JPS6260132B2 - - Google Patents

Info

Publication number
JPS6260132B2
JPS6260132B2 JP54121439A JP12143979A JPS6260132B2 JP S6260132 B2 JPS6260132 B2 JP S6260132B2 JP 54121439 A JP54121439 A JP 54121439A JP 12143979 A JP12143979 A JP 12143979A JP S6260132 B2 JPS6260132 B2 JP S6260132B2
Authority
JP
Japan
Prior art keywords
gas
semi
formed coke
coke
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54121439A
Other languages
Japanese (ja)
Other versions
JPS5645734A (en
Inventor
Osamu Kanda
Tsukasa Nishimura
Shigeru Nozawa
Kosuke Tsunoda
Kozo Obata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP12143979A priority Critical patent/JPS5645734A/en
Publication of JPS5645734A publication Critical patent/JPS5645734A/en
Publication of JPS6260132B2 publication Critical patent/JPS6260132B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は乾式排煙脱硫方法に係り、特に乾式排
煙脱硫プロセスにおいて排ガス中のSO2の吸着剤
に使用される半成コークスの賦活処理工程を独立
して設ける必要のない乾式排煙脱硫方法に関す
る。 排煙脱硫プロセスは、数多く開発されている
が、現状では石灰、石灰石などのアルカリ吸収液
でSO2を吸収除去する石灰―石膏法、石灰石―石
膏法などの湿式法が主流を占めている。 しかしながら、これらの湿式法で大型火力発電
所の排ガスを脱硫処理した場合には、副生品とし
て回収される石膏が膨大な量になり、運搬に多大
の費用を要するばかりでなく、現在石膏が供給過
剰傾向にあり、その需用先を見つけ出さねばなら
ないという欠点がある。 又、湿式法では、吸収液を排ガスに直接接触さ
せるため、多量の用水を必要とするという欠点が
ある。特に火力発電所等の大型ボイラを例にとれ
ば、発電出力1000MW級のボイラ排ガスを湿式脱
硫処理した場合、その全用水量は100〜200トン/
hにもなる。従つて、用水難の立地条件において
は湿式法の適用は困難である。 更に湿式法では、脱硫処理後副生品である石膏
を回収した後の排水を後処理する必要があるとい
う欠点がある。 更に又、湿式法では、脱硫処理後の浄化ガスの
温度が40〜60℃に低下しているので、白煙防止と
ガス拡散向上のためガスの再加熱が必要になると
いう欠点がある。 そこで近年、脱硫に要する用水量を低減するこ
とができ、且つ副生品として石膏により嵩の小さ
い単体硫黄を回収することができる単体硫黄回収
乾式脱硫方法が脚光をあびつつある。 この単体硫黄回収乾式脱硫方法は、排ガス中の
SO2を吸着剤に吸着させた後に吸着剤を加熱して
SO2を濃縮脱離させ、更に濃縮脱離SO2を還元剤
により還元して単体硫黄を得るプロセスであり、
上記吸着剤及び還元剤として石炭を乾留して得ら
れる半成コークスが用いられる。従つて、石炭焚
ボイラ排ガスの脱硫プロセスにおいては、ボイラ
に供給される石炭の一部をボイラ手前で抜き出
し、これを乾留して半成コークスを製造し脱硫処
理に供するのが経済的である。 しかしながら、石炭の乾留により得られた半成
コークスは、そのままではSO2の吸着性能及び還
元性能が良くないため、通常は水蒸気と燃焼排ガ
スの混合ガスにより賦活処理する必要があり、特
に大容量の排ガスを処理する場合には半成コーク
ス賦活用水蒸気を得るため多量の用水及び熱エネ
ルギーを必要とすること、賦活に長時間を必要と
すること、大規模の賦活塔が必要となることなど
の欠点を有していた。 本発明の目的は、上記した従来技術の欠点を解
消し、独立した半成コークス賦活処理工程を設け
ることなく、乾式排煙脱硫プロセスにおいて半成
コークスの賦活処理をも同時に行うことができる
乾式排煙脱硫方法を提供することにある。 本発明の要旨は、排ガス中にNH3ガスを添加し
た後に吸着剤である賦活半成コークスにより排ガ
ス中のSO2を吸着し、同時に吸着された酸素、水
分及びNH3ガスの作用により吸着SO2を硫酸、酸
性硫酸アンモニウム及び硫酸アンモニウムに転化
させる工程と、前工程で得られた硫酸及び前記硫
酸塩をその表面に保持した半成コークスを高温脱
離処理して、硫酸及び前記硫酸塩をSO2、水蒸気
及びNH3ガスに分解し、濃縮SO2ガスを得るとと
もに、別途石炭の乾留により得られた要賦活の半
成コークスを前記高温脱離処理により得られた水
蒸気及びNH3ガスにより賦活する工程とを有する
ことを特徴とする乾式排煙脱硫方法にある。 以下、添付図面に基いて本発明を詳細に説明す
る。 図は、本発明の乾式排煙脱硫方法を実施するに
好適な装置の一例を示すものであり、該装置は、
ボイラ1、吸着塔2、脱離塔3、硫黄転換器4、
硫黄回収器5及び乾留塔6から主として構成さ
れ、独立した賦活塔は存在しない。 図において導管11よりボイラ1に供給された
石炭の燃焼により生じた排ガスは、導管12にお
いて導管13よりのNH3ガスの添加を受けた後
に、吸着塔2に導入され、吸着剤である賦活半成
コークスと接触してSO2が吸着除去されるととも
に一部の窒素酸化物も無害化され、清浄ガスとな
つて導管21経由で煙突8より大気に放出され
る。吸着塔2の温度は、排ガス温度と同程度の温
度に保たれる。又、吸着塔2の形式は、例えば移
動床の如き形式が好ましい。 吸着塔2で吸着剤として用いられた半成コーク
スは、ボイラ燃料である石炭の一部を導管22に
より乾留塔6に導き、600〜900℃の温度で乾留す
ることにより得られる。乾留により半成コークス
とともに生成したガス及びタールは導管25に抜
き出され、導管26よりの燃料とともに燃焼炉7
で燃焼されて、生成高温ガスは導管28を経由し
て脱離器3の熱源などのプロセス熱源として活用
できる。高温生成ガスを導管27経由で乾留塔6
に導き、石炭乾留用熱源として利用しても良い。 乾留塔6で生成した半成コークスは、未だSO2
吸着能が低いので、これを直ちに吸着塔2に送る
ことはできず、賦活処理が必要である。この賦活
処理は、従来、独立した賦活塔で半成コークスを
水蒸気と接触させることにより行なわれていた
が、本発明によれば、独立した賦活処理工程を設
けず、半成コークスは導管23経由で導管14に
導かれ、吸着塔2からのSO2吸着半成コークスと
ともに脱離器3に供給され、該脱離器3で前者の
乾留塔6よりの半成コークスの賦活処理と後者の
吸着塔2よりのSO2吸着半成コークスのSO2脱離
処理が同時に行なわれる。 すなわち、吸着塔2でSO2を吸着し、同時に吸
着された酸素、水分及びNH3ガスの作用により吸
着されたSO2が硫酸、酸性硫酸アンモニウム及び
硫酸アンモニウムに転化されているSO2吸着半成
コークスは、脱離器3において300〜650℃の温度
で加熱され、半成コークス上の硫酸はSO2と水蒸
気に分解され、一方、酸性硫酸アンモニウムと硫
酸アンモニウムもSO2とNH3ガス分解され、NH3
ガスは更に一部が窒素ガスに分解される。 SO2吸着半成コークスとともに脱離器3に導入
された乾留塔6よりの半成コークスは、上記SO2
吸着半成コークスの脱離処理により生じた水蒸
気、NH3ガスなどのガスにより脱離処理過程で同
時に賦活され、吸着性能の高い賦活半成コークス
となり、導管16経由で吸着塔2に送られ、排ガ
ス中のSO2の吸着処理に供される。 脱離器3を出た濃縮SO2ガスは導管17経由で
硫黄転換器4に送られ、該硫黄転換器4で還元剤
の存在下に600〜1200℃で還元処理される。上記
還元剤としては、乾留塔6で得られ、導管24経
由で運ばれてきた半成コークスを用いるのが良
い。 硫黄転換器4でSO2を還元することにより得ら
れた単体硫黄蒸気は、導管18経由で硫黄回収器
5に送られ、そこで冷却凝縮されて単体硫黄固体
として導管19より回収される。なお、図面では
石炭を乾留し、半成コークスを製造する乾留塔2
が記載されているが、該乾留塔2を使用せず、直
接半成コークスを別途搬入してこれを賦活するこ
とも可能である。 以下、実施例に基づき本発明を更に説明する。 実施例 排ガス量50Nm3/hのペンチスケール装置を用
いた。 SO2濃度600ppm、酸素濃度6vo1%、水分濃度
10vo1%、窒素酸化物(以下NOxという)濃度
150ppm、NH3濃度0ppm(添加しない場合)又は
200ppm(添加した場合)の排ガスを吸着塔2に
導き、予め脱離器3で賦活しておいた半成コーク
スに接触させて、SO2及びNOxを吸着させた。吸
着塔2よりの清浄ガスを採取し、清浄ガス中の
SO2濃度及びNOx濃度を求め、脱硫率及び脱硝率
を求めたところ、第1表の如くであつた。
The present invention relates to a dry flue gas desulfurization method, and particularly to a dry flue gas desulfurization method that does not require an independent activation treatment step for semiformed coke used as an adsorbent for SO 2 in flue gas in the dry flue gas desulfurization process. Regarding. Many flue gas desulfurization processes have been developed, but currently the mainstream is wet methods such as the lime-gypsum method and limestone-gypsum method, which absorb and remove SO 2 using an alkaline absorbent such as lime or limestone. However, when these wet methods are used to desulfurize exhaust gas from large thermal power plants, a huge amount of gypsum is recovered as a by-product, which not only requires a great deal of cost to transport, but also the amount of gypsum currently available. The drawback is that there is a tendency for oversupply, and it is necessary to find a source of demand for it. In addition, the wet method has the disadvantage that a large amount of water is required because the absorbing liquid is brought into direct contact with the exhaust gas. Taking the example of a large boiler such as a thermal power plant in particular, when wet desulfurization treatment is applied to boiler exhaust gas with a power generation output of 1000 MW, the total amount of water required is 100 to 200 tons/
It also becomes h. Therefore, it is difficult to apply the wet method in locations where water is scarce. Furthermore, the wet method has the disadvantage that it is necessary to post-treat the wastewater after recovering gypsum, which is a byproduct after the desulfurization process. Furthermore, the wet method has the disadvantage that the temperature of the purified gas after desulfurization has dropped to 40 to 60°C, and therefore the gas needs to be reheated to prevent white smoke and improve gas diffusion. Therefore, in recent years, a dry desulfurization method for recovering elemental sulfur has been attracting attention, which can reduce the amount of water required for desulfurization and can recover elemental sulfur with small bulk from gypsum as a by-product. This elemental sulfur recovery dry desulfurization method uses
After SO 2 is adsorbed onto the adsorbent, the adsorbent is heated.
It is a process in which SO 2 is concentrated and desorbed, and the concentrated and desorbed SO 2 is further reduced with a reducing agent to obtain elemental sulfur.
Semi-formed coke obtained by carbonizing coal is used as the adsorbent and reducing agent. Therefore, in the desulfurization process of coal-fired boiler exhaust gas, it is economical to extract a portion of the coal supplied to the boiler before the boiler, carbonize it, produce semiformed coke, and provide it for the desulfurization treatment. However, semi-formed coke obtained by carbonization of coal does not have good SO 2 adsorption and reduction performance as it is, so it usually needs to be activated with a mixed gas of steam and combustion exhaust gas. When treating exhaust gas, there are many problems such as requiring a large amount of water and thermal energy to obtain steam for activating semi-formed coke, requiring a long time for activation, and requiring a large-scale activation tower. It had drawbacks. The purpose of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a dry exhaust gas desulfurization process that can simultaneously activate semi-formed coke in a dry flue gas desulfurization process without providing an independent semi-formed coke activation process. An object of the present invention is to provide a smoke desulfurization method. The gist of the present invention is to adsorb SO 2 in the exhaust gas using activated semi-formed coke as an adsorbent after adding NH 3 gas to the exhaust gas, and at the same time, adsorb SO 2 by the action of the adsorbed oxygen, moisture and NH 3 gas. 2 into sulfuric acid, acidic ammonium sulfate, and ammonium sulfate, and the semi-formed coke retaining the sulfuric acid and the sulfate obtained in the previous step on its surface is subjected to high temperature desorption treatment to convert the sulfuric acid and the sulfate into SO 2 , decomposed into steam and NH 3 gas to obtain concentrated SO 2 gas, and at the same time, semi-formed coke that requires activation obtained by carbonization of coal is activated with steam and NH 3 gas obtained by the high temperature desorption treatment. A dry flue gas desulfurization method is characterized by comprising the steps of: Hereinafter, the present invention will be explained in detail based on the accompanying drawings. The figure shows an example of an apparatus suitable for implementing the dry flue gas desulfurization method of the present invention, and the apparatus includes:
Boiler 1, adsorption tower 2, desorption tower 3, sulfur converter 4,
It mainly consists of a sulfur recovery device 5 and a carbonization tower 6, and there is no independent activation tower. In the figure, the exhaust gas produced by the combustion of coal supplied to the boiler 1 through the conduit 11 receives NH 3 gas from the conduit 13 in the conduit 12, and then is introduced into the adsorption tower 2. Upon contact with the formed coke, SO 2 is adsorbed and removed, and a portion of the nitrogen oxides are also rendered harmless, and the gas is released into the atmosphere from the chimney 8 via the conduit 21 as clean gas. The temperature of the adsorption tower 2 is maintained at about the same temperature as the exhaust gas temperature. Further, the type of adsorption tower 2 is preferably a moving bed type, for example. The semi-formed coke used as an adsorbent in the adsorption tower 2 is obtained by introducing a portion of coal, which is a boiler fuel, into the carbonization tower 6 through a conduit 22 and carbonizing it at a temperature of 600 to 900°C. Gas and tar generated together with semi-formed coke by carbonization are extracted into a conduit 25 and sent to the combustion furnace 7 along with fuel from a conduit 26.
The resulting hot gas can be used as a process heat source, such as a heat source for the desorber 3, via a conduit 28. The high temperature generated gas is passed through the conduit 27 to the carbonization tower 6.
It may be used as a heat source for coal carbonization. The semi-formed coke produced in carbonization tower 6 is still SO 2
Since the adsorption capacity is low, it cannot be immediately sent to the adsorption tower 2, and activation treatment is required. This activation treatment has conventionally been carried out by bringing the semi-formed coke into contact with steam in an independent activation tower, but according to the present invention, an independent activation treatment step is not provided, and the semi-formed coke is passed through the conduit 23. is led to a conduit 14 and supplied to a desorber 3 together with the SO 2 adsorbed semi-coke from the adsorption tower 2, where the former semi-form coke from the carbonization tower 6 is activated and the latter is adsorbed. SO 2 desorption treatment of the SO 2 adsorbed semi-formed coke from column 2 is performed at the same time. In other words, SO 2 adsorbed semi-coke is produced by adsorbing SO 2 in the adsorption tower 2 and simultaneously converting the adsorbed SO 2 into sulfuric acid, acidic ammonium sulfate, and ammonium sulfate by the action of adsorbed oxygen, moisture, and NH 3 gas. , heated at a temperature of 300-650℃ in the desorber 3, the sulfuric acid on the semi-formed coke is decomposed into SO 2 and water vapor, while the acidic ammonium sulfate and ammonium sulfate are also decomposed into SO 2 and NH 3 gases, and NH 3
A portion of the gas is further decomposed into nitrogen gas. The semi-coke from the carbonization tower 6 introduced into the desorber 3 together with the SO 2 adsorbed semi-coke is
During the desorption process, the adsorbed semi-formed coke is simultaneously activated by gases such as water vapor and NH 3 gas generated by the desorption process, and becomes activated semi-formed coke with high adsorption performance, which is sent to the adsorption tower 2 via the conduit 16. Used for adsorption treatment of SO 2 in exhaust gas. The concentrated SO 2 gas leaving the desorber 3 is sent via conduit 17 to the sulfur converter 4, where it is reduced at 600-1200° C. in the presence of a reducing agent. As the reducing agent, it is preferable to use semi-formed coke obtained in the carbonization tower 6 and conveyed via the conduit 24. Elemental sulfur vapor obtained by reducing SO 2 in the sulfur converter 4 is sent to the sulfur recovery unit 5 via conduit 18, where it is cooled and condensed and recovered as elemental sulfur solid through conduit 19. In addition, the drawing shows carbonization tower 2 that carbonizes coal and produces semi-formed coke.
is described, but it is also possible to directly import semi-formed coke separately and activate it without using the carbonization tower 2. The present invention will be further explained below based on Examples. Example A pinch scale device with an exhaust gas amount of 50 Nm 3 /h was used. SO2 concentration 600ppm, oxygen concentration 6vo1%, moisture concentration
10vo1%, nitrogen oxide (hereinafter referred to as NOx) concentration
150ppm, NH3 concentration 0ppm (if not added) or
200 ppm (if added) of exhaust gas was led to the adsorption tower 2 and brought into contact with semi-formed coke activated in advance in the desorber 3 to adsorb SO 2 and NOx. Collect the clean gas from adsorption tower 2, and
The SO 2 concentration and NOx concentration were determined, and the desulfurization rate and denitrification rate were determined, and the results were as shown in Table 1.

【表】 吸着塔2でSO2を吸着した半成コークスを脱離
器3に導き、一方乾留塔6で石炭を850℃で2時
間乾留することにより得られた要賦活処理の半成
コークスも同時に脱離器3に導いた。 吸着塔2よりのSO2吸着半成コークス及び乾留
塔6よりの要賦活処理の半成コークスは、脱離器
3で550℃の温度で加熱処理され、前者の半成コ
ークスのSO2脱離と後者の半成コークスの賦活が
同時に行なわれた。 脱離器3出口の賦活済半成コークスを採取し
て、熱天秤により半成コークス1g当りのSO2
衡吸着量を測定したところ、排ガス中にNH3ガス
を添加しない場合には、0.1gであつたが、添加
した場合には0.18gと高い値を示した。 上記実施例より明らかなように、排ガス中に
NH3ガスを添加した方が、半成コークスの賦活効
果が増すことが、脱硫率とSO2平衡吸着量の両面
から確認することができた。又、NH3の添加によ
り脱硝効果も生ずることが明らかとなつた。 以上本発明は、独立した半成コークス賦活処理
工程を必要とすることなく、SO2の脱離処理にお
いて同時に半成コークスを賦活できるという利点
がある。 又、従来、半成コークス3トンを得るのに賦活
用水蒸気が0.5トン必要とされていたが、これが
不要となるという利点がある。
[Table] Semi-formed coke that has adsorbed SO 2 in adsorption tower 2 is led to desorber 3, while semi-formed coke that requires activation treatment is also obtained by carbonizing coal at 850°C for 2 hours in carbonization tower 6. At the same time, it was led to desorber 3. The SO 2 adsorbed semi-coke from the adsorption tower 2 and the semi-coke requiring activation from the carbonization tower 6 are heat-treated at a temperature of 550°C in the desorber 3 to desorb SO 2 from the former semi-coke. The activation of the latter semi-finished coke was carried out at the same time. Activated semi-formed coke at the outlet of desorber 3 was sampled and the equilibrium adsorption amount of SO 2 per gram of semi-formed coke was measured using a thermobalance. When NH 3 gas was not added to the exhaust gas, the amount of SO 2 equilibrium adsorption was 0.1 g. However, when it was added, the value was as high as 0.18g. As is clear from the above example, in the exhaust gas
It was confirmed that adding NH 3 gas increases the activation effect of semi-formed coke from both the desulfurization rate and the equilibrium adsorption amount of SO 2 . It was also revealed that the addition of NH 3 also produced a denitrification effect. As described above, the present invention has the advantage that semi-formed coke can be simultaneously activated during the SO 2 desorption treatment without requiring an independent semi-formed coke activation treatment step. In addition, conventionally, 0.5 tons of recycled steam was required to obtain 3 tons of semi-formed coke, but this method has the advantage that this is no longer necessary.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の方法を実施するに好適な装置の一
例を示すものである。 1……ボイラ、2……吸着塔、3……脱離器、
4……硫黄転換器、5……硫黄回収器、6……乾
留塔、7……燃焼炉、8……煙突。
The figure shows an example of an apparatus suitable for carrying out the method of the invention. 1...Boiler, 2...Adsorption tower, 3...Desorber,
4... Sulfur converter, 5... Sulfur recovery device, 6... Carbonization tower, 7... Combustion furnace, 8... Chimney.

Claims (1)

【特許請求の範囲】[Claims] 1 排ガス中にアンモニア(以下NH3という)ガ
スを添加した後に吸着剤である賦活半成コークス
により排ガス中の亜硫酸ガス(以下SO2という)
を吸着し、同時に吸着された酸素、水分及びNH3
ガスの作用により吸着SO2を硫酸、酸性硫酸アン
モニウム及び硫酸アンモニウムに転化させる工程
と、前工程で得られた、硫酸及び前記硫酸塩をそ
の表面に保持した半成コークスを高温脱離処理し
て、硫酸及び前記硫酸塩をSO2、水蒸気及びNH3
ガスに分解し、濃縮SO2ガスを得るとともに、別
途石炭の乾留により得られた要賦活の半成コーク
スを前記高温脱離処理により得られた水蒸気及び
NH3ガスにより賦活する工程とを有することを特
徴とする乾式排煙脱硫方法。
1 After adding ammonia (hereinafter referred to as NH3 ) gas to the exhaust gas, sulfur dioxide gas (hereinafter referred to as SO2 ) in the exhaust gas is removed by activated semi-formed coke, which is an adsorbent.
and simultaneously adsorbed oxygen, moisture and NH 3
A step of converting adsorbed SO 2 into sulfuric acid, acidic ammonium sulfate, and ammonium sulfate by the action of gas, and a high-temperature desorption treatment of the semi-formed coke holding sulfuric acid and the sulfate on its surface obtained in the previous step to convert sulfuric acid into sulfuric acid. and the sulfate with SO 2 , water vapor and NH 3
In addition to decomposing into gas to obtain concentrated SO 2 gas, semi-formed coke that requires activation obtained by carbonization of coal is decomposed into steam and steam obtained by the high-temperature desorption treatment.
A dry flue gas desulfurization method characterized by having a step of activating with NH 3 gas.
JP12143979A 1979-09-20 1979-09-20 Dry-type exhaust gas desulfurization process Granted JPS5645734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12143979A JPS5645734A (en) 1979-09-20 1979-09-20 Dry-type exhaust gas desulfurization process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12143979A JPS5645734A (en) 1979-09-20 1979-09-20 Dry-type exhaust gas desulfurization process

Publications (2)

Publication Number Publication Date
JPS5645734A JPS5645734A (en) 1981-04-25
JPS6260132B2 true JPS6260132B2 (en) 1987-12-15

Family

ID=14811156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12143979A Granted JPS5645734A (en) 1979-09-20 1979-09-20 Dry-type exhaust gas desulfurization process

Country Status (1)

Country Link
JP (1) JPS5645734A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164628A (en) * 1985-01-12 1986-07-25 Mitsui Mining Co Ltd Removal of sulfur oxide and nitrogen oxide in waste gas
DE3521009A1 (en) * 1985-06-12 1986-12-18 Chiron-Werke Gmbh, 7200 Tuttlingen MACHINE TOOL
JPH0375948U (en) * 1989-11-25 1991-07-30

Also Published As

Publication number Publication date
JPS5645734A (en) 1981-04-25

Similar Documents

Publication Publication Date Title
JP5525992B2 (en) Thermal power plant with carbon dioxide absorber
CN100411709C (en) A method for purifying flue gas by use of powdered activated coke
EP0779100B1 (en) Flue-gas denitration und desulfurization processes
JPH0593519A (en) Power generation plant comprising gasification
CN111569604A (en) Low-temperature flue gas adsorption desulfurization method
US6106791A (en) Exhaust gas treating systems
WO2024036884A1 (en) System and method for treating coal-fired flue gas
US6814948B1 (en) Exhaust gas treating systems
JPS6260132B2 (en)
CA1296508C (en) Removal of water vapor diluent after regeneration of metal oxide absorbent to reduce recycle stream
CN112023693B (en) Efficient denitration method for hot blast stove and hot blast stove device
JPH03293017A (en) Treatment of waste combustion gas
JPS5864117A (en) Dry stack-gas desulfurization process
JPS631088B2 (en)
JPH11106751A (en) Soil conditioner and sox adsorbent
JPS5453666A (en) Method and apparatus for purifying gas of high temperature
JPS5841893B2 (en) Hiengasu Shiyorihouhou
JPS5645739A (en) Dry-type exhaust gas desulfurization process
JPS5936527A (en) Dry type stack gas desulfurization process
JPS6261330B2 (en)
JPS55155728A (en) Dry type exhaust gas desulfurizing method
JPS62129128A (en) Reduction of sulfur emission of steam power plant
JPS6362250B2 (en)
JPS5973030A (en) Desulfurization of waste gas
JPS58153523A (en) Dry type stack gas desulfurization and denitration method