the sample includes an inclined component other than the scanning direction of the electron beam, that is, if the inclined plane is not parallel to the inclined plane only in the scanning direction, the sample surface There was a drawback that the shape could not be detected accurately. Therefore, if the surface shape of the sample to be measured has a tilt component only in the scanning direction of the electron beam, the surface shape can be accurately measured, but the surface shape can be measured accurately if the surface shape has a tilt component in the scanning direction of the electron beam. When measuring the surface shape of a typical sample consisting of a flat surface, there has been an inconvenience that the shape cannot be accurately measured.

従って、本発明の目的は上述した欠点を解消し、任意の
方向に傾斜している面から成る表面形状についても正確
に形状測定できる電子顕微鏡を用いる表面形状測定方法
を提供するものである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to eliminate the above-mentioned drawbacks and to provide a surface shape measuring method using an electron microscope that can accurately measure the shape of a surface made of a surface inclined in any direction.

(問題点を解決するための手段) 走査型電子顕微鏡を用いて測定すべき試料に向けて電子
線を投射し、試料からの反射電子を少なくとも4個の検
出器で検出し、これら検出器からの検出出力と、予め標
準試料を用いて求めた反射電子検出出力と法線との関係
とに基いて試料表面の法線を求め、この法線情報に基い
て試料の立体形状を求めることを特徴とする表面形状測
定方法。
(Means for solving the problem) A scanning electron microscope is used to project an electron beam toward a sample to be measured, and at least four detectors detect reflected electrons from the sample. The normal to the sample surface is determined based on the detection output of Characteristic surface shape measurement method.

(作用) 本発明では、走査型電子顕微鏡の試料台に球面状の標準
試料を載置し、球面状の標準試料面を電子ビームで電子
顕微鏡がその機能とする方向に走査する。そして、標準
試料からの反射電子を4個以上の検出器で検出して標準
試料の各部位における法線方向と各検出器からの反射電
子検出出力との関係を求めメモリに記憶する。次に、測
定すべき試料を同様に電子ビームで走査し、試料からの
反射電子を同様に検出する。そして、検出器からの検出
出力を予め標準試料から求めた法線方向と反射電子検出
出力との関係と比較し、試料表面の各点の法線方向を求
める。次に、試料の各点における法線方向に基いて試料
の表面形状を求め、CRT、プロッタ等の表示装置に表
示する。このように構成することにより、任意の傾斜面
から構成される試料の表面形状を正確に求めることがで
きる。
(Function) In the present invention, a spherical standard sample is placed on the sample stage of a scanning electron microscope, and the surface of the spherical standard sample is scanned with an electron beam in the direction of the electron microscope's function. Then, the backscattered electrons from the standard sample are detected by four or more detectors, and the relationship between the normal direction of each part of the standard sample and the backscattered electron detection output from each detector is determined and stored in a memory. Next, the sample to be measured is similarly scanned with an electron beam, and reflected electrons from the sample are similarly detected. Then, the detection output from the detector is compared with the relationship between the normal direction determined in advance from the standard sample and the backscattered electron detection output, and the normal direction of each point on the sample surface is determined. Next, the surface shape of the sample is determined based on the normal direction at each point on the sample and displayed on a display device such as a CRT or plotter. With this configuration, it is possible to accurately determine the surface shape of a sample composed of arbitrary inclined surfaces.

(実施例) 第1図は本発明の走査型電子顕微鏡を用いる表面形状測
定方法を実施するための装置の一実施例の構成を示すも
のであり、第1図Aは走査型電子顕微鏡本体の構成を一
部を断面として示す線図的斜視図、同図Bは試料台近傍
の構成を示す斜視図である。電子銃lから放射した電子
ビームを、集束レンズ2により集束してから走査用偏向
コイル3により水平及びこれと直交する垂直方向に偏向
し、対物レンズ4を経て試料台5上に載置した試料6上
に入射させる。試料台5上には測定すべき試料6に近接
して標準法線情報を得るための均一な組成の材料から成
る標準小球7を配置する。試料6及び標準小球7を配置
するに際し、試料6及び標準小球7が電子ビームの視野
内に位置するように調整つまみ8及び9により試料台5
をX及びY方向に移動して調整する。従って、形状測定
すべき試料6及び標準小球7は、電子ビームによって所
定のピッチで走査され、ビーム走査により試料6及び標
準小球7から二次電子及び反射電子が放出されることに
なる。前述したように本発明では試料からの反射電子を
検出して試料表面の法線情報を求めるものであり、試料
6及び標準小球7からの反射電子を検出するために電子
ビームの光軸を中心にして4個の検出器10.11.1
2及び13を配置する。これら4個の検出器10.11
.12及び13は、各検知面が試料6と対抗すると共に
、電子ビームの光軸を中心にして90°の角度をなすよ
うにそれぞれ配置する。尚、4個の検出器10〜13の
配置は、電子ビームの走査方向と一致させる必要はなく
、走査方向に対して任意の角度とすることができる。
(Example) Fig. 1 shows the configuration of an embodiment of an apparatus for carrying out the surface profile measurement method using a scanning electron microscope of the present invention, and Fig. 1A shows the structure of the main body of the scanning electron microscope. A diagrammatic perspective view showing a part of the structure as a cross section, and FIG. 1B is a perspective view showing the structure near the sample stage. An electron beam emitted from an electron gun 1 is focused by a focusing lens 2, and then deflected horizontally and in a vertical direction perpendicular to the scanning deflection coil 3, and passed through an objective lens 4 to a sample placed on a sample stage 5. 6. A standard small sphere 7 made of a material with a uniform composition is placed on the sample stage 5 in the vicinity of the sample 6 to be measured to obtain standard normal information. When placing the sample 6 and the standard sphere 7, adjust the sample stage 5 using the adjustment knobs 8 and 9 so that the sample 6 and the standard sphere 7 are located within the field of view of the electron beam.
Adjust by moving in the X and Y directions. Therefore, the sample 6 and the standard sphere 7 whose shapes are to be measured are scanned by the electron beam at a predetermined pitch, and secondary electrons and backscattered electrons are emitted from the sample 6 and the standard sphere 7 due to the beam scanning. As mentioned above, in the present invention, the normal information of the sample surface is obtained by detecting the reflected electrons from the sample, and in order to detect the reflected electrons from the sample 6 and the standard globule 7, the optical axis of the electron beam is 4 detectors in the center 10.11.1
Place 2 and 13. These four detectors10.11
.. 12 and 13 are arranged so that each detection surface faces the sample 6 and forms an angle of 90° with the optical axis of the electron beam as the center. Note that the arrangement of the four detectors 10 to 13 does not need to coincide with the scanning direction of the electron beam, and can be arranged at any angle with respect to the scanning direction.

第2図は試料表面の法線と検出器との関係を示す模式図
である。本例では、試料台上に配置した半球状の標準小
球20を中心にして、標準小球20と対向して等間隔で
4個の検出器10.11.12及び13を配置した例を
示す。試料からの反射電子は、試料表面が平面の場合に
は電子ビームの光軸に対して対称の位置に配置した検出
器にはほぼ等量の反射電子がそれぞれ人射し、試料表面
に凹凸がある場合には各検出器にほぼ相補的な量の反射
電子が入射する特性がある。従って、試料からの反射電
子を3次元的に検出すれば、試料表面の3次元的法線方
向と対応する反射電子出力相を得ることができる。すな
わち、球の表面はあらゆる法線情報を具えているから、
第2図Aに示すように半球状の標準小球20に向けて電
子ビームを投射し、電子ビームにより標準小球表面を走
査線方向に走査すると共に垂直方向に繰り返し、標準小
球20からの反射電子を4個の検出器10〜13によっ
て検出すれば、4個の検出器10〜13の検出出力によ
ってあらゆる法線情報をも面に対して反射電子による陰
影の情報データとして得ることができる。すなわち、試
料表面の法線情報の3次元的な値を、4個の検出器によ
る反射電子の出力によって表示することができることに
なる。従って、第2図已に示すように標準小球20から
の反射電子の検出出力と法線との関係を予め求めて基準
とし、次に測定すべき試料の全表面に亘って電子ビーム
で走査し、試料からの反射電子の検出出力を予め求めた
基準の検出出力と法線との関係とに基き比較すれば、測
定すべき試料の全表面の法線情報を求めることができる
FIG. 2 is a schematic diagram showing the relationship between the normal line of the sample surface and the detector. In this example, four detectors 10, 11, 12, and 13 are arranged at equal intervals facing the standard ball 20, centered around a hemispherical standard ball 20 placed on the sample stage. show. When the sample surface is flat, approximately the same amount of backscattered electrons will be incident on each detector placed symmetrically with respect to the optical axis of the electron beam, and if the sample surface is uneven. In some cases, there is a characteristic that almost complementary amounts of reflected electrons are incident on each detector. Therefore, by three-dimensionally detecting the reflected electrons from the sample, it is possible to obtain a reflected electron output phase corresponding to the three-dimensional normal direction of the sample surface. In other words, since the surface of the sphere has all kinds of normal information,
As shown in FIG. 2A, an electron beam is projected toward the hemispherical standard sphere 20, and the electron beam scans the surface of the standard sphere in the scanning line direction and repeatedly in the vertical direction. If the backscattered electrons are detected by the four detectors 10 to 13, all kinds of normal information can be obtained from the detection outputs of the four detectors 10 to 13 as information data on shadows caused by the backscattered electrons with respect to the surface. . In other words, the three-dimensional value of the normal information on the sample surface can be displayed by the output of reflected electrons from the four detectors. Therefore, as shown in Figure 2, the relationship between the detection output of the reflected electrons from the standard globule 20 and the normal line is determined in advance and used as a reference, and then the entire surface of the sample to be measured is scanned with an electron beam. However, by comparing the detection output of reflected electrons from the sample based on the relationship between the detection output of a standard determined in advance and the normal, normal information on the entire surface of the sample to be measured can be obtained.

第3図は本発明による形状測定方法を実施するための制
御回路の一例の構成を示すブロック図である。試料6か
らの反射電子を検出する4個の検出器10.11.12
及び13からの検出信号を増幅器30.31゜32及び
33でそれぞれ増幅し、A/D変換器34.35゜36
及び37でデジタル信号に変換して中央処理装置38に
供給する。この中央処理装置38にはメモリ39及び表
示装置40を接続する。電子ビームを駆動するための水
平駆動信号及び垂直駆動信号を発生する走査用電源41
を設け、倍率変換器42を介して水平駆動信号及び垂直
駆動信号を偏向コイル3に供給する。水平駆動信号及び
垂直駆動信号はクロック発生回路43、中央処理装置3
8及び表示装置40にも供給する。クロック発生回路4
3は水平走査期間内におけるサンプリング用のクロック
信号を生成する回路であり、中央処理装置ではこのサン
プリング用のクロック信号に基いて4個の検出器11〜
13から送られてくる反射電子検出出力を順次取り込み
、4個の値から成る反射電子検出信号とする。
FIG. 3 is a block diagram showing the configuration of an example of a control circuit for implementing the shape measuring method according to the present invention. 4 detectors for detecting reflected electrons from sample 6 10.11.12
The detection signals from and 13 are amplified by amplifiers 30.31°32 and 33, respectively, and A/D converters 34.35°36
and 37 converts it into a digital signal and supplies it to the central processing unit 38. A memory 39 and a display device 40 are connected to this central processing unit 38 . A scanning power supply 41 that generates horizontal drive signals and vertical drive signals for driving the electron beam.
is provided, and supplies a horizontal drive signal and a vertical drive signal to the deflection coil 3 via a magnification converter 42. The horizontal drive signal and the vertical drive signal are generated by the clock generation circuit 43 and the central processing unit 3.
8 and a display device 40 as well. Clock generation circuit 4
3 is a circuit that generates a clock signal for sampling within the horizontal scanning period, and in the central processing unit, four detectors 11 to 11 are generated based on this clock signal for sampling.
The backscattered electron detection outputs sent from 13 are sequentially taken in and made into a backscattered electron detection signal consisting of four values.

従って、中央処理装置では水平駆動信号、垂直駆動信号
及びサンプリング用のクロック信号に基いて走査中の試
料の位置を特定し、各位置毎の反射電子検出信号を形成
することになる。
Therefore, the central processing unit specifies the position of the sample being scanned based on the horizontal drive signal, the vertical drive signal, and the sampling clock signal, and forms a backscattered electron detection signal for each position.

試料6についてビーム走査を行なう前に、調整つまみ8
及び9を調整して均一組成の材料でできた標準小球7を
試料台の中心に位置させて標準小球7についてビーム走
査を行なう。標準小球7の表面はあらゆる方向の法線を
具えてふり、標準小球7の水平及び垂直走査方向の2次
元で定まる位置毎に表面の法線値を計算によって求める
ことができるから、ビーム走査位置に基いて計算によっ
て求めた法線値と4個の検出器10〜13からの検出出
力から成る反射電子検出信号とを対応させ、基準となる
法線値と反射電子検出信号との関係を求めメモリ39に
記憶する。
Before performing beam scanning on sample 6, adjust adjustment knob 8.
and 9 are adjusted to position the standard small sphere 7 made of a material with a uniform composition at the center of the sample stage, and beam scanning is performed on the standard small sphere 7. The surface of the standard sphere 7 has normals in all directions, and the normal value of the surface can be calculated for each position determined in two dimensions in the horizontal and vertical scanning directions of the standard sphere 7, so the beam The relationship between the reference normal value and the backscattered electron detection signal is established by associating the normal value calculated based on the scanning position with the backscattered electron detection signal consisting of the detection outputs from the four detectors 10 to 13. is determined and stored in the memory 39.

次に、調整つまみ8及び9を調整して測定すべき試料6
を試料台の中心に位置させ、試料6についてビーム走査
を行なう、、4個の検出器10〜13からの検出出力が
中央処理装置38に順次取、り込まれ、試料6上の各位
置毎の反射電子検出信号が形成される。次に、この反射
電子検出信号を、メモリ39に記憶した基準の反射電子
検出信号と比較し、一番近い反射電子検出信号の法線値
を求める。そして、この操作を繰り返すことによって試
料6の全表面に亘る法線値を求め、求めた法線値から試
料の表面形状を求めて表示装置40に表示する。
Next, adjust the adjustment knobs 8 and 9 to adjust the sample 6 to be measured.
is positioned at the center of the sample stage, and performs beam scanning on the sample 6.The detection outputs from the four detectors 10 to 13 are sequentially taken into the central processing unit 38, and are read at each position on the sample 6. A reflected electron detection signal is formed. Next, this backscattered electron detection signal is compared with a reference backscattered electron detection signal stored in the memory 39, and the normal value of the closest backscattered electron detection signal is determined. Then, by repeating this operation, the normal value over the entire surface of the sample 6 is determined, and the surface shape of the sample is determined from the determined normal value and displayed on the display device 40.

次に、上述した方法によって得た法線情報から面を決定
する方法について説明する。
Next, a method of determining a surface from the normal information obtained by the method described above will be explained.

第4図Aは隣合う9箇の法線情報(矢印1〜9)から、
これを満足する局面の定数を決定する方法によって局面
も決定した概念図である。これに隣合う面については、
周辺の一辺の3点例えば1〜3とこれにつながる6点4
〜9を用いて一辺に接続する面がきめられ、4辺に対応
して4個の面が決められる。この過程をくり返して全面
に及ぼして表面の形状をきめることもできるが、実際に
は測定された法線情報にノイズ分が含まれるために、第
4図すに示される過程を経て平均化の操作を入れ、面を
決定する方法をとっている。
Figure 4A is based on nine adjacent normal line information (arrows 1 to 9),
It is a conceptual diagram in which the situation is also determined by the method of determining the constant of the situation that satisfies this. Regarding the surface adjacent to this,
3 points on one side of the periphery, for example 1 to 3 and 6 points connected to this 4
A surface to be connected to one side is determined using .about.9, and four surfaces are determined corresponding to the four sides. This process can be repeated over the entire surface to determine the shape of the surface, but in reality, the measured normal information contains noise, so the averaging process shown in Figure 4 is necessary. The method is to determine the surface by performing operations.

すなわち、第4図Bでは、面■を中心にしてその周辺に
4つの面を1、■、■、■を構成しているが、これら4
個の面I/IVはそれぞれ第4図へに示す方法と同様な
過程により、9個の法線情報を用いて構成されている。
In other words, in Figure 4B, the four surfaces 1,
Each of these planes I/IV is constructed using nine pieces of normal line information using a process similar to the method shown in FIG.

L IIの面についてこれらは同じ順番で付番されてお
り、したがって面■の3.4.5.と面■の7,8.1
は同じ法線情報を有している。中心に位置する面■につ
いても同じ順序の付番をすれば、I−9をV−1、■−
4、IF−8とV−2、I−5とll−7とV−9等々
は、同じ法線情報を有している。このように面1、面■
、面■、面■、及び面■は部分的に同じ法線情報を用い
て面を構成しているが、でき上った面について、同一の
点について求められた各面の変位は一致せず僅かの差を
生じる。いま法線情報V−9、すなわち、I−5、ll
−7、■−1、I’V−3については5つの面が重なっ
て求められる。
For sides L II, these are numbered in the same order, so 3.4.5 for side ■. and face■7,8.1
have the same normal information. If we number the surface ■ in the center in the same order, I-9 becomes V-1, ■-
4. IF-8 and V-2, I-5, 11-7, V-9, etc. have the same normal information. In this way, surface 1, surface■
, surface ■, surface ■, and surface ■ partially construct a surface using the same normal information, but the displacements of each surface calculated at the same point do not match. There will be a slight difference. Now the normal information V-9, i.e. I-5, ll
-7, ■-1, and I'V-3 are obtained by overlapping five surfaces.

また、法線情報I−9、■−1をもって代表される点で
は二つの面、I−4、I[−8、V−2をもって代表さ
れる点では3つの面が重なっている。
Further, two planes overlap at the point represented by the normal information I-9 and -1, and three planes overlap at the point represented by the normal information I-4, I[-8, and V-2.

これら重なっている点において各法線情報の平均が最小
になるように面■を基準にして他の面を上下方向に調整
して決定するように構成すれば、各面I、 II、■、
■の法線情報だけに基いて決定する方法に比べるよりも
精度のよい面の構成とすることができる。隣合う測定結
果についても同様に、1、■、■、■の面に相当する領
域を一つの単位として面を構成する。単位とする面相互
についても、微小な変位の差が生じるが、この差を最小
にするように一方を基準として他を上下に移動調整し、
相互の関係を最もよくきめることが可能である。これを
全面にくり返して、法線情報をもとにした面形状を求め
ることができる。第5図はこのようにしてヴイッカーズ
圧痕の形状を求めた結果を示し、第5図Aは各点にふけ
る法線情報を示し、同図Bは第5図への法線情報から求
めた立体表示図である。第5図に示すようにヴイフカー
ズ圧痕が正確に求められたとおり、更に圧痕周辺の面の
盛り上がり等も正確に再現されている。
If the configuration is configured such that the average of each normal information is minimized at these overlapping points, other surfaces are adjusted vertically based on surface ■, and each surface I, II, ■,
It is possible to achieve a more accurate surface configuration than with the method (2) in which the determination is made based only on normal information. Similarly, for adjacent measurement results, areas corresponding to the surfaces 1, 2, 2, and 2 are formed as one unit. There is also a slight difference in displacement between the unit surfaces, but to minimize this difference, one is used as a reference and the other is adjusted up and down.
It is possible to best determine the mutual relationship. By repeating this over the entire surface, the surface shape can be obtained based on the normal information. Figure 5 shows the results of determining the shape of the Vickers indentation in this way, Figure 5A shows the normal information for each point, and Figure B shows the three-dimensional shape determined from the normal information to Figure 5. It is a display diagram. As shown in FIG. 5, not only the Vifcars indentation was accurately determined, but also the bulges on the surface around the indentation were also accurately reproduced.

本発明は上述した実施例だけに限定されるものではなく
幾多の変形や変更が可能である。例えば、上述した実施
例では基準法線情報を作成するために試料に近接して標
準小球を配置する構成としたが、予め標準小球について
ビーム走査を行ない、法線と反射電子検出信号との関係
を求めてメモリ装置に記憶しておき、次に試料台に試料
だけを載置して反射電子検出信号を求め、予め記憶しで
ある基準の反射電子検出信号と法線との関係から試料表
面の法線を求めるように構成してもよい。
The present invention is not limited to the embodiments described above, but can be modified and changed in many ways. For example, in the above-mentioned embodiment, the standard sphere was placed close to the sample to create the reference normal information, but the standard sphere was scanned with a beam in advance, and the normal and the backscattered electron detection signal were Determine the relationship between and store it in the memory device. Next, place only the sample on the sample stage and determine the backscattered electron detection signal. From the relationship between the pre-stored standard backscattered electron detection signal and the normal line, The configuration may be such that the normal line to the sample surface is determined.

また、上述した実施例では4個の検出器を用いて4方向
から反射電子を検出する構成としたが、4個に限定され
るものではなく、4個以上の検出器であればよい。
Further, in the above-described embodiment, the configuration is such that four detectors are used to detect reflected electrons from four directions, but the number is not limited to four, and any number of detectors may be used as long as there are four or more detectors.

(発明の効果) 以上説明したように本発明によれば、標準小球を用いて
反射電子検出信号と法線との関係を求めてメモリに記憶
し、測定すべき試料をビーム走査して得られる反射電子
検出信号を上記基準の反射電子検出信号と比較して法線
を求める構成としているから、試料の各点について正確
な法線を得ることができ、従って試料表面が任意の方向
に傾斜している場合であっても試料の表面形状を正確に
求めることができる。
(Effects of the Invention) As explained above, according to the present invention, the relationship between the backscattered electron detection signal and the normal line is determined using a standard globule and stored in a memory, and the sample to be measured is scanned with a beam to obtain the relationship. Since the normal line is determined by comparing the backscattered electron detection signal with the above-mentioned standard backscattered electron detection signal, it is possible to obtain an accurate normal line for each point on the sample, so that the sample surface can be tilted in any direction. The surface shape of the sample can be accurately determined even when

また、本発明では試料表面の法線方向を評価する構成と
しているため、従来方法では困難とされていた平坦な面
の創成も容易である。
Furthermore, since the present invention is configured to evaluate the normal direction of the sample surface, it is easy to create a flat surface, which has been difficult with conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による形状測定方法を実施するための走
査型電子顕微鏡の一例の構成を示す線図的斜視図、 第2図は試料表面と法線との関係を示す模式図、第3図
は本発明による形状測定方法を実施するための制御回路
の一例の構成を示すブロック図、第4図は法線情報から
面を決定する方法を説明するための線図、 第5図Aは本発明により求めたヴイッカーズ圧痕の法線
情報を示す線図、第5図Bは立体表示図である。
FIG. 1 is a diagrammatic perspective view showing the configuration of an example of a scanning electron microscope for carrying out the shape measurement method according to the present invention, FIG. 2 is a schematic diagram showing the relationship between the sample surface and the normal line, and FIG. The figure is a block diagram showing the configuration of an example of a control circuit for carrying out the shape measuring method according to the present invention, FIG. 4 is a diagram for explaining the method of determining a surface from normal information, and FIG. FIG. 5B is a diagram showing the normal information of the Vickers indentation obtained according to the present invention, and is a three-dimensional display diagram.

Claims (1)

【特許請求の範囲】[Claims] 1、走査型電子顕微鏡を用いて測定すべき試料に向けて
電子線を投射し、試料からの反射電子を少なくとも4個
の検出器で検出し、これら検出器からの検出出力と、予
め標準試料を用いて求めた反射電子検出出力と法線との
関係とに基いて試料表面の法線を求め、この法線情報に
基いて試料の立体形状を求めることを特徴とする表面形
状測定方法。
1. Use a scanning electron microscope to project an electron beam toward the sample to be measured, detect the reflected electrons from the sample with at least four detectors, and compare the detection output from these detectors with the standard sample in advance. A method for measuring a surface shape, characterized in that the normal line of the sample surface is determined based on the relationship between the backscattered electron detection output and the normal line determined using the method, and the three-dimensional shape of the sample is determined based on this normal information.
JP14443485A 1985-07-03 1985-07-03 Surface shape measuring method Granted JPS626112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14443485A JPS626112A (en) 1985-07-03 1985-07-03 Surface shape measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14443485A JPS626112A (en) 1985-07-03 1985-07-03 Surface shape measuring method

Publications (2)

Publication Number Publication Date
JPS626112A true JPS626112A (en) 1987-01-13
JPH0349363B2 JPH0349363B2 (en) 1991-07-29

Family

ID=15362111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14443485A Granted JPS626112A (en) 1985-07-03 1985-07-03 Surface shape measuring method

Country Status (1)

Country Link
JP (1) JPS626112A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215910A (en) * 1987-03-04 1988-09-08 Erionikusu:Kk Section measurement
JPS63215909A (en) * 1987-03-04 1988-09-08 Erionikusu:Kk Section measurement
JPS63215908A (en) * 1987-03-04 1988-09-08 Erionikusu:Kk Section measurement
JPS63215907A (en) * 1987-03-04 1988-09-08 Erionikusu:Kk Section measuring apparatus
JPS63277911A (en) * 1987-03-04 1988-11-15 Erionikusu:Kk Section measuring method
US4912313A (en) * 1987-11-27 1990-03-27 Hitachi Ltd. Method of measuring surface topography by using scanning electron microscope, and apparatus therefor
US5001344A (en) * 1988-08-26 1991-03-19 Hitachi, Ltd. Scanning electron microscope and method of processing the same
JP2008282761A (en) * 2007-05-14 2008-11-20 Hitachi High-Technologies Corp Scanning electron microscopy and three-dimensional shape measuring device using it
JP2020139829A (en) * 2019-02-28 2020-09-03 株式会社堀場製作所 Three-dimensional image generation device and coefficient calculation method for three-dimensional image generation device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58225306A (en) * 1982-06-24 1983-12-27 Jeol Ltd Recording and display of geometrical information of sample surface by irradiation of electron beam

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58225306A (en) * 1982-06-24 1983-12-27 Jeol Ltd Recording and display of geometrical information of sample surface by irradiation of electron beam

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215910A (en) * 1987-03-04 1988-09-08 Erionikusu:Kk Section measurement
JPS63215909A (en) * 1987-03-04 1988-09-08 Erionikusu:Kk Section measurement
JPS63215908A (en) * 1987-03-04 1988-09-08 Erionikusu:Kk Section measurement
JPS63215907A (en) * 1987-03-04 1988-09-08 Erionikusu:Kk Section measuring apparatus
JPS63277911A (en) * 1987-03-04 1988-11-15 Erionikusu:Kk Section measuring method
US4912313A (en) * 1987-11-27 1990-03-27 Hitachi Ltd. Method of measuring surface topography by using scanning electron microscope, and apparatus therefor
US5001344A (en) * 1988-08-26 1991-03-19 Hitachi, Ltd. Scanning electron microscope and method of processing the same
JP2008282761A (en) * 2007-05-14 2008-11-20 Hitachi High-Technologies Corp Scanning electron microscopy and three-dimensional shape measuring device using it
US7705304B2 (en) 2007-05-14 2010-04-27 Hitachi High-Technologies Corporation Scanning electron microscope and three-dimensional shape measuring device that used it
JP2020139829A (en) * 2019-02-28 2020-09-03 株式会社堀場製作所 Three-dimensional image generation device and coefficient calculation method for three-dimensional image generation device

Also Published As

Publication number Publication date
JPH0349363B2 (en) 1991-07-29

Similar Documents

Publication Publication Date Title
US5694214A (en) Surface inspection method and apparatus
JP3511450B2 (en) Position calibration method for optical measuring device
US5291271A (en) Measurement of transparent container wall thickness
US6509966B2 (en) Optical system for detecting surface defect and surface defect tester using the same
JPS63501526A (en) High speed 3D surface digitizer
JPS5999304A (en) Method and apparatus for comparing and measuring length by using laser light of microscope system
US6636310B1 (en) Wavelength-dependent surface contour measurement system and method
US4652765A (en) Edge detecting device in optical measuring instrument
US3876879A (en) Method and apparatus for determining surface characteristics incorporating a scanning electron microscope
JPS626112A (en) Surface shape measuring method
JP3614741B2 (en) Defect detection optical system and the surface defect inspection apparatus
JPH0514217B2 (en)
JPH01239404A (en) Method and apparatus for detecting edge of object
JP2021192022A (en) Space measurement error detector of optical three-dimensional shape measurement device, space measurement error detection method and correction method thereof, optical three-dimensional shape measurement device, space measurement error calibration method of optical three-dimensional shape measurement device, and probing performance detection-purpose plane standard of optical three-dimensional shape measurement device
JP2003109985A (en) Method and apparatus for inspection of bump on wafer
JPH04162337A (en) Electron beam device
JPH08327336A (en) Three dimensional shape-measuring apparatus
JPH03163308A (en) Apparatus for evaluating shape of electron beam
RU2315949C2 (en) Method and device for triangulation measuring of object surfaces
JP2946336B2 (en) Sample surface height detector
Bityutsky et al. Optoelectronic dimensional integral inspection of hollow cylinder-type articles for conveyor line
JPH053537B2 (en)
JPH02300617A (en) Shape measuring instrument
JPH01311212A (en) Aspherical shape measuring instrument for scanning electron microscope
JPH04290909A (en) Wiring pattern inspecting device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term