JPS6259959B2 - - Google Patents

Info

Publication number
JPS6259959B2
JPS6259959B2 JP2126678A JP2126678A JPS6259959B2 JP S6259959 B2 JPS6259959 B2 JP S6259959B2 JP 2126678 A JP2126678 A JP 2126678A JP 2126678 A JP2126678 A JP 2126678A JP S6259959 B2 JPS6259959 B2 JP S6259959B2
Authority
JP
Japan
Prior art keywords
magnets
group
magnet
cylindrical
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2126678A
Other languages
Japanese (ja)
Other versions
JPS54114231A (en
Inventor
Shinichi Hosoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2126678A priority Critical patent/JPS54114231A/en
Publication of JPS54114231A publication Critical patent/JPS54114231A/en
Publication of JPS6259959B2 publication Critical patent/JPS6259959B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)

Description

【発明の詳細な説明】 本発明は、従来のダイナミツクスピーカーの欠
点を改良し、さらに高性能化を計ろうとする事に
あるまず、従来型の欠点は(1)円すい(コーン)の
頂点を駆動する方式か、(2)半球の周囲を駆動する
ホーン型やドーム型の方式に限られており、コン
デンサー型の如くにダイアフラム全体を駆動する
全面駆動とはならない。従つて当然硬い振動板を
用いるため質量を増加し又ダイアフラムは、固有
の振動数を持つているためその周波数だけ共振し
てピークやデイツプを起す恐れがあつた。特にコ
ーン型の場合ドツプラー効果や分割振動による歪
は避けられない。こうしてスピーカーの理想は柔
らかい振動膜による全面駆動方式だという事がわ
かる。そしてこの方式はすでに市販されており驚
くには当らない。ところが本発明はすでに市販さ
れているものとは基本的に異なり完全な呼吸運動
と全面駆動、さらに360度方向無指向性で加えて
何よりも高能率な事である。又広帯域化も望め
る。(なお単なる呼吸運動だけなら市販のソフ
ト・ドーム・スピーカーがあるが、これは気圧変
化を利用した呼吸運動で、本発明の純電気的呼吸
運動とは異なる。)では内容に入ろう。
[Detailed Description of the Invention] The present invention aims to improve the shortcomings of conventional dynamic speakers and further improve their performance. First, the shortcomings of the conventional type are (1) (2) A horn-type or dome-type method that drives the periphery of a hemisphere, and is not a full-scale drive that drives the entire diaphragm like a condenser type. Naturally, the use of a hard diaphragm increases the mass, and since the diaphragm has a unique frequency, there is a risk that it will resonate at that frequency, causing peaks and dips. Particularly in the case of a cone type, distortion due to the Doppler effect and split vibration cannot be avoided. This shows that the ideal speaker is a full-plane drive system using a soft vibrating membrane. This is not surprising since this method is already commercially available. However, the present invention is fundamentally different from those already on the market in that it has complete breathing motion, full-scale drive, 360 degree omnidirectionality, and above all, high efficiency. It is also possible to expect a wider band. (For simple breathing movements, there are commercially available soft dome speakers, but these are breathing movements that utilize changes in atmospheric pressure and are different from the pure electrical breathing movements of the present invention.) Let's get into the details.

本発明の動作原理は(第1図)如く同極同志向
かい合わせて相互に反発しあう磁気回路を持つの
が特徴である。以下詳細に説明する。まず(第1
図)は基本原理の従断面図、(第2図)は同じく
横断面図である。すなわち同形、同等磁力の小型
マグネツトを多数集め、これを同心円上に直径の
異なる円筒形のマグネツト群として2層に並べ
る。そして(第1図)の如く磁極のNとN、Sと
Sが相互に反発し合う磁気回路を構成し、この磁
気回路内にボイスコイルとなるソレノイド状に巻
いた導線のプリントされた円筒形振動膜が配置さ
れる。今このボイスコイルに音声電流を通すと一
方の半周期においては(第3図)の如く膨張し、
残りもう片方の半周期においては収縮(第4図)
する。実際には円筒形振動膜は伸縮しないので
(第5図)の如く凹凸をつける。この様にして膨
張と収縮の動作〜すなわち呼吸運動を行なう。な
おこのスピーカーは(第6図)の如く円筒の片方
の直径は小さく残りもう片方の直径を大きくした
コーン型も考えられる。又(第7図)の如く筒状
の両端の大きさや形は変らないが不定形のタイプ
も考えられるがいずれにしても基本は円筒形と同
一である。
As shown in FIG. 1, the operating principle of the present invention is that it has a magnetic circuit in which like-polarity faces each other and repels each other. This will be explained in detail below. First (first
Figure 2) is a sub-sectional view of the basic principle, and Figure 2 is a cross-sectional view. That is, a large number of small magnets of the same shape and magnetic force are collected and arranged in two layers on a concentric circle as a group of cylindrical magnets with different diameters. Then, as shown in Figure 1, the magnetic poles N and N and S and S form a magnetic circuit in which they repel each other, and within this magnetic circuit there is a cylindrical shape printed with a conducting wire wound like a solenoid that becomes the voice coil. A vibrating membrane is arranged. Now, when a voice current is passed through this voice coil, it expands in one half cycle as shown in Figure 3.
In the remaining half cycle, contraction (Figure 4)
do. Actually, since the cylindrical diaphragm does not expand or contract, it is provided with irregularities as shown in Fig. 5. In this way, the movement of expansion and contraction, that is, the breathing movement, is performed. This speaker may also be of a cone type, as shown in Fig. 6, in which one side of the cylinder has a small diameter and the other side has a large diameter. Also, as shown in Fig. 7, a type of amorphous shape may be considered, although the size and shape of both ends of the cylindrical shape do not change, but in any case, the basic shape is the same as the cylindrical shape.

さてこうして円筒形振動膜3の膨張と収縮の運
動によつて音波を発生するのであるが、以上の事
から当然(1)本発明は、水平360度方向完全な無指
向性となる。(2)膨張と収縮の本格的な電気的呼吸
運動をする。(3)全面駆動をする事。(4)ソレノイド
状のボイスコイルのため何回も導線をターンして
使うため4〜16オームのインピーダンス確保はた
やすく、それ故マツチングトランス不要である。
などの利点がある。しかしこれは、本発明の初歩
的段階に過ぎず(第8図)以後、特に(第9図)
が到達点である。ではその本発明の到達点に最も
近い(第8図)から説明しよう。まず(第8図
A)では偏平かつ角型の同等磁力で同じ形態のマ
グネツトを多数個集めて、ある一定の距離を開き
ながら同極同志向かい合わせて相互に反発磁界と
し、そしてこのマグネツト群1の磁極方向をタテ
軸に取りながら円筒や長円筒や角柱などの種々の
筒状形態を構成する。(第8図Bのイとロとハ)。
なおこの形態は(第1図)から(第7図)までの
マグネツトの配置とは全く異なる。(第1図)〜
(第7図)では同心円上に直径の異なる2つの円
筒形に並んだマグネツト群が相互に反発磁界を形
成していたが(第8図)では、この同心円上の2
つのマグネツト群は無く、その点では同一の円筒
形が1つ存在するだけである。この1つの円筒形
の円周方向に対してマグネツトが相互に反発磁界
を構成しているので(第1図)〜(第7図)まで
磁気回路とは異なる。さてこの(第8図)では多
数のマグネツト1で構成された筒状形態の両サイ
ド(底や天井の無い筒状なのでその両開口部)に
対して平行になる様に磁極方向を合わせる。この
筒状形態のマグネツト群を一群として筒状のタテ
軸すなわち磁極の方向に対して同じ方向に合わせ
て直列にかつ個々のマグネツト1の位置をも合わ
せた上で、もう1つの全く同じ形で同じ磁気回路
のマグネツト群1を空気の出入可能なすき間を開
きながら非磁性体の小さなロツドか板で接続す
る。(第8図Bのニ) これらをさらに何段か積み重ねて行く。そして
(第8図C)の様な円筒形のダイアフラム3にボ
イスコイル2を、この(第8図Bのホ)にある様
なマグネツト群の段のすき間の数とすき間の幅だ
けプリントする。すなわちこの図の場合ならば3
つのすき間があるのでVC1、VC2、VC3、とプリ
ントする。ひとつのボイスコイル2の幅は、磁気
回路の磁場がちようど入る幅とする。これを(第
8図Dのイ)の様にアコーデイオンカーテン状に
してこのマグネツト1の磁気回路の相互反発し合
う間げきにそう入する。すなわち波形に入るので
ある。(第8図Dのロ)はその部分の拡大図であ
る。(第8図Dのハ)は側面図である。こうする
と音声信号の一方の半周期では(第8図E)の如
く筒状の外側では振動膜3のヒダが狭くなり、そ
の逆の半周期においては(第8図F)の如く筒状
の外側では振動膜のヒダが広くなる様に運動す
る。なお筒状の内側ではそれぞれこの逆の動作で
ある。つまり伸縮動作をするのである。これが
(第1図)〜(第7図)までの動作と異なる点で
ある。この時、ボイスコイル2は、タテに並んだ
筒状の各マグネツト群1のすき間に来る様に設計
しなければならない。(第8図G)。又この方式で
あると(第8図H)の矢印の所の如くボイスコイ
ル2に磁界がかからず、その分だけ電力を損失さ
せる。そこでカーブの所にも同じく、マグネツト
を配置し今までとは全く異なつた二重動作の能率
の高いスピーカーにしたのが(第9図)である。
そしてこの(第9図)全体こそ本発明の頂点であ
りかつ完成点である。それ故、(第1図)から
(第8図)までは、この(第9図)へたどりつく
ための説明にすぎない。さて(第9図A)は(第
8図H)の矢印の所にもマグネツトを加えた図で
ある。
Now, sound waves are generated by the movement of expansion and contraction of the cylindrical diaphragm 3, and from the above, naturally (1) the present invention is completely non-directional in the horizontal 360 degree direction. (2) Perform full-fledged electrical breathing exercises of expansion and contraction. (3) Full-scale drive. (4) Since the solenoid-like voice coil is used by turning the conductor many times, it is easy to secure an impedance of 4 to 16 ohms, so no matching transformer is required.
There are advantages such as However, this is only the elementary stage of the present invention (Fig. 8) and later (Fig. 9).
is the reaching point. Let's start with the one closest to the goal of the present invention (FIG. 8). First (Fig. 8A), a large number of flat and rectangular magnets with equal magnetic force and the same configuration are collected, and the same polarity faces each other with a certain distance apart to create a mutually repelling magnetic field. Various cylindrical shapes such as a cylinder, an elongated cylinder, and a prism are constructed while taking the magnetic pole direction as the vertical axis. (A, B, and C in Figure 8B).
Note that this configuration is completely different from the magnet arrangements shown in FIG. 1 to FIG. 7. (Figure 1) ~
In (Fig. 7), two cylindrical groups of magnets with different diameters arranged on a concentric circle form mutually repelling magnetic fields, but in (Fig. 8), two cylindrical groups arranged on a concentric circle form a mutually repelling magnetic field.
There are no groups of magnets; there is only one cylindrical shape that is identical in that respect. Since the magnets form a mutually repelling magnetic field in the circumferential direction of this one cylindrical shape, the circuits (FIG. 1) to (FIG. 7) are different from a magnetic circuit. Now, in this case (FIG. 8), the magnetic pole direction is aligned so as to be parallel to both sides of the cylindrical structure made up of a large number of magnets 1 (both openings of the cylindrical structure, since it is cylindrical with no bottom or ceiling). This group of cylindrical magnets is arranged in series in the same direction with respect to the vertical axis of the cylindrical shape, that is, the direction of the magnetic poles, and the positions of the individual magnets 1 are also aligned, and then another magnet 1 of the same shape is placed in series. Magnet groups 1 of the same magnetic circuit are connected using small rods or plates made of non-magnetic material while leaving gaps that allow air to enter and exit. (D in Figure 8B) Stack these in several more layers. Then, the voice coil 2 is printed on the cylindrical diaphragm 3 as shown in (FIG. 8C) by the number of gaps and the width of the gaps in the stages of the magnet group as shown in FIG. 8B (E). In other words, in the case of this figure, 3
There are three gaps, so print VC1, VC2, VC3. The width of one voice coil 2 is set to a width that allows the magnetic field of the magnetic circuit to pass through. This is formed into an accordion curtain shape as shown in FIG. 8D (a) and inserted between the mutually repelling magnetic circuits of the magnet 1. In other words, it enters the waveform. (B in Fig. 8D) is an enlarged view of that part. (C in FIG. 8D) is a side view. In this way, in one half period of the audio signal, the folds of the diaphragm 3 become narrower on the outside of the cylindrical shape, as shown in FIG. 8E, and in the opposite half period, as shown in FIG. On the outside, the vibration membrane moves so that its folds become wider. Note that this operation is the opposite on the inside of the cylinder. In other words, it expands and contracts. This is a different point from the operations shown in FIG. 1 to FIG. 7. At this time, the voice coil 2 must be designed so that it is located in the gap between each of the cylindrical magnet groups 1 arranged vertically. (Figure 8G). Also, with this method, no magnetic field is applied to the voice coil 2 as indicated by the arrow in FIG. 8H, resulting in a corresponding loss of power. Therefore, we placed magnets at the curves as well, creating a highly efficient dual-action speaker that is completely different from previous speakers (Figure 9).
This whole thing (FIG. 9) is the pinnacle and completion point of the present invention. Therefore, (Fig. 1) to (Fig. 8) are merely explanations to arrive at this (Fig. 9). Now, (Fig. 9A) is a diagram in which magnets are also added to the arrows in (Fig. 8H).

ここで(第8図)まではマグネツトを単にマグ
ネツトとしたが(第9図)からは、それぞれのマ
グネツトの役目が異なるので(第8図)の所でも
使われていたマグネツト1を、ここでは伸縮動作
マグネツト4とし、(第9図)から追加されるマ
グネツトを前後運動マグネツト5としよう。
Up to this point (Figure 8), the magnet was simply referred to as a magnet, but from (Figure 9) onwards, each magnet has a different role, so magnet 1, which was also used in (Figure 8), is used here. Assume that the magnet 4 is a telescopic magnet 4, and the magnet added from (FIG. 9) is a magnet 5 that moves back and forth.

こうすると本発明の動作原理がはつきりと理解
され便利である。
In this way, the operating principle of the present invention can be clearly understood and convenient.

さて新たに追加された前後運動マグネツト5
は、伸縮動作マグネツト4の構成する筒状形態の
内側と外側とに(第9図A)の如くそれぞれ交互
にかつ、伸縮動作マグネツトの1個づつにそれぞ
れひとつづつ前後運動マグネツト5を同じくある
一定の距離を開きながら同極同志向かい合わせて
反発しあう形に並べる。(第9図B)。こうして出
来た筒状形態のマグネツト群全体を一群として、
この一群と全く同じ形状で同じ磁気回路のマグネ
ツト群をさきの一群の磁極方向と同方向に、直列
に並べる。この時、双方のマグネツト群の位置を
も合わせ、かつ空気の出入可能な一定のすき間を
開きながら直列に並べる事である。(第9図C)。
つまりこれは(第8図Bのニ)と同じ並べ方であ
る。これを何段か積み重ねていく。(第9図の
D)。これも(第8図Bのホ)と同じ積み重ね方
である。図では部分の拡大図のみとした。さてこ
うして出来た磁気回路に円筒形のダイアフラム3
にボイスコイル2をプリントして、これをアコー
デイオンカーテン状に成形して(第9図E)の如
くにマグネツト群の相互に反発し合う磁気回路の
間げきに、そう入する。この時もち論(第8図B
のホ)の所でも述べた如くこの筒状形態のマグネ
ツト群の段のすき間の数だけボイスコイル2をプ
リントし、かつ段のすき間に流れる磁力線の磁場
に、ボイスコイル2が入る様にする。すなわち4
段ならすき間が3つ存在し3段ならすき間が2つ
存在するのでそのすき間の数とすき間の位置に合
わせてプリントする。こうして出来た筒状形態の
スピーカーに音声電流を流すと(第8図)では考
えられなかつた動作をするのである。すなわち
(第8図)の動作は伸縮動作のみであつたが(第
9図)では、これに加えて前後運動がプラスされ
その2つの動作は相乗効果をもたらすため能率は
さらに高くなる。これが、すなわち二重動作であ
る。ではどんな動作となるであろうか?(第9図
F)では音声信号の上半周期を表現し、この時ダ
イアフラム3はそのヒダの間隔を(筒状形態の外
側では)狭くするためヒダの中の空気圧は上昇
し、さらに加えて前方へも押し出されるため二重
に空気圧は上昇する。相乗効果である。(筒状形
態の内側ではこの正反対の動作)ただしこれはス
ピーカーの入力を逆に接続すると以上の逆動作と
なる。(逆接続では下半周期の動作) (第9図G)では音声信号の下半周期を表現し
この時ダイアフラム3はヒダの間隔を(筒状形態
の外側)広げながら後方へと移動するためヒダの
中の空気圧は下降し後方移動がさらに下降を促進
させる。つまり二重に空気圧は下降する。同様に
相乗効果で二重動作である。もち論筒状形態の内
側ではこの全く逆の動作となる。又スピーカーの
接続を逆にすれば音声信号の上半周期の動作とな
る。
Now, the newly added back and forth motion magnet 5
As shown in FIG. 9A, the back-and-forth motion magnets 5 are placed alternately on the inside and outside of the cylindrical form of the telescoping magnet 4, and one for each telescoping magnet. Arrange comrades of the same polarity to face each other and repel each other, with a distance of . (Figure 9B). The entire group of cylindrical magnets created in this way is considered as one group.
A group of magnets with exactly the same shape and the same magnetic circuit as this group are arranged in series in the same direction as the magnetic pole direction of the previous group. At this time, both magnet groups should be aligned and arranged in series with a certain gap that allows air to enter and exit. (Figure 9C).
In other words, this is the same arrangement as (D in Figure 8B). Stack this up several times. (D in Figure 9). This is also the same stacking method as (e in Figure 8B). The figure shows only an enlarged view of the part. Now, a cylindrical diaphragm 3 is attached to the magnetic circuit created in this way.
A voice coil 2 is printed on the wafer, formed into an accordion curtain shape, and inserted between the mutually repelling magnetic circuits of the group of magnets, as shown in FIG. 9E. At this time, the rice cake theory (Figure 8B
As mentioned in (e), the number of voice coils 2 is printed as many times as there are gaps between the steps of this cylindrical magnet group, and the voice coils 2 are made to enter the magnetic field of the lines of magnetic force flowing between the gaps between the steps. i.e. 4
If there are 3 levels, there will be 3 gaps, and if there are 3 levels, there will be 2 gaps, so print according to the number and position of the gaps. When an audio current is applied to the cylindrical speaker thus created (see Fig. 8), it behaves in ways that were unimaginable. In other words, the movement in (Fig. 8) was only an expansion/contraction movement, but in (Fig. 9), back and forth movement is added to this, and the two movements have a synergistic effect, resulting in even higher efficiency. This is a double action. What kind of action will it take? (Fig. 9F) represents the first half period of the audio signal, and at this time, the diaphragm 3 narrows the interval between its folds (outside the cylindrical form), so the air pressure inside the folds increases, and in addition, Since it is also pushed forward, the air pressure increases doubly. It is a synergistic effect. (This operation is exactly the opposite inside the cylindrical form.) However, if the input of the speaker is connected in reverse, the above operation will be reversed. (Operation in the lower half cycle in reverse connection) (Figure 9G) represents the lower half cycle of the audio signal, and at this time the diaphragm 3 moves rearward while widening the interval between the folds (outside the cylindrical form). The air pressure in the folds decreases, and the backward movement further accelerates the descent. In other words, the air pressure drops twice. Similarly, it is a synergistic double action. Inside the cylindrical shape, the behavior is completely opposite. If the speaker connections are reversed, the operation will be in the upper half period of the audio signal.

以上をまとめるとヒダの間隔が広くなつたり狭
くなつたりする伸縮動作が同時に作用する前後運
動と矛盾なく相乗的に作用するのである。
To summarize the above, the expansion and contraction movements that widen and narrow the distance between the folds work synergistically without contradiction with the simultaneous back and forth movement.

こうして伸縮動作と前後運動との二重動作は極
めて高能率となる。ではどの位高能率化するであ
ろうか?すなわち、同じマグネツトのギヤツプ幅
よりも大きな振幅となるからである。(第9図
H)はそれを表現し前後運動のF1と伸縮動作の
F2とが相互に直角かつ同じ大きさならばトータ
ルのF3の運動(振幅)は、ルート2すなわち約
1.4倍となる。(第9図I) つまりマグネツトのギヤツプ幅よりも1.4倍の
振幅が得られる。これが二重動作のメリツトであ
る。
In this way, the dual motion of telescopic motion and back and forth motion becomes extremely efficient. How much more efficient will it be? That is, the amplitude is larger than the gap width of the same magnet. (Figure 9H) expresses this, and F1 of the back and forth movement and the expansion and contraction movement.
If F2 and F2 are perpendicular to each other and have the same magnitude, the total motion (amplitude) of F3 is root 2, that is, approximately
It becomes 1.4 times. (Fig. 9 I) In other words, an amplitude 1.4 times larger than the gap width of the magnet can be obtained. This is the advantage of dual operation.

こうして従来タイプの全面駆動型ダイナミツ
ク・スピーカーならマグネツトのギヤツプ幅でダ
イアフラム(振動膜)の振幅が、その大きさを制
限されたが、本発明ではそのギヤツプ幅の最大
1.4倍まで振幅が取れる。
In this way, in the conventional type of fully-driven dynamic speaker, the amplitude of the diaphragm (vibrating membrane) was limited by the gap width of the magnet, but with the present invention, the amplitude of the diaphragm (vibrating membrane) is limited by the gap width of the magnet.
Amplitude up to 1.4 times can be obtained.

加えて伸縮動作マグネツト4はこのマグネツト
の前後面双方と側面の一方を駆動力に使う事が出
来るため、より経済的な使い方となる。(従来型
はマグネツトのある側面しか駆動力に使えな
い。) 又円筒形ダイアフラム3をアコーデイオンカー
テン状に成形したため見かけの大きさが小さくな
つただけでなくエネルギーを収束するため能率が
高くなる。
In addition, both the front and rear surfaces and one of the side surfaces of the telescoping magnet 4 can be used for driving force, making it more economical to use. (In the conventional type, only the side surface where the magnet is located can be used for driving force.) Furthermore, since the cylindrical diaphragm 3 is formed into an accordion curtain shape, not only the apparent size is reduced, but also energy is converged and efficiency is increased.

以上本発明の全てでかつ最適の実施例は(第9
図)でありその呼吸運動の原理をつかさどるの
は、伸縮動作と前後運動との二重動作である。
The above-mentioned all and best embodiments of the present invention (No. 9
(Figure), and the principle of its respiratory movement is the dual movement of expansion and contraction and back and forth movement.

なお(第9図J)に支持ダンパー系の図。(第
9図Kのイとロ)にそれぞれ音声信号の上半周期
と下半周期の部分の拡大図を入れる。
(Figure 9J) is a diagram of the support damper system. (A and B in FIG. 9K) are enlarged views of the upper and lower half periods of the audio signal, respectively.

【図面の簡単な説明】[Brief explanation of the drawing]

(第1図)・本発明の基本型(従断面)、(第2
図)・同じく基本型(横断面)、(第3図)・基本型
の動作で片半周期(横断面)、(第4図)・(第3
図)の残りの片半周期。(第5図)・基本型の実際
的使用例。(横断面)、(第6図)・基本型の変形
(従断面)。(第7図)・基本型の変形(横断面)。
(第8図A)・本発明の新応用例でマグネツト群の
横断面図。(第8図Bのイ)・(第8図A)の部分
拡大図。(第8図Bのロ)・(第8図Bのイ)の斜
視図。(第8図Bのハ)・(第8図A)の従断面
図。(第8図Bのニ)・筒状形態の側面図で2段の
図。(第8図Bのホ)・(第8図Bのニ)の多段の
図。(第8図C)・ダイアフラム3とボイスコイル
2の図。(第8図Dのイ)・(第8図A)にダイア
フラム3を入れた図。(第8図Dのロ)・(第8図
Dのイ)の部分の斜視図で拡大図。(第8図Dの
ハ)・(第8図Dのイ)の側面図。(第8図E)・音
声信号の片半周期。(第8図F)・音声信号の残り
もう片半周期。(第8図G)・ボイスコイル2とマ
グネツトの関係図。(第8図H)・電力損失の部分
(矢印)、(第9図A)・本発明の最適実施例。(横
断面)、(第9図B)・マグネツトの配置図。(第9
図C)・(第9図A)の側面図。(第9図D)・積み
重ねられたマグネツトの配置図、(第9図E)・ダ
イアフラム3とマグネツトの関係図。(第9図
F)・音声信号の上半周期。(全体)、(第9図
G)・音声信号の下半周期。(全体)、(第9図
H)・二重動作のベクトル。(第9図I)・振幅が
1.4倍になつた事を示す。(第9図J)・支持ダン
パー系。(第9図Kのイ)・音声信号の上半周期
(部分の拡大図)。(第9図Kのロ)・(第9図Kの
イ)の下半周期。 各図中の数字 1はマグネツト、2はボイスコ
イル、3はダイアフラム(振動膜)、4は伸縮動
作マグネツト、5は前後運動マグネツト、6はロ
ツド、7はダンパー。
(Fig. 1) Basic model of the present invention (secondary section), (Second
Figure)・Same as the basic type (cross section), (Figure 3)・One half period (cross section) due to the operation of the basic type, (Figure 4)・(Figure 3)
The remaining half cycle of Figure). (Figure 5) - Practical usage example of the basic type. (Cross section), (Fig. 6) - Deformation of the basic model (subordinate section). (Figure 7) - Deformation of the basic model (cross section).
(Fig. 8A) - A cross-sectional view of a magnet group in a new application example of the present invention. (A in Fig. 8B) and a partially enlarged view of (A in Fig. 8). (B of FIG. 8B) and a perspective view of (A of FIG. 8B). (C of FIG. 8B) and a subordinate sectional view of (FIG. 8A). (D of Fig. 8B) - A two-stage side view of the cylindrical form. (E in FIG. 8B) and (D in FIG. 8B) are multi-stage diagrams. (Fig. 8C) Diaphragm 3 and voice coil 2. (A in Fig. 8D) - A diagram in which the diaphragm 3 is inserted into (A in Fig. 8). (FIG. 8D, B) and (FIG. 8D, A) are perspective and enlarged views. Side views of (C in Fig. 8D) and (A in Fig. 8D). (Fig. 8E) - One half period of the audio signal. (Fig. 8F) - The remaining half period of the audio signal. (Fig. 8G) - Relationship diagram between voice coil 2 and magnet. (Fig. 8H) - Power loss portion (arrow), (Fig. 9A) - Optimal embodiment of the present invention. (Cross section), (Fig. 9B) - Magnet layout diagram. (9th
Figure C) and side view of (Figure 9A). (FIG. 9D) - Layout diagram of stacked magnets, (FIG. 9E) - Relationship diagram between the diaphragm 3 and the magnets. (Figure 9F) - Upper half period of the audio signal. (Overall), (Figure 9G) - Lower half period of the audio signal. (Overall), (Figure 9H) - Double motion vector. (Fig. 9 I)・The amplitude is
It shows that it has increased by 1.4 times. (Fig. 9 J) - Support damper system. (Figure 9 K-a) - Upper half period of the audio signal (enlarged view of part). (Fig. 9 K, b) and (Fig. 9 K, a) lower half period. Numbers in each figure: 1 is the magnet, 2 is the voice coil, 3 is the diaphragm (vibrating membrane), 4 is the telescoping magnet, 5 is the longitudinal motion magnet, 6 is the rod, and 7 is the damper.

Claims (1)

【特許請求の範囲】[Claims] 1 円筒や長円筒および角柱などの内部に空間が
ありその空間の両サイドが外部の空間とつながつ
ている筒状の形態を、角型かつ偏平で多数の同形
および同等磁力の小型マグネツト群で構成し、そ
の構成の内容はこの小型マグネツト群を同極同志
ある一定の距離を開きながら対向させ、かつその
マグネツト群全体の磁極の方向を筒状内空間の外
部への両開口部に対して平行になる様にセツト
し、さらにそれらのマグネツト群の構成する筒状
の形態における内側と外側とに、それぞれ交互
に、かつこのマグネツト1個に対してひとつづつ
又別の小型マグネツトを同じくある一定の距離を
開いて同極同志対向する形に並べ、こうして出来
た筒状の形態をしたマグネツト群を一群として、
この一群と全く同じ磁気回路で同じ形態の別のマ
グネツト群を先の一群の磁極方向と同方向にそし
て直列に、かつ双方のマグネツト群の個々のマグ
ネツト同志の位置を空気の出入可能な、ある一定
のすきまを作りながら合わせて並べ、このすきま
の全ての所に空気の出入を妨害しない大きさの非
磁性体のロツドか板をそう入して、双方のマグネ
ツト群を接続し、さらにそれらを何段か積み重ね
た後ボイスコイルとなるソレノイド状に巻いた導
線が、この段のすきまの位置に対応してプリント
された内筒形の柔らかい振動膜をアコーデイオン
カーテン状に成形して、これらのマグネツト群の
同極同志対向しあう磁気回路の間げきにそう入
し、かつその振動膜の導線が積み重ねられた筒状
の形態をしたマグネツト群の段のすきまの位置に
来る様にセツトしたダイナミツクスピーカー。
1 A cylindrical form with a space inside, such as a cylinder, long cylinder, or prism, with both sides of the space connected to the outside space, is composed of a group of small magnets that are rectangular, flat, and of the same shape and have the same magnetic force. The contents of the structure are such that the small magnets are arranged to face each other with the same polarity separated by a certain distance, and the direction of the magnetic poles of the whole magnet group is parallel to both openings to the outside of the cylindrical inner space. Furthermore, another small magnet is placed alternately on the inside and outside of the cylindrical form that these magnets constitute, and one for each magnet. Arrange the magnets with the same polarity facing each other with a distance between them, and group the cylindrical magnets thus created as a group.
Another group of magnets with exactly the same magnetic circuit and the same form as this one group is placed in the same direction and in series as the magnetic pole direction of the first group, and the positions of the individual magnets of both magnet groups are such that air can enter and exit. Arrange them together with a certain gap between them, insert non-magnetic rods or plates of a size that will not block air in and out in all the gaps, connect both groups of magnets, and then connect them. These magnets are made by forming a soft cylindrical diaphragm into an accordion curtain shape, which is printed on a conductor wire wound into a solenoid shape that becomes a voice coil after being stacked in several tiers. A dynamic magnet is inserted into the gap between the magnetic circuits where the same poles of the group face each other, and the conductor wire of the vibrating membrane is set in the gap between the stages of the stacked cylindrical magnet group. speaker.
JP2126678A 1978-02-24 1978-02-24 Respiration converting system full drive nonndirectional dynamic speaker system Granted JPS54114231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2126678A JPS54114231A (en) 1978-02-24 1978-02-24 Respiration converting system full drive nonndirectional dynamic speaker system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2126678A JPS54114231A (en) 1978-02-24 1978-02-24 Respiration converting system full drive nonndirectional dynamic speaker system

Publications (2)

Publication Number Publication Date
JPS54114231A JPS54114231A (en) 1979-09-06
JPS6259959B2 true JPS6259959B2 (en) 1987-12-14

Family

ID=12050293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2126678A Granted JPS54114231A (en) 1978-02-24 1978-02-24 Respiration converting system full drive nonndirectional dynamic speaker system

Country Status (1)

Country Link
JP (1) JPS54114231A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210208604A1 (en) * 2018-02-26 2021-07-08 Optim Corporation Computer system, drone control method, and program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU229608B1 (en) * 2011-10-04 2014-03-28 Zoltan Bay Loudspeaker
JP6667930B2 (en) * 2016-02-24 2020-03-18 昭人 花田 Electroacoustic transducer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210208604A1 (en) * 2018-02-26 2021-07-08 Optim Corporation Computer system, drone control method, and program
US11774969B2 (en) * 2018-02-26 2023-10-03 Optim Corporation System and method using image analysis for controlling a flight path of a surface inspection unmanned aerial vehicle

Also Published As

Publication number Publication date
JPS54114231A (en) 1979-09-06

Similar Documents

Publication Publication Date Title
US3636278A (en) Acoustic transducer with a diaphragm forming a plurality of adjacent narrow air spaces open only at one side with the open sides of adjacent air spaces alternatingly facing in opposite directions
US4242541A (en) Composite type acoustic transducer
CN104506975B (en) A kind of array of actuators and system for being used to generate sound
US4384173A (en) Electromagnetic planar diaphragm transducer
US3136867A (en) Electrostatic transducer
US7787645B2 (en) Loudspeaker-transducer array
CN109937582B (en) Loudspeaker unit with multiple drive units
CN1109669A (en) Full spectrum electroacoustic enery transducer
US4593405A (en) Loudspeaker system with combination crossover and equalizer
GR1004325B (en) Electroacoustic tranducer with field replaceable diaphragm crrying two interlaced coils
JPS6259959B2 (en)
US5757090A (en) Folded dielectric film element and method for maufacturing the same
JP2021534706A (en) Multi-pole engine array system and speakers
CN105872912A (en) Vibrating diaphragm and minitype acoustic generator with same
US20040022410A1 (en) Planar speaker wiring layout
CN103428615B (en) Reverse push-pull type speaker unit with novel structure
US10499158B2 (en) Electro-acoustic transducer with radiating acoustic seal and stacked magnetic circuit assembly
JP2011250063A (en) Thin whole surface drive speaker
WO2014027467A1 (en) Electroacoustic transducer device
CN101330773B (en) Array type magnetic path and array type magnetic path motor sound transducer
CN203251424U (en) An electricity-to-sound converter containing a deformable diaphragm
JP2011151599A (en) Low profile multiway speaker
JPS6026359B2 (en) Composite speaker
JPS5955699A (en) Entirely dynamic driving speaker
JPS61158299A (en) Piezoelectric speaker