JPS625973B2 - - Google Patents

Info

Publication number
JPS625973B2
JPS625973B2 JP56197617A JP19761781A JPS625973B2 JP S625973 B2 JPS625973 B2 JP S625973B2 JP 56197617 A JP56197617 A JP 56197617A JP 19761781 A JP19761781 A JP 19761781A JP S625973 B2 JPS625973 B2 JP S625973B2
Authority
JP
Japan
Prior art keywords
magnetic
amount
alloy
hot workability
permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56197617A
Other languages
Japanese (ja)
Other versions
JPS58100651A (en
Inventor
Mitsuo Okazaki
Koichi Tamaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP56197617A priority Critical patent/JPS58100651A/en
Publication of JPS58100651A publication Critical patent/JPS58100651A/en
Publication of JPS625973B2 publication Critical patent/JPS625973B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高透磁率が要求される磁気シールド部
材に適用して良好な磁気特性を有し、さらに磁気
特性を失うことなく熱間加工性を改善した磁性合
金に関する。 Ni―Fe系高透磁率合金を用いた磁気シールド
部材は、例えばテープレコーダ等の磁気記録装置
における磁気ヘツドのシールドケースとして広く
用いられている。なかでもMo,Cu等を含む高Ni
パーマロイ(JIS―PC材)および低Niパーマロイ
(JIS―PB材)が多く用いられている。前者は高
透磁率、高耐食性を有するが、高価なNiを、76
重量%(以下単に%と記す)以上と、多量に含
み、さらに高価なMoをも含有しているため、磁
性合金の中では価格が高いという欠点がある。ま
た後者はNi量が45%程度であるため、安価でか
つ10エルステツドにおける磁束密度B10
14000Gaussと高い反面、耐食性が極端に劣ると
共に初透磁率μiが5000で前者に比べ低いという
欠点がある。例えば安価な45%Ni―Feパーマロ
イを磁気シールド用ヘツドケースとして用いるた
めには、防錆処理としてメツキ処理を施す必要が
あり、かえつて高価となる。 故に従来のJIS―PC材およびPB材では、磁気
特性に優れ、高耐食性を有し、かつ安価な磁性合
金材料を得ることは困難である。しかしながら、
工業的には磁気特性、熱間加工性および耐食性に
優れさらに安価な磁性合金を求める要望が強い。 本発明は上記の要望に対してなされたもので、
JIS―PC材の特性を損なわないで高価なMoを全
く含まず、さらに高価なNi含有量を低減した新
規な磁性合金を提供するものである。 Ni―Fe合金にCuを添加したNi―Fe―Cu合金に
ついての研究は古くから行なわれており、優れた
磁気特性を有することはよく知られており(例え
ばR.M.Bozorth著“Ferromagnetism”,D.van
Nostrand Co.1951)、Ni量が74〜80%、Cu量が10
%以下のものが実用に供されている。しかしなが
らCu量が10%を越すものでは、鋳造時にCuの偏
析が生じるために成分コントロールが難しく、さ
らに熱間加工性を著しく劣化させるという欠点が
あるため、実用化が困難であつた。 本発明者等は、Ni量が57〜74%、Cu量が12〜
32%、残部Feからなる合金を熱間加工性に優れ
た高透磁率材料として適用すべく研究を重ねた結
果、Mg、SiおよびMnを少量添加することによ
り、熱間加工性が著しく改善され、また磁気特性
についてもJIS―PC材と同等レベルを有すること
を見い出した。さらに鋳造時に生じるCuの偏析
は、鋳造の際の冷却速度を調整することにより改
善され、インゴツト内におけるCu量のばらつき
を±0.05%以内におさえることができることを見
い出した。 本発明は以上の結果に基づきなされたもので、
本発明磁性合金は、Ni57〜74%、Cu12〜32%、
Mg0.001〜0.02%、Si0.01〜0.3%、MN0.1〜1.0%
を残部Feからなることを特徴とする。 ここで、Niが57%未満では透磁率が低下し、
かつ耐食性が劣り、74%を越えるとCu量12%以
上の添加により透磁率の低下が著しい。さらに
Niが74%を越えるものは価格が上昇し工業的に
は不利となる。Cuは12%未満ではNi量が74%を
越えないと高透磁率が得られず、32%を越えると
初透磁率が低下し、熱間加工性も劣化する。Mg
は本合金の熱間加工性を改善するために添加する
ものであり、0.001%未満では効果は現われず、
0.02%を越えると初透磁率が低下し実用に供し得
ない。Siは脱酸剤として添加するものであり、
0.01%未満では効果が現われず、0.3%を越える
と磁束密度を低下させる。Mnは脱酸脱硫剤とし
て添加するもので、熱間加工性の改善に寄与し、
その効果は0.1〜1.0%の範囲で大となり、0.1%末
満では効果が現われず、1%以上では初透磁率の
低下をきたす。なお脱酸剤として用いられるC,
Ca,Al等は総量で0.5%以下添加してもよい。Fe
は残量を構成するものであるが、必ず含まれるも
のである。飽和磁束密度を3500ガウス以上のもの
を得るためにはFeは8%以上であることが必要
である。より好ましくはFeは11〜16%の範囲に
あることが良く、この範囲で透磁率も高くかつ飽
和磁束密度も高い値が得られる。これについては
後述する実施例からも認められる。 次に実施例を説明する。 <実施例 1> 表1に示す組成のNi,Cu,Mg,Si,Mnおよ
びFeの全量3Kgをマグネシアルツボ中で真空高
周波誘導炉により溶解した後、鉄型に鋳込みCu
の偏析の生じない適当な冷却速度で鋳塊を得た。 ここで冷却速度の調整について説明する。 一般には、組成均一な溶湯を鋳型に注湯してイ
ンゴツトを得ており、注湯後の冷却速度は自然放
冷のため徐冷である。しかしながらCu量が10%
を越える本発明合金の場合、注湯後徐冷するとイ
ンゴツト表面とインゴツト内部でCu量が変動す
る。即ち偏析を起す。この変動は0.3〜1%にも
達する。この変動を小さくするためには、注湯後
の冷却速度を速くすると良い。すなわち急冷すれ
ば良い。この急冷方法としては種々考えられる
が、注湯後直ちに鋳型とインゴツトを分離させ、
このインゴツトを流水により急速冷却させる方法
が用いられる。これにより、Cu量の変動を小さ
くすることができた。 こうして得た鋳塊を1300℃で5時間均質化焼鈍
を行なつた後、厚さ10mmのJIS―13号試験片(13
―A)を切り出した。試料No.1〜No.6から切り出
した上記試片を用いて1200℃でアルゴン雰囲気中
にて引張試験を行なつた。この時のひずみ速度は
4.2×10-1を用いた。Mg量と初透磁率μiおよび断
面収縮率との関係を図1に示す。ここで断面収縮
率は、大きい程加工性が良好となることを表わし
ている。この図より、初透磁率はMg量が増加す
るにしたがい低下し、Mg量が0.02%を越えると
初透磁率が10000以下となり実用に供し難いこと
がわかる。また断面収縮率はMg量が増加すると
共に大きくなり、Mg量が0.02%以上では飽和状
態を呈している。
The present invention relates to a magnetic alloy that has good magnetic properties when applied to magnetic shielding members that require high magnetic permeability, and that has improved hot workability without losing magnetic properties. Magnetic shielding members using Ni--Fe based high magnetic permeability alloys are widely used, for example, as shielding cases for magnetic heads in magnetic recording devices such as tape recorders. Among them, high Ni containing Mo, Cu, etc.
Permalloy (JIS-PC material) and low Ni permalloy (JIS-PB material) are often used. The former has high magnetic permeability and high corrosion resistance, but uses expensive Ni, 76
It contains a large amount of Mo, which is more than % by weight (hereinafter simply referred to as %), and also contains expensive Mo, so it has the disadvantage of being expensive among magnetic alloys. In addition, the latter has a Ni content of about 45%, so it is inexpensive and the magnetic flux density B 10 at 10 oersted is low.
Although it is high at 14,000 Gauss, it has the drawbacks of extremely poor corrosion resistance and initial magnetic permeability μ i of 5,000, which is lower than the former. For example, in order to use inexpensive 45% Ni--Fe permalloy as a head case for magnetic shielding, it is necessary to apply plating treatment to prevent rust, which makes it more expensive. Therefore, with conventional JIS-PC materials and PB materials, it is difficult to obtain magnetic alloy materials that have excellent magnetic properties, high corrosion resistance, and are inexpensive. however,
Industrially, there is a strong demand for inexpensive magnetic alloys that have excellent magnetic properties, hot workability, and corrosion resistance. The present invention has been made in response to the above needs,
The objective is to provide a new magnetic alloy that does not contain any expensive Mo and further reduces the expensive Ni content without impairing the properties of the JIS-PC material. Research on Ni-Fe-Cu alloys, which are made by adding Cu to Ni-Fe alloys, has been conducted for a long time, and it is well known that they have excellent magnetic properties (for example, "Ferromagnetism" by RMBozorth, D. van
Nostrand Co.1951), Ni amount is 74-80%, Cu amount is 10
% or less are in practical use. However, if the amount of Cu exceeds 10%, it is difficult to control the composition because Cu segregation occurs during casting, and furthermore, hot workability is significantly deteriorated, making it difficult to put it into practical use. The present inventors have determined that the Ni content is 57 to 74% and the Cu content is 12 to 74%.
As a result of repeated research to apply an alloy consisting of 32% Fe and the balance Fe as a high permeability material with excellent hot workability, we found that hot workability was significantly improved by adding small amounts of Mg, Si, and Mn. It was also found that the magnetic properties of this material are on the same level as JIS-PC material. Furthermore, we have found that the segregation of Cu that occurs during casting can be improved by adjusting the cooling rate during casting, and that the variation in the amount of Cu within the ingot can be suppressed to within ±0.05%. The present invention was made based on the above results,
The magnetic alloy of the present invention contains 57 to 74% Ni, 12 to 32% Cu,
Mg0.001~0.02%, Si0.01~0.3%, MN0.1~1.0%
The remainder consists of Fe. Here, when Ni is less than 57%, the magnetic permeability decreases,
Moreover, the corrosion resistance is poor, and when the Cu content exceeds 74%, the magnetic permeability decreases significantly due to the addition of 12% or more of Cu. moreover
If the Ni content exceeds 74%, the price will increase and it will be industrially disadvantageous. When Cu is less than 12%, high magnetic permeability cannot be obtained unless the Ni content exceeds 74%, and when it exceeds 32%, initial permeability decreases and hot workability deteriorates. Mg
is added to improve the hot workability of this alloy, and if it is less than 0.001%, it will not have any effect.
If it exceeds 0.02%, the initial magnetic permeability decreases and it cannot be put to practical use. Si is added as a deoxidizer,
If it is less than 0.01%, no effect will be seen, and if it exceeds 0.3%, the magnetic flux density will decrease. Mn is added as a deoxidizing and desulfurizing agent, which contributes to improving hot workability.
The effect becomes large in the range of 0.1 to 1.0%, the effect does not appear at less than 0.1%, and the initial permeability decreases at 1% or more. In addition, C used as a deoxidizing agent,
Ca, Al, etc. may be added in a total amount of 0.5% or less. Fe
constitutes the remaining amount and is always included. In order to obtain a saturation magnetic flux density of 3500 Gauss or more, Fe needs to be 8% or more. More preferably, Fe is in the range of 11 to 16%, and in this range, a high value of magnetic permeability and high saturation magnetic flux density can be obtained. This can also be recognized from the examples described later. Next, an example will be described. <Example 1> A total amount of 3 kg of Ni, Cu, Mg, Si, Mn, and Fe having the composition shown in Table 1 was melted in a vacuum high-frequency induction furnace in a magnesia crucible, and then poured into an iron mold.
An ingot was obtained at an appropriate cooling rate without segregation. Here, adjustment of the cooling rate will be explained. Generally, ingots are obtained by pouring molten metal of uniform composition into a mold, and the cooling rate after pouring is gradual cooling due to natural cooling. However, the amount of Cu is 10%
In the case of the alloy of the present invention exceeding 100%, when it is slowly cooled after pouring, the amount of Cu fluctuates on the surface of the ingot and inside the ingot. In other words, segregation occurs. This fluctuation reaches as much as 0.3 to 1%. In order to reduce this fluctuation, it is recommended to increase the cooling rate after pouring. In other words, it can be cooled quickly. Various methods can be considered for this rapid cooling, but the mold and ingot are separated immediately after pouring,
A method is used in which the ingot is rapidly cooled with running water. This made it possible to reduce fluctuations in the amount of Cu. The ingot thus obtained was subjected to homogenization annealing at 1300℃ for 5 hours, and then a 10mm thick JIS-13 test piece (13
- I cut out A). A tensile test was conducted in an argon atmosphere at 1200° C. using the specimens cut out from Samples No. 1 to No. 6. The strain rate at this time is
4.2×10 -1 was used. Figure 1 shows the relationship between the Mg content, initial magnetic permeability μ i , and cross-sectional shrinkage rate. Here, the larger the cross-sectional shrinkage rate is, the better the workability is. This figure shows that the initial magnetic permeability decreases as the Mg amount increases, and when the Mg amount exceeds 0.02%, the initial magnetic permeability becomes less than 10,000, making it difficult to put it into practical use. Further, the cross-sectional shrinkage rate increases as the Mg content increases, and reaches a saturated state when the Mg content is 0.02% or more.

【表】 次に試料No.1およびNo.3から切り出した試片を
用いて、800〜1300℃の適当な温度で引張試験を
行なつた。雰囲気、ひずみ速度は上記と同様とし
た。試験温度と断面収縮率との関係を図2に示
す。この図よりMgを添加した試片(No.3)はMg
無添加の試片(No.1)に比べ断面収縮率が大きく
なつていることがわかる。 以上より断面収縮率におよぼすMgの影響は著
しく大であることがわかる。すなわちMgを少量
添加することにより熱間加工性は改善される。 <実施例 2> 実施例―1と同様にして表2に示す組成の鋳塊
を得、通常の熱間加工および冷間加工により板厚
0.5mmの板材を作製した。ここで熱間加工時にカ
ド割れ・耳割れ等が生ぜず熱間加工性は良好であ
つた。そしてこれらの板材より磁気測定用リング
(外径45mm、内径33mm)および耐食試験用試験片
を作製した。次いで各試料を水素雰囲気中にて
1100℃で3時間保持した後、毎分5℃の冷却速度
で室温まで冷却した後、磁気特性と耐食性につい
て試験した。磁気特性については、初透磁率μ
i、最大透磁率μn、保持力Hcおよび磁束密度B10
について測定した。さらに耐食性については塩水
噴霧試験により評価した。このときの塩溶液は5
%NaCl水溶液、噴霧条件は35℃、96時間とし、
評価方法は腐食部分の面積比率(%)とした。磁
気特性および耐食性についての結果を表2に示
す。
[Table] Next, a tensile test was conducted at an appropriate temperature of 800 to 1300°C using specimens cut from Samples No. 1 and No. 3. The atmosphere and strain rate were the same as above. FIG. 2 shows the relationship between test temperature and cross-sectional shrinkage rate. From this figure, the specimen with Mg added (No. 3) has Mg
It can be seen that the cross-sectional shrinkage rate is higher than that of the additive-free specimen (No. 1). From the above, it can be seen that the influence of Mg on the cross-sectional shrinkage rate is extremely large. That is, hot workability is improved by adding a small amount of Mg. <Example 2> An ingot having the composition shown in Table 2 was obtained in the same manner as in Example-1, and the plate thickness was reduced by normal hot working and cold working.
A 0.5mm plate material was produced. Here, hot workability was good, with no corner cracks or edge cracks occurring during hot working. Rings for magnetic measurement (outer diameter 45 mm, inner diameter 33 mm) and test pieces for corrosion resistance tests were made from these plates. Next, each sample was placed in a hydrogen atmosphere.
After being held at 1100°C for 3 hours, it was cooled to room temperature at a cooling rate of 5°C per minute, and then tested for magnetic properties and corrosion resistance. Regarding magnetic properties, the initial permeability μ
i , maximum permeability μ n , coercive force Hc and magnetic flux density B 10
were measured. Furthermore, corrosion resistance was evaluated by a salt spray test. The salt solution at this time is 5
% NaCl aqueous solution, spraying conditions were 35℃ for 96 hours,
The evaluation method was the area ratio (%) of the corroded part. Table 2 shows the results regarding magnetic properties and corrosion resistance.

【表】 以上述べた如く、本発明合金は磁気シールド合
金として従来使用されているJIS―PC材と比して
実用上劣ることなく、しかも熱間加工性に優れ、
安価であり、磁気記録装置における磁気ヘツドの
シールドケースとして有用である。
[Table] As stated above, the alloy of the present invention is practically inferior to the JIS-PC material conventionally used as a magnetic shielding alloy, and has excellent hot workability.
It is inexpensive and useful as a shield case for a magnetic head in a magnetic recording device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明合金を1200℃で引張試験した時
のMg量と初透磁率μiおよび断面収縮率との関係
を示し、第2図は本発明合金と比較材を引張試験
したときの試験温度と断面収縮率との関係を示
す。
Figure 1 shows the relationship between Mg content, initial magnetic permeability μ i , and cross-sectional shrinkage when the invention alloy was subjected to a tensile test at 1200°C, and Figure 2 shows the relationship between the invention alloy and the comparative material when they were subjected to a tensile test. The relationship between test temperature and cross-sectional shrinkage rate is shown.

Claims (1)

【特許請求の範囲】[Claims] 1 重量%でNi57〜74%、Cu12〜32%、
Mg0.001〜0.02%、Si0.01〜0.3%、Mn0.1〜1.0%
および残部Feからなる磁性合金。
1% by weight: Ni57-74%, Cu12-32%,
Mg0.001~0.02%, Si0.01~0.3%, Mn0.1~1.0%
and a magnetic alloy consisting of the balance Fe.
JP56197617A 1981-12-10 1981-12-10 Magnetic alloy Granted JPS58100651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56197617A JPS58100651A (en) 1981-12-10 1981-12-10 Magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56197617A JPS58100651A (en) 1981-12-10 1981-12-10 Magnetic alloy

Publications (2)

Publication Number Publication Date
JPS58100651A JPS58100651A (en) 1983-06-15
JPS625973B2 true JPS625973B2 (en) 1987-02-07

Family

ID=16377450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56197617A Granted JPS58100651A (en) 1981-12-10 1981-12-10 Magnetic alloy

Country Status (1)

Country Link
JP (1) JPS58100651A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2857390B2 (en) * 1987-04-03 1999-02-17 大同特殊鋼株式会社 High permeability magnetic alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5284119A (en) * 1975-12-31 1977-07-13 Daido Steel Co Ltd Iron nickel system high permeability alloy
JPS5734311A (en) * 1980-08-11 1982-02-24 Toshiba Corp Magnetic shielding parts

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5284119A (en) * 1975-12-31 1977-07-13 Daido Steel Co Ltd Iron nickel system high permeability alloy
JPS5734311A (en) * 1980-08-11 1982-02-24 Toshiba Corp Magnetic shielding parts

Also Published As

Publication number Publication date
JPS58100651A (en) 1983-06-15

Similar Documents

Publication Publication Date Title
US5370749A (en) Amorphous metal alloy strip
JPS648696B2 (en)
KR910009974B1 (en) High saturated magnetic flux density alloy
JPS625973B2 (en)
JPS5919986B2 (en) Corrosion resistant magnetic alloy
JPS625974B2 (en)
JP2862985B2 (en) Magnetic shield parts
JPH0153338B2 (en)
JPH0138862B2 (en)
JPS6151023B2 (en)
JPS5927371B2 (en) Fe↓-Co magnetic material
JPS63307246A (en) Free cutting high permeability alloy
JPS6046341A (en) Magnetic alloy
JPS62222B2 (en)
JPS6150133B2 (en)
JPS5922781B2 (en) Wear resistant high permeability high saturation magnetic flux density alloy
JPS5927373B2 (en) Fe↓-Co magnetic material
JPS6128021B2 (en)
JPS5867845A (en) High permeability alloy thin strip
JPH04141539A (en) Magnetic shielding parts
JPS6151024B2 (en)
JPS58204153A (en) Corrosion-resistant alloy with high saturation magnetic flux density and high magnetic permeability
JPH0255496B2 (en)
JPS58204155A (en) Corrosion-resistant alloy with high saturation magnetic flux density and high magnetic permeability
JPS6154102B2 (en)