JPS6261083B2 - - Google Patents

Info

Publication number
JPS6261083B2
JPS6261083B2 JP56038766A JP3876681A JPS6261083B2 JP S6261083 B2 JPS6261083 B2 JP S6261083B2 JP 56038766 A JP56038766 A JP 56038766A JP 3876681 A JP3876681 A JP 3876681A JP S6261083 B2 JPS6261083 B2 JP S6261083B2
Authority
JP
Japan
Prior art keywords
wire
annealing
tungsten
processing rate
drawn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56038766A
Other languages
Japanese (ja)
Other versions
JPS57155331A (en
Inventor
Masami Ito
Naoji Shiga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP3876681A priority Critical patent/JPS57155331A/en
Publication of JPS57155331A publication Critical patent/JPS57155331A/en
Publication of JPS6261083B2 publication Critical patent/JPS6261083B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Metal Extraction Processes (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、タングステン線の製造方法、更に詳
しくはスウエジング(転打)あるいは圧延加工後
再結晶化のため熱処理を施した棒材(スラグ)を
線引加工する際の細線のドローイングを安定化す
るためのタングステン線の熱処理方法の改良に関
する。 タングステン線は、一般に次のようにして製造
されている。まず、粉末冶金法により製造された
タングステンの焼結体を熱間でスウエージングし
て、その組織を緻密化するとともに、等軸状結晶
を繊維状にのばして配列し、靭性を有するスラグ
とする。このとき、得られたスラグには内部歪み
が蓄積されているので、これを除去するために熱
処理して次のドローイング工程に送る。 内部歪みを除去されたスラグは、熱間あるいは
温間で、孔径が段階的に大から小へと変化する複
数個のダイスに順次通して、加工率を高め、その
線径を順次細くして目的線径のタングステン線に
ドローイングされる。 しかしながら、ドローイング工程においては、
線材(ドローイング開始時はその内部歪みが除去
されている)が細線化されて加工率が増大するに
つれて、得られるタングステン線の抗張力は増大
し、その内部歪みが蓄積されていく。 この抗張力の増大は、蓄積される内部歪みに基
づくものであり、該内部歪みが最大になるとタン
グステン線は脆化する。 したがつて、このような状態で更にドローイン
グして加工率を増加せしめ細線化すると、それは
オーバー・ドローイング状態となつて、得られた
細線の表面に“キレ”又は“クラツク”等の組織
欠陥が発生する。 このため、一般には抗張力がピークに達する少
し前の段階で焼鈍といわれる熱処理が中間的に行
なわれる。これは、加工率が約99.9%と大きい
(したがつて線径の細い)細線で行なわれるのが
普通であり、例えば1500゜〜2000℃の水素炉中に
該細線を通して加熱処理するものである。焼鈍を
終了した細線は、次段のドローイング工程に移さ
れる。 しかしながら、このような従来の焼鈍を施こし
たものでも、以後の伸線工程でのキレ、クラツク
等が生ずることがあつた。これは、従来の焼鈍が
大きい加工率のところで行なわれるため、細線中
の内部歪みを完全に除去するものではなく、その
ため、更にドローイングを進めて細線化する際オ
ーバードローイング状態になることによると考え
られる。 本発明者等は、上記のような欠点を解消するた
めに鋭意研究を重ねた結果、数段のドローイング
工程において、最終再結晶熱処理時の線材を基準
として加工率97%以下の太線段階であらかじめ所
定の雰囲気で焼鈍すると、以後細線のドローイン
グを安定して行なえるとの事実を見出し本発明を
完成するに到つた。 本発明は、細線段階でのドローイングを安定化
し、かつ不良率の低下を可能とするタングステン
線の焼鈍方法の提供を目的とするものである。 すなわち、本発明は、ドローイングしたタング
ステン線を焼鈍する方法において、最終再結晶熱
処理時を基準にして加工率97%以下の線材に酸化
雰囲気中において1200〜1400℃で加熱処理するこ
とを特徴とする。 この段階にあつては、蓄積される内部歪みは未
だ小さいので、内部歪みを除去するのが容易であ
る。加工率が97%を超えた細線段階にあつては、
内部歪みは除去されにくく一部残留し、更なる細
線化のドローイング工程を不安定化する。特に、
加工率90〜97%の太線段階で内部歪み除去の効果
が顕著にあらわれる。 焼鈍は、1200〜1400℃の温度で行なわれる1200
℃未満の温度では、内部歪みを有効に除去し得
ず、また1400℃を超えると次に行なうドローイン
グの結果得られたタングステン線の内部に、微細
空隙などの組織欠陥を生じ始めて不都合である。 焼鈍の効果は、ドローイングしたタングステン
線を上記の温度域で加熱処理することによつて得
られるが、このとき、加熱処理は大気雰囲気中で
行なうことが好ましい。 大気雰囲気中で焼鈍すると、内部歪みの除去と
同時進行的に、タングステン線の表面には酸化皮
膜が形成されるので、そのまま潤滑剤塗布工程に
移すことができ、従来法のように酸化皮膜形成工
程を別個に設けることは不要になる。 大気雰囲気中での焼鈍は、1200〜1400℃の温度
域においては、3〜20秒間行なわれることが好ま
しく3秒未満のときは酸化皮膜が充分に形成され
ず、また20秒を超えると過剰酸化物により潤滑効
果が低下するというような不都合が生ずる。 本発明の焼鈍方法によれば太線段階でそれまで
蓄積されていた内部歪みは除去されて、抗張力が
低下するので、更に細線化するためのドローイン
グを“キレ”、“クラツク”発生の心配をせずに安
定して行なうことができる。また、その結果、タ
ングステン線の不良率を低下することもできる。
更には、必要とされる抗張力の細線を随意に調製
できる。 以下に、本発明を実施例に基づいて説明する。 実施例 直径5.5φで最終再結晶熱処理を施こした線材
を第1表に表示した加工率でドローイングし、得
られた各直径の線材を1300〜1350℃の大気雰囲気
炉中に、10m/分の線速で通し焼鈍した。その
後、その表面に潤滑剤を塗布し、それを900℃の
大気雰囲気炉中に通して線材を加熱しながらダイ
スでドローイングした(加工率15〜20%)。潤滑
剤塗布前の線材の表面には黄緑色の酸化皮膜の形
成されていることが確認された。また、このとき
の線材の抗張力は、焼鈍前に比べて約10%低下し
た。これは、内部歪みが除去されたことを意味し
ている。 この工程を通つたタングステン線を、更に細い
線径迄ドローイングして線径0.18φの細線とし
た。得られた各細線の欠陥の発生を観察した。そ
の結果を加工率と対応させて第1表に示した。
The present invention relates to a method for manufacturing tungsten wire, and more specifically, to stabilizing the drawing of a fine wire when drawing a bar (slag) that has been heat-treated for recrystallization after swaging or rolling. This invention relates to improvements in heat treatment methods for tungsten wires. Tungsten wire is generally manufactured as follows. First, a sintered tungsten body produced by powder metallurgy is hot swaged to make its structure denser, and the equiaxed crystals are stretched and arranged into fibers to form a tough slag. . At this time, the obtained slag has accumulated internal distortion, so it is heat-treated to remove this and sent to the next drawing process. The slag from which internal strain has been removed is heated or warmed through several dies whose hole diameters gradually change from large to small to increase the processing rate and gradually reduce the wire diameter. It is drawn on a tungsten wire of the target wire diameter. However, in the drawing process,
As the wire rod (internal strain has been removed at the start of drawing) is thinned and the processing rate increases, the tensile strength of the resulting tungsten wire increases and its internal strain accumulates. This increase in tensile strength is based on accumulated internal strain, and when the internal strain reaches its maximum, the tungsten wire becomes brittle. Therefore, if the wire is drawn further in such a state to increase the processing rate and make the wire thinner, it will become overdrawn and the surface of the resulting fine wire will have structural defects such as "cuts" or "cracks." Occur. For this reason, a heat treatment called annealing is generally performed intermediately, just before the tensile strength reaches its peak. This is normally done using a thin wire with a high processing rate of about 99.9% (thus, the wire diameter is small), and for example, the thin wire is heat-treated by passing it through a hydrogen furnace at 1500° to 2000°C. . The thin wire that has been annealed is transferred to the next drawing process. However, even with such conventional annealing, sharpness, cracks, etc. may occur during the subsequent wire drawing process. This is thought to be due to the fact that conventional annealing is performed at a high processing rate, so it does not completely eliminate internal distortion in the thin wire, and as a result, when the wire is further drawn to become thinner, an overdrawing state occurs. It will be done. As a result of extensive research in order to eliminate the above-mentioned drawbacks, the present inventors have found that, in several stages of the drawing process, the drawing process is performed in advance at a thick wire stage with a processing rate of 97% or less based on the wire at the final recrystallization heat treatment. The present invention was completed based on the discovery that drawing of thin wires can be stably performed after annealing in a predetermined atmosphere. An object of the present invention is to provide a method for annealing tungsten wire, which stabilizes drawing at the fine wire stage and makes it possible to reduce the defective rate. That is, in the method of annealing a drawn tungsten wire, the present invention is characterized in that the wire is heat-treated at 1200 to 1400°C in an oxidizing atmosphere with a processing rate of 97% or less based on the final recrystallization heat treatment. . At this stage, the accumulated internal distortion is still small, so it is easy to remove the internal distortion. At the fine wire stage where the processing rate exceeds 97%,
Some of the internal distortions are difficult to remove and remain, destabilizing the drawing process for further thinning. especially,
The effect of internal distortion removal becomes noticeable at the thick line stage where the processing rate is 90-97%. Annealing is carried out at a temperature of 1200-1400℃.
If the temperature is less than 1400°C, internal strain cannot be effectively removed, and if the temperature exceeds 1400°C, structural defects such as fine voids will begin to occur inside the tungsten wire obtained as a result of the subsequent drawing process, which is disadvantageous. The effect of annealing can be obtained by heat-treating the drawn tungsten wire in the above-mentioned temperature range, but at this time, it is preferable to perform the heat treatment in an air atmosphere. When annealing in the air, an oxide film is formed on the surface of the tungsten wire at the same time as the internal distortion is removed, so the tungsten wire can be directly transferred to the lubricant application process, and the oxide film can be formed as in the conventional method. It becomes unnecessary to provide a separate process. Annealing in the air is preferably carried out for 3 to 20 seconds in the temperature range of 1200 to 1400°C. If the annealing time is less than 3 seconds, the oxide film will not be formed sufficiently, and if it exceeds 20 seconds, excessive oxidation may occur. This may cause problems such as a decrease in the lubricating effect. According to the annealing method of the present invention, the internal strain accumulated up to that point in the thick wire stage is removed and the tensile strength is lowered, so there is no need to worry about "sharpness" or "cracks" occurring when drawing to make the wire thinner. It can be performed stably without any problems. Moreover, as a result, the defective rate of the tungsten wire can also be reduced.
Furthermore, the thin wire having the required tensile strength can be adjusted as desired. The present invention will be explained below based on examples. Example A wire rod with a diameter of 5.5φ that has been subjected to final recrystallization heat treatment is drawn at the processing rate shown in Table 1, and the obtained wire rods of each diameter are heated at 10 m/min in an atmospheric furnace at 1300 to 1350°C. It was annealed through at a line speed of . After that, a lubricant was applied to the surface of the wire, and the wire was passed through an atmospheric furnace at 900°C and drawn with a die while heating the wire (processing rate: 15-20%). It was confirmed that a yellow-green oxide film was formed on the surface of the wire before the lubricant was applied. Furthermore, the tensile strength of the wire at this time was approximately 10% lower than before annealing. This means that internal distortion has been removed. The tungsten wire that had passed through this process was drawn to a finer wire diameter to obtain a thin wire with a wire diameter of 0.18φ. The occurrence of defects in each thin wire obtained was observed. The results are shown in Table 1 in correspondence with the processing rate.

【表】 更に、加工率96.7%(線径1φ)の線材を第2
表に示した温度の大気雰囲気炉に10m/分の線速
で通し焼鈍した。その後、その表面に潤滑剤を塗
布し、上記と同様にして線径0.18φの細線にまで
ドローイングした。得られた各細線の欠陥発生を
観察し、その結果を焼鈍温度と対応させて第2表
に示した。
[Table] Furthermore, the wire rod with a processing rate of 96.7% (wire diameter 1φ) was
It was annealed by passing it through an air atmosphere furnace at the temperature shown in the table at a linear speed of 10 m/min. Thereafter, a lubricant was applied to the surface, and a thin wire with a wire diameter of 0.18φ was drawn in the same manner as above. The occurrence of defects in each of the obtained thin wires was observed, and the results are shown in Table 2 in correspondence with the annealing temperature.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 圧縮加工された棒材を線引加工するに際し、
最終再結晶熱処理時を基準にして加工率97%以下
の線材に酸化雰囲気中において1200〜1400℃で焼
鈍を施すことを特徴とするタングステン線の製造
方法。 2 酸化雰囲気が大気雰囲気である特許請求の範
囲第1項記載のタングステン線の製造方法。
[Claims] 1. When drawing a compressed bar material,
A method for manufacturing a tungsten wire, which comprises annealing a wire with a working ratio of 97% or less based on the final recrystallization heat treatment at 1200 to 1400°C in an oxidizing atmosphere. 2. The method for manufacturing a tungsten wire according to claim 1, wherein the oxidizing atmosphere is an atmospheric atmosphere.
JP3876681A 1981-03-19 1981-03-19 Production of tungsten wire Granted JPS57155331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3876681A JPS57155331A (en) 1981-03-19 1981-03-19 Production of tungsten wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3876681A JPS57155331A (en) 1981-03-19 1981-03-19 Production of tungsten wire

Publications (2)

Publication Number Publication Date
JPS57155331A JPS57155331A (en) 1982-09-25
JPS6261083B2 true JPS6261083B2 (en) 1987-12-19

Family

ID=12534404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3876681A Granted JPS57155331A (en) 1981-03-19 1981-03-19 Production of tungsten wire

Country Status (1)

Country Link
JP (1) JPS57155331A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69832110T2 (en) 1997-07-24 2006-07-20 Mitsubishi Denki K.K. Manufacturing method for a probe for semiconductor devices
CN112410749B (en) * 2020-11-13 2021-12-31 北京理工大学 Preparation method of high-plasticity heterogeneous heterostructure tungsten

Also Published As

Publication number Publication date
JPS57155331A (en) 1982-09-25

Similar Documents

Publication Publication Date Title
JPS6296603A (en) Production of structural member made of heat-resistant high-strength al sintered alloy
US2666721A (en) Process of producing ductile molybdenum
JPS6261083B2 (en)
CA1045009A (en) Process for producing copper base alloys
US3013329A (en) Alloy and method
US4863527A (en) Process for producing doped tungsten wire with low strength and high ductility
JP2854215B2 (en) Hot forging method for metal materials
JPS5829522A (en) Manufacture of tungsten wire
US1593181A (en) Method of working refractory metals
JP3940474B2 (en) Tungsten wire for filament, method for producing tungsten wire, filament and method for producing the same
JP2018154916A (en) Production method of aluminum alloy wire, production method of wire therewith and production method of wire harness
JP3108496B2 (en) Superconducting wire manufacturing method
JP2871826B2 (en) Nb (3) Method for treating Cu-Sn alloy for Sn superconducting wire
JPS61149466A (en) Drawing method of molybdenum wire
JP2704442B2 (en) Manufacturing method of high purity copper wire composed of coarse crystal grains
JP2846434B2 (en) Method for producing Nb-Ti alloy for superconducting wire
JP2575696B2 (en) Wire rod manufacturing method
JP4323691B2 (en) Manufacturing method of steel wire and lubricant used for manufacturing the same
JPS5959867A (en) Manufacture of rhenium-tungsten alloy material
JP3792604B2 (en) Manufacturing method of Nb3Sn superconducting wire
JPH04254559A (en) Production of extremely fine wire
JPH0116305B2 (en)
SU742471A1 (en) Method of producing electroengineering steel web
JPH0696759B2 (en) Method for producing α + β type titanium alloy rolled rod and wire having good structure
JPS6087952A (en) Production of fine cu-cr alloy wire