JPS6259510A - Molecular sieve carbon for air separation - Google Patents

Molecular sieve carbon for air separation

Info

Publication number
JPS6259510A
JPS6259510A JP60198100A JP19810085A JPS6259510A JP S6259510 A JPS6259510 A JP S6259510A JP 60198100 A JP60198100 A JP 60198100A JP 19810085 A JP19810085 A JP 19810085A JP S6259510 A JPS6259510 A JP S6259510A
Authority
JP
Japan
Prior art keywords
resin
molecular sieve
pore diameter
weight
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60198100A
Other languages
Japanese (ja)
Other versions
JPH0413288B2 (en
Inventor
Chiaki Marumo
千郷 丸茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP60198100A priority Critical patent/JPS6259510A/en
Publication of JPS6259510A publication Critical patent/JPS6259510A/en
Publication of JPH0413288B2 publication Critical patent/JPH0413288B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To produce a molecular sieve carbon having a sharp pore diameter distribution and improved separation ability of nitrogen and oxygen in air, by carbonizing or activating a synthetic resin composite consisting of polyvinyl alcohol resin, melamine resin and phenolic resin. CONSTITUTION:A composite porous material of synthetic resin consisting of 10-50wt% polyvinyl alcohol resin, 10-40wt% melamine resin and 30-80wt% phenolic resin is put in an electric furnace, heated in a nonoxidizing atmosphere such as N2, etc., in a temperature range of 500-700 deg.C and carbonized. Or further the carbonized material is activated in an oxidizing atmosphere such as steam, CO2, etc., at 500-700 deg.C in a range to cause loss in weight of <=15wt%. A molecular sieve carbon for air having 0.1-0.8g/cm<3> apparent density, 50-90% porosity and 1-500mum continuous macro pore diameter of net work structure, the maximum value of the pore diameter distribution at <=10Angstrom pore diameter and 0.1cm<3>/g pore volume of 15-200Angstrom pore diameter and high performance is obtained.

Description

【発明の詳細な説明】 〜50を盪%、メラミン樹脂が10〜40を量%、中。[Detailed description of the invention] ~50%, melamine resin 10~40%, medium.

フェール樹脂が30〜70ft%よりなる合成樹脂複合
体を炭化または賦活してなる細孔直径10A以下の領域
に細孔径分布の極大値を有し、細孔直径15〜200A
の範囲内の細孔容積が0.1f/cd以下である空気分
離用分子ふるい炭素に関す力・アルミナ系のゼオライト
が広く知られているが、近年、分子ふるい炭素も、各d
mllmll上法工業的1ζ製造が行なわれる様になっ
てきている。
It is made by carbonizing or activating a synthetic resin composite containing 30 to 70 ft% of Fehr resin, and has a maximum value of pore size distribution in a region with a pore diameter of 10 A or less, and a pore diameter of 15 to 200 A.
Alumina-based zeolites are widely known for molecular sieve carbon for air separation with a pore volume of 0.1 f/cd or less, but in recent years molecular sieve carbon has also been
Industrial production of 1ζ has begun to take place.

これらの分子ふるいは、各槍炭化水素の分離や水素のf
4製等に利用されているが、特に近年空気中の窒素と酸
素の分離剤として注目を集めている。
These molecular sieves are used for the separation of hydrocarbons and hydrogen f
Although it is used in products such as 4, it has been attracting attention in recent years as a separating agent for nitrogen and oxygen in the air.

分子ムるいを用いる空9cyt*に於ては圧力スイング
吸e (PSA=Pressuve  Swing A
dsorption )法が一般的で、既によく知られ
ている様にゼオライト薔ζ於ては、酸素より窒素の平衡
吸着量が太きいことを利用し、また、分子ふるい炭素に
於ては、窒素より酸素の吸as夏が大きいことを利用し
て窒素と酸素の5jl&を行なっている。
In the empty 9cyt* using molecular weight, pressure swing suction e (PSA=Pressuve Swing A
dsorption) method is common, and as is already well known, in zeolite ζ, the equilibrium adsorption amount of nitrogen is greater than that of oxygen, and in molecular sieve carbon, it is Taking advantage of the fact that oxygen absorption is large in summer, nitrogen and oxygen are converted into 5jl&.

上記の如くゼオライト、分子ふるい炭素ともそれぞれの
異なる特性を利用して空電分離用分子ふるいとして利用
されているが、ゼオライト系分子ふるいは、耐熱性、耐
薬品性に劣り、かつ水のような極性物質に対する選択的
吸B性が強く、極性物質の存在下では、分子ふるい効果
を示さないという欠点を有している。
As mentioned above, zeolite and carbon molecular sieves are used as molecular sieves for static electricity separation by taking advantage of their different properties, but zeolite-based molecular sieves have poor heat resistance and chemical resistance, and It has a strong selective B absorption property for polar substances, and has the disadvantage of not exhibiting a molecular sieving effect in the presence of polar substances.

一方、分子ふるい炭素は、耐熱、閉薬品性に優れ、極性
物質の存在下でも使用可能な分子ふるいとして注目され
ているが、その工業的製造工程が煩雑なことや、窒素と
酸素の分離能のより一層の増大が1よれる等問題点も多
い。これまでに開発された分子ふるい炭素の工業的製造
法としては、例えば、あらかじめ製造しておいた細・几
の大きい活性炭に合成樹1盾摩料物質を鴫媒とともに吸
壇さあるいはあらかじめ製造した活性炭を炭化水素を含
む雰囲気下で再焼成し、炭化水素の熱分解で生じた炭素
を活性炭の細孔壁に添着させる方法等が挙げられるが、
これらの製造方法は上述の如くいずれも工程が煩雑であ
るばかりでなり、極めて分子径差の小さい窒素と酸素の
分離に適用する上で、なお−aの分離能の向上が望まれ
ているのが現状である。
On the other hand, molecular sieve carbon is attracting attention as a molecular sieve that has excellent heat resistance and chemical-closing properties and can be used even in the presence of polar substances, but its industrial manufacturing process is complicated and its ability to separate nitrogen and oxygen is high. There are many problems, such as a further increase in 1. Industrial methods for producing molecular sieve carbon that have been developed so far include, for example, adding a synthetic dendritic abrasive material to pre-produced fine and large activated carbon together with an alkali medium, or Examples include a method in which activated carbon is recalcined in an atmosphere containing hydrocarbons and carbon generated by thermal decomposition of hydrocarbons is attached to the pore walls of activated carbon.
As mentioned above, all of these manufacturing methods involve complicated steps, and when applied to the separation of nitrogen and oxygen, which have an extremely small difference in molecular diameter, it is still desired to improve the separation ability of -a. is the current situation.

分子ふるい炭素による空気分離能を向上させるためには
、砺めて分−7径差の小さい窒素と酸素の吸f!l速度
差をより大きくするため1こ細孔径分布が゛シャープで
、かつ吸g1容量の大きい高性能分子ふ点に鑑み、鋭意
研究の結果、本発明を完成させたものである。
In order to improve the air separation ability of carbon molecular sieves, it is necessary to thoroughly absorb nitrogen and oxygen with a small difference in diameter. The present invention was completed as a result of intensive research in view of the need for a high-performance molecule having a sharp pore size distribution and a large absorption capacity in order to increase the difference in velocity.

即ち、本発明はポリビニルアルコール系樹脂が10〜5
0 取ff1%、メラミン樹脂が10〜40重量%、フ
ェノール樹IJi#が30〜70!!f1%よりなる合
成樹脂複合多孔体を非霞化性#囲X下500〜700″
Cの温度領域で炭化するか、または炭化邊東に酸化性Q
囲気下500〜700℃の温度領域で炭化物の16暫量
%以内の重量減少となる範囲で賦活1ノでなる1Mi孔
直径10A以下の領域に細孔径分布の惟大値を有し、細
孔直径15〜20OAの範囲の則孔′4積が0.1 c
L/I以下である空電分離用分子ふるいは素を提供する
ものである。
That is, in the present invention, the polyvinyl alcohol resin contains 10 to 5
0 ff1%, melamine resin 10-40% by weight, phenol tree IJi #30-70! ! Non-hazing synthetic resin composite porous body made of f1%
Carbonizes in the temperature range of C, or oxidizes in the temperature range of Q
The maximum value of the pore size distribution is in the region of 1Mi pore diameter of 10A or less, which is activated in a range where the weight of carbide is reduced by 16% by weight in the temperature range of 500 to 700℃ under an ambient atmosphere. Regular hole '4 product in the range of diameter 15~20OA is 0.1 c
A molecular sieve for static separation having a ratio of L/I or less provides an element.

本発明に於て、ポリビニルアルコール系樹脂が10〜5
0重量%、メラミン樹脂が10〜40這量%、フェノー
ル#+J旨が30〜70重量%よりなる合成樹脂複合体
に用いるポリビニルアルコール系樹脂とは、ポリビニル
アルコール及びポリビニルアルコールのアセタール化反
応1こより叫られるポリビニルホルマール、ポリビニル
ベンザール等のポリビニルアセタール樹脂である。また
メラミン樹脂とは、メラミン−ホルムアルデヒド初期縮
合物であり通常水溶性を有する。更にフェノール樹脂と
しては、溶液状のレゾール樹脂またはノボラック樹脂な
どを好適に用いることが出来る。
In the present invention, the polyvinyl alcohol resin is 10 to 5
The polyvinyl alcohol resin used for the synthetic resin composite is composed of 0% by weight of melamine resin, 10% to 40% by weight of melamine resin, and 30% to 70% by weight of phenol #+J. These are polyvinyl acetal resins such as polyvinyl formal and polyvinyl benzal. Moreover, melamine resin is a melamine-formaldehyde initial condensate and is usually water-soluble. Further, as the phenol resin, a resol resin or a novolac resin in the form of a solution can be suitably used.

これらのポリビニルアルコール系樹脂、メラミン樹脂及
びフェノール樹脂より合成樹脂複合体を製造する方法と
しては、ポリビニルアルコールに架橋剤と硬化触媒を加
えて反応させポリビニルホルマール、ポリビニルベンザ
ール等のポリビニルアセタール樹脂を製造した後、該樹
脂に所定量のメラミン樹脂、フェノール樹脂を含浸など
の手段で施与する方法、ポリビニルアルコールと液状メ
ラミン樹脂あるいはポリビニルアルコールと液状フェノ
ール樹脂を均一に混合した鏝、架橋剤及び硬化剤あるい
は硬化触媒を加えて共重合させた後、残りの一種類の樹
脂を施与する方法、または、ポリビニルアルコール、液
状メラミン樹脂、液状フェノール樹脂を均一に混合した
後、架橋剤及び硬化剤あるいは硬化触媒を加えて共重合
反応をrrなう方法等を用いることができる。
A method for producing synthetic resin composites from these polyvinyl alcohol resins, melamine resins, and phenol resins involves adding a crosslinking agent and a curing catalyst to polyvinyl alcohol and reacting them to produce polyvinyl acetal resins such as polyvinyl formal and polyvinyl benzal. After that, a predetermined amount of melamine resin or phenolic resin is applied to the resin by means such as impregnation, a trowel containing a uniform mixture of polyvinyl alcohol and liquid melamine resin or polyvinyl alcohol and liquid phenol resin, a crosslinking agent, and a curing agent. Alternatively, after copolymerizing with a curing catalyst, the remaining resin is applied, or after uniformly mixing polyvinyl alcohol, liquid melamine resin, or liquid phenol resin, a crosslinking agent and a curing agent or curing can be applied. A method of adding a catalyst to reverse the copolymerization reaction, etc. can be used.

これらの反応に用いる架橋剤あるいは硬化剤、硬化触媒
としては下記のものが好適である。即ちポリビニルアル
コールの架橋剤としては、ホルムアルデヒド、ベンズア
ルデヒド等のアルデヒド類が好適であり、ポリビニルア
ルコールのアセタール化反応及びフェノール樹脂の硬化
反応の触媒としては、塩酸、硫酸、蓚酸、乳酸、パラト
ルエンスルホン酸、マレイン酸、マロン酸等が好適であ
り、メラミン樹脂の硬化剤としては、塩酸、硫酸等の無
機酸や蓚酸ジノ1ルエステルの様なカルボン鍍エステル
類、エチルアミン塩醗塩やトリエタノールアミン塩酸塩
のようなアミン類の塩酸塩等を用いることができる。
The following are suitable as crosslinking agents, curing agents, and curing catalysts used in these reactions. That is, as a crosslinking agent for polyvinyl alcohol, aldehydes such as formaldehyde and benzaldehyde are suitable, and as a catalyst for the acetalization reaction of polyvinyl alcohol and the curing reaction of phenol resin, hydrochloric acid, sulfuric acid, oxalic acid, lactic acid, and para-toluenesulfonic acid are suitable. , maleic acid, malonic acid, etc. are suitable, and as curing agents for melamine resin, inorganic acids such as hydrochloric acid and sulfuric acid, carboxylic acid esters such as oxalic acid dinolyl ester, ethylamine salt and triethanolamine hydrochloride are suitable. Hydrochlorides of amines such as the following can be used.

また、これらの合成樹脂複合体製造時に−J&扮、澱粉
変性体、澱粉纏導体あるいは水溶性の金属塩等の気孔形
成材を加えることにより、網目伏構造の連続したマクロ
孔を有する合成樹脂複合多孔体方法を用いればよい。要
は、ポリビニルアルコール系樹脂が10〜50を址%、
メラミン樹脂が10〜40重量%、フェノール樹脂が3
0〜70重量%よりなる合成樹脂複合体であればよいが
、この合成樹脂複合体の組成は、好ましくはポリビニル
アルコール系樹脂15〜40重量%、メラミ 7ン樹脂
15〜30道量%、フェノール樹脂40〜66重量%で
あり、更に最も好ましくは、ポリビニルアルコール系樹
脂20〜30重量%、メラミン樹脂15〜25慮量%、
フェノール樹脂45〜60重量%である。
In addition, by adding pore-forming materials such as -J&K, starch modified products, starch-coated conductors, or water-soluble metal salts during the production of these synthetic resin composites, synthetic resin composites having continuous macropores in a closed-net structure can be produced. A porous material method may be used. In short, polyvinyl alcohol resin accounts for 10-50%,
Melamine resin is 10-40% by weight, phenolic resin is 3% by weight.
The composition of the synthetic resin composite is preferably 15 to 40% by weight of polyvinyl alcohol resin, 15 to 30% by weight of melamine resin, and phenol. 40 to 66% by weight of resin, most preferably 20 to 30% by weight of polyvinyl alcohol resin, 15 to 25% by weight of melamine resin,
The phenolic resin is 45 to 60% by weight.

本発明の分子ふるい炭素は、上述の方法により得られた
ポリビニルアルコール系樹脂が10〜50重量%、メラ
ミン樹脂が10〜40重量%、フェノール樹脂が30〜
70重量%よりなる合成樹脂複合体を非酸化性雰囲気下
で500〜7゛OO℃の温度領域で炭化するか、または
、炭化後更に弓1続いて酸化性雰囲気下、500〜70
0℃の温度領域で炭化物の15重量%以内の直置減少と
なる範囲で賦活することにより得られる。合成樹脂複合
体から分子ふるい炭素となる生成機構の詳細は明らかで
はないが、制御された昇温速度で昇温していくことによ
り約200 ’C近傍より合成樹脂複合体の熱分解が進
行し、300〜500 ’c附近で特に顕著となり、こ
の昇温過程で熱分解残留物である炭化物の表面に極めて
微細なミクロ孔が生成しこのミクロ孔は5<)0〜70
0℃の温度領域での賦活により災に増加する。
The molecular sieve carbon of the present invention contains 10 to 50% by weight of polyvinyl alcohol resin obtained by the above method, 10 to 40% by weight of melamine resin, and 30 to 30% by weight of phenolic resin.
A synthetic resin composite consisting of 70% by weight is carbonized in a non-oxidizing atmosphere at a temperature range of 500 to 70°C, or after carbonization, it is further heated under an oxidizing atmosphere at a temperature of 500 to 70°C.
It can be obtained by activation in a temperature range of 0° C. within a range where the carbide is directly reduced by 15% by weight. Although the details of the mechanism of formation of molecular sieve carbon from synthetic resin composites are not clear, thermal decomposition of synthetic resin composites progresses from around 200'C by increasing the temperature at a controlled rate. , becomes especially noticeable around 300 to 500'C, and during this temperature rising process, extremely fine micropores are generated on the surface of the carbide that is the thermal decomposition residue.
Activation in the temperature range of 0°C increases the risk.

ミクロ孔の細孔容積及び細孔半径の測定は後述する窒素
の吸着等1線及びKelvin式を用いて解析したもの
であり、上記の解析法により細孔直径10A以下となる
ミクロ孔の量は500〜700゛Cのm度領域での炭化
により通常細孔容積にして0.01〜o、 i ci/
y程度生成するが、この細孔容積及び細孔直径は、非酸
化性雰囲気中での炭化温度の上昇とともに減少し炭化温
度が700℃を越えると分子ふるい炭素としての実用性
に乏しくなる。
The pore volume and pore radius of the micropores were analyzed using the nitrogen adsorption line and the Kelvin equation, which will be described later.The amount of micropores with a pore diameter of 10A or less according to the above analytical method is Carbonization in the m degree range of 500 to 700°C usually results in a pore volume of 0.01 to 0, i ci/
However, the pore volume and pore diameter decrease as the carbonization temperature increases in a non-oxidizing atmosphere, and when the carbonization temperature exceeds 700° C., it becomes impractical as a molecular sieve carbon.

従って、分子ふるい炭素を生成するための非酸化性雰囲
気下での炭化温度は500〜700 ’Oであり、好ま
しくは530〜670’O,更に好ましくは550 ℃
N350 ℃である。
Therefore, the carbonization temperature in a non-oxidizing atmosphere to produce molecular sieve carbon is 500-700'O, preferably 530-670'O, more preferably 550°C.
N350°C.

また非酸化性雰囲気下での炭化により生成するミクロ孔
の細孔直径は、昇温速度にも依存し、昇温速度が太き(
なる程細孔直径が大きくなる傾向がある。従って汁子五
るい炭素の製造にあたっては昇温速度は遅い方が好まし
い6通常200℃以上の温度領域に於ける昇温速度は1
20℃/hr以下であることが好ましく、気に好ましく
は90 ”Q/hr以下、最も好ましくは60℃/hr
以下である。
In addition, the pore diameter of micropores generated by carbonization in a non-oxidizing atmosphere also depends on the heating rate;
There is a tendency for the pore diameter to become larger. Therefore, in the production of Shiruko Gorui carbon, it is preferable that the temperature increase rate is slow. 6 Normally, the temperature increase rate in the temperature range of 200°C or higher is 1
It is preferably 20°C/hr or less, more preferably 90"Q/hr or less, most preferably 60°C/hr
It is as follows.

上記の如くして碍られた炭化物は、そのまま分子ふるい
炭素として用いることが出来るが、!J!lこ該炭化物
を水蒸気雰囲気、炭酸ガス雰囲気等の酸化性雰囲気下で
500〜700℃の温度領域で賦  □活することによ
り側孔直径10A以下のミクロ孔を着しく増加させるこ
とが出来、従って分子ふるい能をmjlIiこ向とさせ
ることが出来る。しかしながら賦活温度が700℃を越
えるとミクロ孔の細孔直径が増大し、細孔径分布の極大
値が孔径の大きい方【ζずれるとともに細孔直径15A
〜20OAの領域の細孔容積も増加し、選択的吸着特性
が失なわれて分子ふるい効果は消滅する。
The carbide cracked as described above can be used as it is as molecular sieve carbon, but! J! □ By activating this carbide in an oxidizing atmosphere such as a steam atmosphere or a carbon dioxide atmosphere in a temperature range of 500 to 700°C, it is possible to significantly increase the number of micropores with a side pore diameter of 10A or less. Molecular sieving ability can be reversed. However, when the activation temperature exceeds 700°C, the pore diameter of the micropores increases, and the maximum value of the pore size distribution shifts to the larger pore diameter [ζ and the pore diameter 15A].
The pore volume in the region of ~20 OA also increases and the selective adsorption properties are lost and the molecular sieving effect disappears.

また、賦活温度が500℃未ヲ角の場合には、賦活によ
る重量減少の進行が極めて遅く実用的でない、従って炭
化物の賦活温度領域は500〜700℃の範囲でなけれ
ばならないが、好ましくは530〜670℃、最も好ま
しくは550〜650℃である。
In addition, if the activation temperature is less than 500°C, the progress of weight loss due to activation is extremely slow and is not practical. Therefore, the activation temperature range of carbide must be in the range of 500 to 700°C, but preferably 530°C. -670°C, most preferably 550-650°C.

更に、500〜700℃の温度領域で賦活する場合に於
ても、賦活による重量減少が非酸化性雰囲気下での炭化
により得られた炭化物の重量の15を量%を越えると電
クロ孔の細孔直径が増大し、分子ふるい効果がなくなる
。従って、500〜700℃の温度領域で賦活する場合
に於ても、賦活による重量減少は賦活前の炭化物の15
重量%以内でなければならず、好ましくは12直量%以
内最も好ましくは10ffi量%以内である。
Furthermore, even in the case of activation in the temperature range of 500 to 700°C, if the weight loss due to activation exceeds 15% by weight of the weight of the carbide obtained by carbonization in a non-oxidizing atmosphere, the electrochromic pores will decrease. The pore diameter increases and the molecular sieving effect disappears. Therefore, even when activated in the temperature range of 500 to 700°C, the weight decrease due to activation is 15% of the carbide before activation.
It should be within % by weight, preferably within 12% by weight, most preferably within 10% by weight.

さて、通常、活性炭、シリカゲル等の微細な細孔を有す
る吸着剤の細孔容積や細孔径分布は窒素ガス、エタンガ
ス、ブタンガス等の吸着等1線より求められる。最も一
般的には吸着ガスとして窒素ガスを、またキャリヤーガ
スとしてヘリウムガスを用い、液体窒素温度まで冷却し
て吸着剤の細孔への窒素ガスの吸着量と窒素分圧の関係
を求めることにより吸着等温線が得られる。
Now, normally, the pore volume and pore size distribution of an adsorbent having fine pores such as activated carbon or silica gel can be determined from a single line such as adsorption of nitrogen gas, ethane gas, butane gas, etc. Most commonly, nitrogen gas is used as the adsorbent gas and helium gas is used as the carrier gas, and the relationship between the amount of nitrogen gas adsorbed into the pores of the adsorbent and the nitrogen partial pressure is determined by cooling the adsorbent to the temperature of liquid nitrogen. An adsorption isotherm is obtained.

吸着等温線より細孔容積及び細孔半径を求める方法とし
ては、毛管凝縮に基づ(Kelvin式が提案され、一
般的には本式に基づく解析が行なわれている。
As a method for determining pore volume and pore radius from adsorption isotherms, the Kelvin equation has been proposed based on capillary condensation, and analysis based on this equation is generally performed.

P、吸着ガスが細孔に#縮するときの飽和蒸気圧 PQ 、  常態での吸着ガスの飽和蒸気圧79表面張
力 V、液体窒素の1分子体積 R,ガス定数 T、絶対温度 rg 、細孔のケルビン半組 細孔のケルビン半径に対しては、毛管#稲以外の吸着に
対する補正が必要であり、例えば樋口の単分子層吸着量
だけを補正する方法、あるいはHaA’sey式による
補正法等がよく用いられている。
P, saturated vapor pressure when the adsorbed gas condenses into the pore PQ, saturated vapor pressure of the adsorbed gas under normal conditions 79 surface tension V, 1 molecule volume of liquid nitrogen R, gas constant T, absolute temperature rg, pore For the Kelvin radius of the Kelvin half-set pore, it is necessary to correct for adsorption other than the capillary #rice, for example, a method of correcting only the amount of adsorption of Higuchi's monomolecular layer, or a correction method using the HaA'sey formula, etc. is often used.

毛管凝縮に基づ< Kelvin式の適用範囲は厳密に
は細孔直径40A〜600A程度といわれているがKe
lvin式に替わる厳密な細孔半径測定法は未だ確立さ
れておらず、細孔直径40A以下の領域に於ても、しば
しばKeLvin式を適用した解析が用いられている。
Based on capillary condensation, the applicable range of the Kelvin equation is strictly said to be pore diameters of 40A to 600A, but Ke
A strict pore radius measurement method that can replace the Lvin equation has not yet been established, and analysis applying the KeLvin equation is often used even in the region of pore diameters of 40A or less.

本発明に於ける細孔直径及び細孔径分布の解析は、Ke
lvin式をその一般的に用いられている補正法と合せ
て細孔直径10Aまでクロ孔の細孔直径が吸着分子の分
子径に極めて近い数オングストロームの領域となり分子
径の異なる種々の物質に対して選択的吸着特性を示すこ
とによるものである。従って分子ふるい炭素の性能は、
電クロ孔の細孔径分布により規定され、通常細孔直径1
0A以下、好ましくは細孔直径3〜5八程度範囲にシャ
ープな細孔径分布を有する炭素が分子ふるい炭素として
最も好ましい。窒素分子の分子径は8. OX 4. 
I A 、酸素分子の分子径は2.8X8.9Aであう
、その分子径の差は極めて小さい。従って、空気分離用
分子ふるい炭素は、極めてシャープな細孔径分布を有す
ることが要求される。本発明の分子ふるい炭素は、合成
樹脂複合体の最適組成及び炭化または賦活の最適条件を
見出すことによりその要求に応えたものである。
The analysis of pore diameter and pore size distribution in the present invention is carried out by Ke
Combining the lvin formula with its commonly used correction method, the pore diameter of the black pores is in the range of several angstroms, which is extremely close to the molecular diameter of the adsorbed molecule, up to a pore diameter of 10A, and it can be applied to various substances with different molecular diameters. This is due to the fact that it exhibits selective adsorption properties. Therefore, the performance of molecular sieve carbon is
It is defined by the pore size distribution of electrochromic pores, and usually the pore diameter is 1
Carbon having a sharp pore size distribution of 0A or less, preferably in the pore diameter range of about 3 to 58, is most preferred as the molecular sieve carbon. The molecular diameter of nitrogen molecules is 8. OX4.
IA, the molecular diameter of oxygen molecules is 2.8×8.9A, and the difference in molecular diameter is extremely small. Therefore, molecular sieve carbon for air separation is required to have an extremely sharp pore size distribution. The molecular sieve carbon of the present invention meets these demands by finding the optimum composition of the synthetic resin composite and the optimum conditions for carbonization or activation.

また、細孔直径15〜200A程度の細孔は分子ふるい
効果を有せず、共存するガスや溶液中の異なる溶質を同
時に吸着する。
Moreover, pores with a diameter of about 15 to 200 A do not have a molecular sieving effect, and simultaneously adsorb coexisting gases and different solutes in a solution.

従って細孔直径15〜200Aの範囲の細孔量が少ない
程、分子ふるいの性能は優れたものとなる。
Therefore, the smaller the amount of pores in the range of pore diameters from 15 to 200 A, the better the performance of the molecular sieve.

さて、通常用いられている比表面積1.000〜1.5
00m/fの活性炭では、細孔径分布の極大泣は細孔直
径15A程度以上の領域にあり、細孔直径15〜200
Aの範囲の細孔容積は0.15〜0、25 f/c4程
度であるが、本発明の分子ふるい炭素は、細孔直径10
A以下の領域に細孔径分布の極大値を有し、細孔直径1
5〜200Aの範囲の細孔#積は0.1 d11以下で
あり、優れた分子ふるい効果を有している。
Now, the commonly used specific surface area is 1.000 to 1.5.
00 m/f activated carbon, the maximum pore size distribution is in the region of pore diameters of about 15A or more, and the pore diameters of 15 to 200
The pore volume in the range A is about 0.15 to 0.25 f/c4, but the molecular sieve carbon of the present invention has a pore diameter of 10
The maximum value of the pore size distribution is in the region below A, and the pore diameter is 1
The pore # area in the range of 5 to 200 A is 0.1 d11 or less, and has an excellent molecular sieving effect.

細孔直径15〜200λの範囲の細孔容積は少ない程好
ましく、好ましくは0.07 d/f以下、最も好まし
くは0.05 d11以下である。また本発明の分子ふ
るい炭素の比表面積は特に制限はないが、通常炭化品で
100〜600 td/l、賦活品で200〜300 
d/f程度である。
The smaller the pore volume in the range of pore diameters from 15 to 200λ, the better, preferably 0.07 d/f or less, most preferably 0.05 d11 or less. Further, the specific surface area of the molecular sieve carbon of the present invention is not particularly limited, but it is usually 100 to 600 td/l for carbonized products and 200 to 300 td/l for activated products.
It is about d/f.

また本発明の分子ゑるい炭素はポリビニルアルコール系
樹脂とメラミン樹脂及びフェノール樹脂よりなる合成樹
脂複合体の製造時に公知の多孔体製造法を用いることに
より網目状構造の連続したマクロ孔を有する合成樹脂複
合多孔体とすることが出来る。この合成樹脂複合多孔体
を本発明の条件下で炭化及び賦活することにより、網目
状構造の連続したマクロ孔を有する分子ふるい炭素を得
ることが出来る。該寸子五るい炭素は、通常見かけ四度
0.1〜0.81/d 、気孔率50〜95%、マク口
孔平均直径1〜500μmであり好ましくは見かけ密度
0,20〜0.71A層、気孔率60〜90%、マク口
孔平均直径5〜400μmであり、最も好ましくは見か
け密度0.25〜0.61A、気孔率65〜85%、マ
クロ凡手j4JrfL径10〜300μmである。
Furthermore, the molecular weight carbon of the present invention is produced by using a known porous material manufacturing method when producing a synthetic resin composite consisting of a polyvinyl alcohol resin, a melamine resin, and a phenol resin. It can be made into a composite porous body. By carbonizing and activating this synthetic resin composite porous body under the conditions of the present invention, a molecular sieve carbon having continuous macropores in a network structure can be obtained. The five-dimensional carbon usually has an apparent four degree of 0.1 to 0.81/d, a porosity of 50 to 95%, an average diameter of pores of 1 to 500 μm, and preferably an apparent density of 0.20 to 0.71 A. The layer has a porosity of 60 to 90%, an average macropore diameter of 5 to 400 μm, and most preferably an apparent density of 0.25 to 0.61A, a porosity of 65 to 85%, and a macroscopic diameter of 10 to 300 μm. .

本発明により得られる分子ふるい炭素は、細孔径分布が
シャープで優れた分子ふるい効果を有し、空気中の窒素
と酸素の分離に極めて有効である。
The molecular sieve carbon obtained by the present invention has a sharp pore size distribution, has an excellent molecular sieve effect, and is extremely effective in separating nitrogen and oxygen in the air.

即ち、本発明の分子ふるい炭素を用いることにより、常
圧下に於ても摂氏0°C〜−100°C程度の比較的温
度の低い領域に於て容易に窒素と酸素を分離することが
可能であり、また圧力スイング吸着(PSA)法により
極めて効率良く空気中の窒素と酸素の分離を行なうこと
ができる。
That is, by using the molecular sieve carbon of the present invention, it is possible to easily separate nitrogen and oxygen even under normal pressure in a relatively low temperature region of about 0°C to -100°C. Moreover, nitrogen and oxygen in the air can be separated extremely efficiently by the pressure swing adsorption (PSA) method.

以下実施例により具体的に説明する。This will be explained in detail below using examples.

*雄側1 重合度1700、けん化度99%のポリビニルアルコー
ル500fを水に分散し、加熱溶解後、馬鈴薯澱粉30
0ノを加えて糊化した。これを室温に冷却後、87重量
%ホルマリン700fl及び50重量%硫酸250yを
加え、均一に混合した後適量の水で液、a調整し、總液
澁を101とした。
*Male side 1 Disperse 500f of polyvinyl alcohol with a degree of polymerization of 1700 and a degree of saponification of 99% in water, heat and dissolve it, and add 30% of potato starch.
0 was added to gelatinize. After cooling this to room temperature, 700 fl of 87 wt% formalin and 250 y of 50 wt% sulfuric acid were added, mixed uniformly, and the liquid was adjusted to a concentration of 101 with an appropriate amount of water.

この混合液を250X250fl角の型枠内に注型し、
60°Cの温水中で24時間架橋反応を行なってから水
洗し、網状構造を有するポリビニルホルマール(PvF
)多孔体を得た。該PVF多孔体を40X40X25Q
ffの角柱に成形後、固形分1度10〜50直處%のメ
ラミン樹脂(注文化学工業c株)m品、スミテックスレ
ジンM−8、硬化剤スミテックスレジンACX )に浸
漬後、遠心分離してから90℃で24時間硬化し、更に
固形分1度20〜501盪%の水溶性レゾール樹脂(昭
和高分子(株)製品、BRL−2854)に浸漬後、9
0″Cで24時間硬化し、第1表に示す組成の8櫨煩の
合成樹脂複合多孔体を得た。
This mixed solution was poured into a 250 x 250 fl square mold,
A crosslinking reaction was carried out in warm water at 60°C for 24 hours, and then washed with water to obtain polyvinyl formal (PvF) having a network structure.
) A porous body was obtained. The PVF porous body is 40X40X25Q
After molding into a square column of FF, immerse it in melamine resin (Order Kagaku Kogyo C Co., Ltd. M product, Sumitex Resin M-8, hardening agent Sumitex Resin ACX) with a solid content of 1% 10 to 50%, and then centrifuge. After that, it was cured at 90°C for 24 hours, and further immersed in a water-soluble resol resin (BRL-2854, manufactured by Showa Kobunshi Co., Ltd.) with a solid content of 1°C and 20% to 501%.
After curing at 0''C for 24 hours, a synthetic resin composite porous body having a composition shown in Table 1 and having a thickness of 8 pores was obtained.

該合成樹脂複合多孔体を電気炉に入れ、窒素雰囲気中で
30 ℃/hrで昇温し670 ”Oで炭化した。
The synthetic resin composite porous body was placed in an electric furnace, heated at 30° C./hr in a nitrogen atmosphere, and carbonized at 670”O.

得られた炭化品の特性値を第1表に示す。Table 1 shows the characteristic values of the obtained carbonized product.

各試料の細孔径分布及び細孔容積は窒素ガスの吸着等温
線より求めた。細孔直径が小さくなる程Kelvin式
の精度は低下するが、細孔直径10AまでKelvjn
式を適用することにより細孔径分布の極大値がIOA以
下かどうか判定した。
The pore size distribution and pore volume of each sample were determined from the nitrogen gas adsorption isotherm. The accuracy of the Kelvin equation decreases as the pore diameter becomes smaller, but up to a pore diameter of 10A, the Kelvin equation
By applying the formula, it was determined whether the maximum value of the pore size distribution was less than or equal to IOA.

次に各試料を用い一50″Cに於ける空気分離実験を行
なった。空気の吸着分離実験は、流通式吸着装置のステ
ンレス製吸着塔に30ffφX50QmLの充填長さで
試料をセットし、He90%、乾燥空9C10%よりな
る混合ガスを20 N77!#/minの流速で流し、
吸着塔出口ガスの濃度の経時変化を測定し、出口ガス濃
度(C1と入口ガス濃度(CO)の比C/Coを求めて
破過曲線を作成した。吸着塔の温度制御は液体窒素とバ
ンドヒーターを組合せて用いることにより実施し、まだ
窒素及び酸素ガスの濃度測定には、ガスクロマトグラフ
(TCD検出器、カラム;モレキュラーシーブ5A)を
使用した。第1図に破過曲線測定結果を示す。
Next, an air separation experiment was conducted using each sample at -50"C. In the air adsorption separation experiment, the sample was set in a stainless steel adsorption tower of a flow-type adsorption device with a packing length of 30ffφ x 50QmL, and He90% , a mixed gas consisting of 9C and 10% dry air was flowed at a flow rate of 20N77!#/min,
The change over time in the concentration of the adsorption tower outlet gas was measured, and the ratio C/Co of the exit gas concentration (C1 and the inlet gas concentration (CO)) was determined to create a breakthrough curve.The temperature control of the adsorption tower was performed using liquid nitrogen and band This was carried out by using a heater in combination, and a gas chromatograph (TCD detector, column; Molecular Sieve 5A) was used to measure the concentration of nitrogen and oxygen gases. Figure 1 shows the breakthrough curve measurement results.

第1図かられかる様に本発明の組成範囲の合成樹脂複合
多孔体より製造した試@il;、2では、窒素と酸素の
分離が認められたが、試料I/L1及び意8では、@素
、酸素ともほぼ同程度吸着し、両者を分離できないこと
が判明した。
As can be seen from FIG. 1, separation of nitrogen and oxygen was observed in Samples I/L and 2, which were manufactured from synthetic resin composite porous bodies having the composition range of the present invention, but in Samples I/L1 and I8, It was found that both @ element and oxygen were adsorbed to almost the same extent, making it impossible to separate the two.

第1表 実施例2 実施例1と同様にして、重合度1700 、けん化度8
8%のポリビニルアルコール4kQを熱水で溶解後、小
麦粉澱粉3 kqを加えて糊化した。この溶解液に固形
分濃度60重量%の水溶性レゾール樹脂(昭和高分子(
株)製品、BRL−2854)20#を加えて十分に撹
拌した後、更に37重量%のホルマリン7 kg及び3
0重量%の蓚酸8 ktiを加えて均一に混合し、適量
の水で液量調整し、総液量をioogとした。この混合
液を620X620m角の型枠内に注型し、実施例1と
同様に反応させて、PVA/フェノール系合成樹脂複合
多孔体を得た。
Table 1 Example 2 Same as Example 1, polymerization degree 1700, saponification degree 8
After dissolving 4 kQ of 8% polyvinyl alcohol in hot water, 3 kq of wheat flour starch was added to gelatinize. Add this solution to a water-soluble resol resin (Showa Polymer Co., Ltd.) with a solid content concentration of 60% by weight.
Co., Ltd. product, BRL-2854) 20# and stirred thoroughly, then 7 kg of 37% by weight formalin and 3
8 kti of 0% by weight oxalic acid was added and mixed uniformly, and the liquid volume was adjusted with an appropriate amount of water to give a total liquid volume of ioog. This mixed solution was poured into a 620 x 620 m square mold and reacted in the same manner as in Example 1 to obtain a PVA/phenolic synthetic resin composite porous body.

該合成樹脂複合多孔体を100X100X500 JE
Tの角柱に成形後、実施例1と同様にメラミン樹脂を施
与し、ポリビニルアルコール系樹脂20重量%、メラミ
ン樹脂20重量%、フェノール樹脂60重量%よりなる
合成樹脂複合多孔体を得た。
The synthetic resin composite porous body is 100X100X500 JE
After molding into a T-shaped prism, melamine resin was applied in the same manner as in Example 1 to obtain a synthetic resin composite porous body consisting of 20% by weight of polyvinyl alcohol resin, 20% by weight of melamine resin, and 60% by weight of phenol resin.

該合成樹脂複合多孔体を電気炉に入れ、窒素雰囲気下で
50°C/hrの昇温速度で所定の温度まで昇温し、水
蒸気雰囲気下で所定時間賦活した。得られた賦活品の物
性値を第2表に示す。2C以下粂−白) 第  2  表 と記の2試斜を用い圧カスインク吸f (PSA)法に
よる空気中の窒素と酸素の分離を試みた。
The synthetic resin composite porous body was placed in an electric furnace, heated to a predetermined temperature at a rate of 50° C./hr under a nitrogen atmosphere, and activated for a predetermined time under a steam atmosphere. Table 2 shows the physical property values of the obtained activated product. Separation of nitrogen and oxygen in the air was attempted using the pressure scum ink absorption (PSA) method using the two test slopes shown in Table 2.

2塔式PSA装置の30HφX1200zzL  の吸
着塔内に上記試料を成形して挿入し、以下の操作条件で
吸着号i実験を行なった。即ち、吸着圧力4kq/d 
、空気流fk 200 Nm//min 、で吸着時間
1分、脱着時間1分で2塔を交互に切換え、脱着時には
真空ポンプで強制排気した。
The above sample was molded and inserted into a 30Hφ x 1200zzL adsorption tower of a two-column PSA apparatus, and an adsorption number i experiment was conducted under the following operating conditions. That is, adsorption pressure 4kq/d
, air flow fk 200 Nm//min, the adsorption time was 1 minute, the desorption time was 1 minute, and the two towers were alternately switched, and during desorption, the two towers were forcibly evacuated using a vacuum pump.

吸着塔出口ガスの濃度を分析した結果、試料ム1では窒
素濃度99.2%であったが、資料患2では、窒素濃度
79.1%で入口空気組成と同じであった。
As a result of analyzing the concentration of the adsorption tower outlet gas, sample No. 1 had a nitrogen concentration of 99.2%, while sample No. 2 had a nitrogen concentration of 79.1%, which was the same as the inlet air composition.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る合成樹脂複合体を用いた空気の吸
着分離試験における破過曲線であり、横軸は時間(分)
縦軸は出口ガス濃度(C)と入口ガス1度(Co)の比
C/ Coを表す。
Figure 1 shows the breakthrough curve in an air adsorption separation test using the synthetic resin composite according to the present invention, and the horizontal axis is time (minutes).
The vertical axis represents the ratio C/Co of the outlet gas concentration (C) to the inlet gas 1 degree (Co).

Claims (2)

【特許請求の範囲】[Claims] (1)ポリビニルアルコール系樹脂が10〜50重量%
、メラミン樹脂が10〜40重量%、フェノール樹脂が
30〜70重量%よりなる合成樹脂複合体を非酸下性雰
囲気下500〜700℃の温度領域で炭化するかまたは
炭化後更に酸下性雰囲気下、500〜700℃の温度領
域で炭化物の15重量%以内の重量減少となる範囲で賦
活してなる、細孔直径10Å以下に細孔径分布の極大値
を有し、細孔直径15〜200Åの範囲の細孔容積が0
.1cm^3/g以下である空気分離用分子ふるい炭素
(1) 10 to 50% by weight of polyvinyl alcohol resin
, a synthetic resin composite consisting of 10 to 40% by weight of melamine resin and 30 to 70% by weight of phenolic resin is carbonized in a temperature range of 500 to 700°C in a non-acidic atmosphere, or is further carbonized in an acidic atmosphere after carbonization. 2. Activated in a temperature range of 500 to 700°C in a range that results in a weight loss of within 15% of the carbide, having a maximum value of pore size distribution in a pore diameter of 10 Å or less, and a pore diameter of 15 to 200 Å Pore volume in the range of 0
.. Molecular sieve carbon for air separation with a particle size of 1 cm^3/g or less.
(2)分子ふるい炭素が見掛密度0.1〜0.8g/c
m^3、気孔率50〜90%で、直径1〜500μmの
網目状構造の連続したマクロ孔を有するものである特許
請求の範囲第(1)項記載の空気分離用分子ふるい炭素
(2) Molecular sieve carbon has an apparent density of 0.1 to 0.8 g/c
The carbon molecular sieve for air separation according to claim 1, which has continuous macropores in a network structure with a diameter of 1 to 500 μm and a porosity of 50 to 90%.
JP60198100A 1985-09-06 1985-09-06 Molecular sieve carbon for air separation Granted JPS6259510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60198100A JPS6259510A (en) 1985-09-06 1985-09-06 Molecular sieve carbon for air separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60198100A JPS6259510A (en) 1985-09-06 1985-09-06 Molecular sieve carbon for air separation

Publications (2)

Publication Number Publication Date
JPS6259510A true JPS6259510A (en) 1987-03-16
JPH0413288B2 JPH0413288B2 (en) 1992-03-09

Family

ID=16385490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60198100A Granted JPS6259510A (en) 1985-09-06 1985-09-06 Molecular sieve carbon for air separation

Country Status (1)

Country Link
JP (1) JPS6259510A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4828588A (en) * 1988-04-01 1989-05-09 University Of Cincinnati Process for preparation of heterogeneous polysiloxane membrane and membrane produced
JPH05168916A (en) * 1991-05-08 1993-07-02 Air Prod And Chem Inc Oxygen and carbon dioxide selective composite drting agent, preparation thereof, and method for adsorptive separation of nitrogen from oxygen
JP2000007316A (en) * 1998-06-29 2000-01-11 Kyocera Corp Solid active carbon and electric double layer capacitor using the same
CN103877933A (en) * 2014-03-24 2014-06-25 上海探玄新材料科技有限公司 Composite material and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4828588A (en) * 1988-04-01 1989-05-09 University Of Cincinnati Process for preparation of heterogeneous polysiloxane membrane and membrane produced
JPH05168916A (en) * 1991-05-08 1993-07-02 Air Prod And Chem Inc Oxygen and carbon dioxide selective composite drting agent, preparation thereof, and method for adsorptive separation of nitrogen from oxygen
JP2000007316A (en) * 1998-06-29 2000-01-11 Kyocera Corp Solid active carbon and electric double layer capacitor using the same
CN103877933A (en) * 2014-03-24 2014-06-25 上海探玄新材料科技有限公司 Composite material and preparation method thereof

Also Published As

Publication number Publication date
JPH0413288B2 (en) 1992-03-09

Similar Documents

Publication Publication Date Title
US20200298206A1 (en) Self-supporting structures having active materials
JP3647985B2 (en) Molecular sieving carbon membrane and its manufacturing method
Tanco et al. Composite-alumina-carbon molecular sieve membranes prepared from novolac resin and boehmite. Part I: Preparation, characterization and gas permeation studies
US11148091B2 (en) Self-supporting structures having active materials
JP6906503B2 (en) Carbon molecular sieve adsorbent prepared from activated carbon and useful for propylene-propane separation
Teixeira et al. Boehmite-phenolic resin carbon molecular sieve membranes—Permeation and adsorption studies
US4790859A (en) Method of separating gaseous mixture
WO2002004115A1 (en) Polymer-bound nitrogen adsorbent
EP1922142A1 (en) Adsorbents for purification of c2-c3 olefins
CN111229164B (en) Microporous carbon adsorbent for separating olefin and alkane and preparation method and application thereof
JPS6259510A (en) Molecular sieve carbon for air separation
Katsaros et al. Preparation and characterisation of gas selective microporous carbon membranes
JPH0627593B2 (en) Adsorption type heat pump
Wang et al. Sol-gel synthesis and gas adsorption properties of CuCl modified mesoporous alumina
WO2017068517A1 (en) A carbon molecular sieve membrane, method of preparation and uses thereof
US7196122B2 (en) Nanoporous organic polymer composite and preparation method thereof and its application for catalyst
Menard et al. Development of thermally conductive packing for gas separation
JP2546797B2 (en) Separation method of gas mixture
JPS616108A (en) Carbon for molecular sieve
Onyestyák et al. Sorption dynamics of N2 and O2 in carbon monoliths from spruce, beech and oak affected by activation
JPS63201008A (en) Production of carbon for molecular sieve
JPH0340912A (en) Production of molecular-sieve carbon

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term