JPS6259041B2 - - Google Patents

Info

Publication number
JPS6259041B2
JPS6259041B2 JP2095583A JP2095583A JPS6259041B2 JP S6259041 B2 JPS6259041 B2 JP S6259041B2 JP 2095583 A JP2095583 A JP 2095583A JP 2095583 A JP2095583 A JP 2095583A JP S6259041 B2 JPS6259041 B2 JP S6259041B2
Authority
JP
Japan
Prior art keywords
column
gas
scavenging
adsorption
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2095583A
Other languages
Japanese (ja)
Other versions
JPS59207803A (en
Inventor
Masao Kanbe
Takefumi Chino
Masahide Iwasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KAGAKU GIJUTSU KK
Original Assignee
NIPPON KAGAKU GIJUTSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KAGAKU GIJUTSU KK filed Critical NIPPON KAGAKU GIJUTSU KK
Priority to JP2095583A priority Critical patent/JPS59207803A/en
Publication of JPS59207803A publication Critical patent/JPS59207803A/en
Publication of JPS6259041B2 publication Critical patent/JPS6259041B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、粗水素中の炭酸ガス・一酸化炭素・
メタン・水分等不純ガスを圧力スイング吸着法
(以下PSA法と記す)にて選択的に吸着除去し、
99.99%以上の高純度水素を高収率にて取得する
水素精製法に関する。
Detailed Description of the Invention "Industrial Application Field" The present invention is directed to carbon dioxide, carbon monoxide,
Impure gases such as methane and moisture are selectively adsorbed and removed using the pressure swing adsorption method (hereinafter referred to as PSA method).
This invention relates to a hydrogen purification method that obtains high purity hydrogen of 99.99% or more in high yield.

「従来の技術」 従来、加圧下においてシリカゲル・活性炭・合
成ゼオライトなどの吸着剤を充填した吸着塔によ
り、水素を含む混合ガスより不純ガスを除去し、
水素を精製する方法はPSA法としてよく知られて
いる。
"Conventional technology" Conventionally, impurity gases are removed from a mixed gas containing hydrogen using an adsorption tower filled with adsorbents such as silica gel, activated carbon, and synthetic zeolite under pressure.
The method for purifying hydrogen is well known as the PSA method.

PSA法は、比較的小型の吸着塔にてワンパスに
て99.99%以上の高純度水素が得られるのが特徴
であるが、このような高純度水素を得るためには
吸着剤の十分な再生が必要であり、極力低い圧力
まで減圧脱着することと、製品水素による逆洗
(向流掃気)及び向流加圧が必要とされる。
The PSA method is characterized by the ability to obtain high purity hydrogen of 99.99% or more in one pass using a relatively small adsorption tower, but in order to obtain such high purity hydrogen, sufficient regeneration of the adsorbent is required. This requires vacuum desorption to the lowest possible pressure, backwashing (countercurrent scavenging) with product hydrogen, and countercurrent pressurization.

このため減圧、掃気パージにともない、相当量
の水素分がパージ側へ逃失するので、通常のPSA
水素精製ユニツトで、水素75%(ドライベース)
程度の粗水素ガスを処理する場合、水素収率(回
収率)は75%程度にとどまる。従つて所望の水素
製品量を得るためには、粗水素発生設備を約30%
大きくとらねばならない。
For this reason, with depressurization and scavenging purge, a considerable amount of hydrogen content escapes to the purge side, so normal PSA
Hydrogen purification unit produces 75% hydrogen (dry basis)
When processing a certain amount of crude hydrogen gas, the hydrogen yield (recovery rate) remains at about 75%. Therefore, in order to obtain the desired amount of hydrogen product, approximately 30% of the crude hydrogen generation equipment must be used.
You have to take it big.

これが他の水素精製法、例えば吸収法、深冷分
離法に比べてPSA法が劣る唯一の点である。その
ためPSA法の水素収率を向上するため今まで種々
の工夫提案が行なわれてきた。
This is the only point in which the PSA method is inferior to other hydrogen purification methods, such as absorption methods and cryogenic separation methods. Therefore, various proposals have been made to improve the hydrogen yield of the PSA method.

「発明が解決しようとする問題点」 水素以外の多成分不純ガスが高低濃度で存在す
る水素ガスの精製において、従来は同一容量の3
〜4塔の吸着塔にて、それぞれ不純物を選択的に
吸着する一種ないし三種の吸着剤を混合または階
層的に充填して、一本の塔にて一率に処理してい
た。従つてガス線速、塔サイズなど吸着塔の設計
或いは切替えサイクルタイムプログラムは各不純
成分ガス、吸着剤にたいして必ずしも最適条件を
とることが出来ず、吸着容量、サイクルタイムに
ムダが生じ、過大な塔容量は空隙の増大をもたら
し、パージガスに伴う水素損失を大きくするた
め、水素収率の向上はのぞめなかつた。
``Problem to be solved by the invention'' In the purification of hydrogen gas where multi-component impurity gases other than hydrogen are present at high and low concentrations, conventionally, three
One to three kinds of adsorbents that selectively adsorb impurities were mixed or packed hierarchically in four adsorption towers, and the treatment was carried out at a single rate in one tower. Therefore, the adsorption tower design or switching cycle time program such as gas linear velocity and tower size cannot necessarily be set to the optimum conditions for each impurity component gas and adsorbent, resulting in wasted adsorption capacity and cycle time, and oversized towers. Since the capacity increases the voids and increases the hydrogen loss associated with the purge gas, it was not possible to improve the hydrogen yield.

またPSA塔を前段と後段の二段の複数の塔で処
理する二段PSA法の提案があるが、これもたんに
前後段で不純ガスを選択的に処理し、後段のパー
ジガスでさらに前段をパージするだけで、塔サイ
ズについては何等考慮されず、各段間の吸着−再
生のサイクルタイムも同時期である。これでは後
述の理由により水素収率の向上はのぞめない。
There is also a proposal for a two-stage PSA method in which the PSA tower is treated with multiple towers, one in the front stage and the other in the latter stage, but this also simply treats impure gas selectively in the front and rear stages, and then uses the purge gas in the latter stage to further treat the former stage. Only purging is performed, no consideration is given to the column size, and the adsorption-regeneration cycle time between each stage is the same. In this case, it is not possible to improve the hydrogen yield for reasons described later.

一般にPSA法の水素収率を向上するには(1)不純
物の前処理(2)減圧・脱着ガス・掃気ガスの回収
(入口へのリサイクル)(3)再生サイクルの延長な
どが有効とされ、一方純度を向上するには(1)前処
理(2)十分な再生(高度の減圧、真空引きなど)(3)
十分な掃気(製品水素による逆洗)、製品水素に
よる向流加圧が有効である。
In general, to improve the hydrogen yield of the PSA method, (1) pretreatment of impurities, (2) recovery of depressurization, desorption gas, and scavenging gas (recycling to the inlet), and (3) extension of the regeneration cycle are considered effective. On the other hand, to improve purity (1) pretreatment (2) sufficient regeneration (highly reduced pressure, vacuuming, etc.) (3)
Sufficient scavenging (backwashing with product hydrogen) and countercurrent pressurization with product hydrogen are effective.

従来行なわれてきた水素収率向上の方法は、3
〜4塔の吸着塔を交互吸着に使用し、一塔の吸着
完了後の塔圧を立ち上がり塔へ圧力平衡化(均
圧)すること、減圧脱着ガスの一部を回収するこ
と、掃気ガスの減少をはかること、吸着、再生サ
イクルの工夫などである。
The conventional methods for improving hydrogen yield are 3.
~ Four adsorption towers are used for alternate adsorption, and the tower pressure after the completion of adsorption in one tower is pressure balanced (pressure equalized) to the rising tower, a part of the vacuum desorption gas is recovered, and the scavenging gas is These include efforts to reduce waste, adsorption, and regeneration cycles.

しかし、パージガスをたんに入口へ循環回収す
ることは大量の循環ガスとなり、実現性に乏し
く、吸着サイクルの延長は吸着塔の容量が増加
し、空隙増加に伴う減圧時の水素損失が増し、必
ずしも収率向上にはならない。またたんなる5塔
以上の多塔化は、サイクルの自由度は増加する
が、同様減圧ガスの増加水素損失を生じ、装置複
雑化の割合にはメリツトを生じない。さらに十分
な掃気は有効であるが、パージガスに伴う水素損
失が比例的に増大することは前述のとおりであ
る。
However, simply recycling and recovering the purge gas to the inlet results in a large amount of circulating gas, which is not practical, and extending the adsorption cycle increases the capacity of the adsorption tower and increases the hydrogen loss during depressurization due to the increase in voids. It does not improve yield. Further, simply increasing the number of columns to five or more increases the degree of freedom of the cycle, but it also causes increased loss of hydrogen in the reduced pressure gas, and does not bring about any merit in terms of the complexity of the equipment. Furthermore, although sufficient scavenging is effective, as described above, the hydrogen loss associated with the purge gas increases proportionally.

上記のごとく、収率向上と純度向上は互いに相
反する面があり、両者を満足することは通常の
PSA法では困難とされてきた。
As mentioned above, yield improvement and purity improvement are contradictory to each other, and it is difficult to satisfy both.
This has been considered difficult with the PSA method.

「問題を解決するための手段」 そこで本発明者等は、従来の二段PSA法におい
て高純度水素を得るとともに、さらに一層の水素
収率を向上する目的で本発明を完成した。
"Means for Solving the Problem" Therefore, the present inventors completed the present invention for the purpose of obtaining high purity hydrogen in the conventional two-stage PSA method and further improving the hydrogen yield.

この発明は、二段PSA法において、前段と後段
の塔径、サイズまたは本数を変え前段塔に対し後
段塔を小容量とした吸着塔を用い、前段の吸着塔
では高濃度不純ガス成分を吸着除去し、引続き後
段の吸着塔にて残りの低濃度不純ガス成分を吸着
除去するようにし、次に後段塔の吸着工程が終わ
り減圧工程で出る脱着ガスを、直接前段塔の吸着
が終わり減圧された掃気工程にある塔の掃気に使
用するか、回収タンクに回収して掃気に使用す
る。またそのパージガスの一部は回収タンクに回
収する。さらに後段塔の製品水素による塔出口か
らの掃気ガスを直接、前段塔の前記減圧ガスによ
る掃気後の塔掃気に使用するか、または一時回収
タンクに回収後、前段塔の掃気時期にその掃気ガ
スとして使用する。上記前段塔の掃気パージガス
は回収タンクに戻してコンプレツサーでリサイク
ルする。また前記回収タンクのガスはコンプレツ
サーを用いて前段塔の再生完了後の再加圧過程の
塔の加圧に用いる。
In the two-stage PSA method, this invention uses an adsorption tower in which the diameter, size, or number of the first and second stages is changed, and the capacity of the second stage is smaller than that of the first stage, and the first stage adsorption tower adsorbs high-concentration impure gas components. Then, the remaining low concentration impure gas components are adsorbed and removed in the adsorption tower in the latter stage, and then the desorption gas released in the depressurization process after the adsorption process in the latter stage is directly transferred to the depressurized gas component after the adsorption in the former stage tower is completed. It can be used for scavenging of the tower during the scavenging process, or it can be collected in a recovery tank and used for scavenging. A portion of the purge gas is also collected in a recovery tank. Furthermore, the scavenging gas from the column outlet by the product hydrogen of the latter column is directly used for column scavenging after scavenging by the depressurized gas in the first column, or the scavenging gas is collected in a temporary recovery tank and then used during the scavenging period of the first column. Use as. The scavenging purge gas from the front tower is returned to the recovery tank and recycled by the compressor. Furthermore, the gas in the recovery tank is used to pressurize the column in the repressurization process after the completion of regeneration of the former column using a compressor.

上記吸着塔切り替えのタイムスケジユールは前
段塔と後段塔ではサイクルタイムのプログラムを
吸着時間の約2分の1タイム以内ずらして行なう
ものである。
The time schedule for switching the adsorption towers is such that the cycle time programs for the first stage tower and the second stage tower are shifted within about 1/2 of the adsorption time.

前段塔で高濃度不純成分を除去し、後段塔で低
濃度不純成分を除去し最終精製するようにする
と、後段塔の容量は前段塔より小さくてよく、後
段塔のコストが比例的に低減するばかりでなく、
塔の空隙が小さくなるので、水素濃度の高いとこ
ろで、減圧脱着ガス量が少なく、製品水素による
向流掃気ガス量、向流加圧水素量も少なくてよ
い。しかも脱着すべき不純ガス純対量が、前段塔
にて大部分吸着除去されているので、後段につい
ては少量であり、パージガス中の水素濃度は余り
低下していない。この水素リツチの減圧脱着ガ
ス、掃気ガスを回収して、前段にリサイクルし、
前段再生に利用する。さらにそのパージガスの大
部分を回収タンクに回収し、コンプレツサーにて
昇圧して前段再生完了後の塔の加圧に利用する。
このようにパージガスの徹底的回収、パージガス
のリサイクル使用をはかつているので、水素損失
が少なくて、十分な再生が可能となつた。
If high-concentration impurities are removed in the first column and low-concentration impurities are removed in the second column for final purification, the capacity of the second column may be smaller than that of the first column, and the cost of the second column will be reduced proportionally. Not only
Since the voids in the column become smaller, the amount of reduced pressure desorption gas is small in areas where the hydrogen concentration is high, and the amount of countercurrent scavenging gas and countercurrent pressurized hydrogen amount due to product hydrogen may also be small. Moreover, since most of the pure volume of impure gas to be desorbed is adsorbed and removed in the first stage column, only a small amount is absorbed in the second stage, and the hydrogen concentration in the purge gas does not decrease much. This hydrogen-rich vacuum desorption gas and scavenging gas are recovered and recycled to the previous stage.
Used for pre-stage playback. Furthermore, most of the purge gas is recovered into a recovery tank, boosted in pressure by a compressor, and used to pressurize the column after the first-stage regeneration is completed.
Since the purge gas is thoroughly recovered and recycled in this way, hydrogen loss is small and sufficient regeneration is possible.

さらに高濃度不純成分と定濃度不純成分の吸着
除去を大容量の前段吸着塔と小容量の後段吸着塔
の二段に分けて行なえば、不純成分の吸着再生に
対するそれぞれの最適のサイクルタイムを組むこ
とが出来る。一例として前段塔と後段塔のサイク
ルタイムを吸着時間の約3分の1(圧力平衡化時
間に相当)ずらすことにすれば、後段塔の減圧脱
着ガスを前段塔の掃気に使用することが出来て前
段塔の掃気ガスの節減が図れる。
Furthermore, if the adsorption removal of high-concentration impurity components and constant-concentration impurity components is performed in two stages: a large-capacity first-stage adsorption tower and a small-capacity second-stage adsorption tower, the optimal cycle time for adsorption and regeneration of impure components can be set for each stage. I can do it. For example, if the cycle times of the first and second columns are shifted by about one-third of the adsorption time (corresponding to the pressure equilibration time), the vacuum desorption gas from the second column can be used for scavenging of the first column. The scavenging gas in the front tower can be saved.

また吸着剤は前段に高濃度不純成分を吸着し易
いもの、後段に低濃度不純成分を吸着し易いもの
を充填する。例えばCO2、メタンの多いガスに対
しては活性炭を充填した前段で除去し、活性炭に
は吸着され難く、比較的濃度は低いが十分除去す
る必要のあるCO、N2などは合成ゼオライトを充
填した後段で完全に除くようにする。
Further, the adsorbent is filled in the first stage with one that easily adsorbs high concentration impurity components, and the second stage with one that easily adsorbs low concentration impurity components. For example, gases containing a large amount of CO 2 and methane are removed in a front stage filled with activated carbon, while CO and N 2 , which are difficult to adsorb to activated carbon and need to be sufficiently removed even though their concentration is relatively low, are filled with synthetic zeolite. Make sure to remove it completely in the later stage.

以上の方法にて99.99%以上の高純度水素を85
%以上の高収率にて取得することが出来る。
High purity hydrogen of 99.99% or more can be produced using the above method.
It can be obtained with a high yield of more than 1%.

「実施例」 図面に基づいて本発明の方法を詳細に説明す
る。第1図は本発明の実施例を示すフローシート
で、前段を3塔、後段を2塔とした場合である。
原料粗水素ガス組成の一例は下記のとおりで、吸
着圧力は15Kg/cm2G、温度は35℃である。
"Example" The method of the present invention will be explained in detail based on the drawings. FIG. 1 is a flow sheet showing an example of the present invention, in which the first stage has three columns and the second stage has two columns.
An example of the raw material crude hydrogen gas composition is as follows, the adsorption pressure is 15 Kg/cm 2 G, and the temperature is 35°C.

入口ガス組成(mol%) (a)天然ガス改質ガス (b)メタノール改質ガス H2 77.36 H2 74.54 CO2 18.66 CO2 24.47 CH4 1.48 CO 0.51 CO 2.00 CH3OH 0.12 N2 0.12 H2O 0.36 H2O 0.36 100.00 100.00 A1,A2,A3は前段吸着塔、B1,B2は後段吸着
塔を示し、上記組成ガスに対しては、吸着剤は前
段に主として水分、CO2またはCH4を選択的に吸
着する活性炭を充填し、後段には残りの水分、
CO,CO2,CH3OHを吸着する合成ゼオライトを
充填する。そしてA列の三塔に対しB列の二塔は
塔容量(従つて吸着剤充填量も)を小とする。
Inlet gas composition (mol%) (a) Natural gas reformed gas (b) Methanol reformed gas H 2 77.36 H 2 74.54 CO 2 18.66 CO 2 24.47 CH 4 1.48 CO 0.51 CO 2.00 CH 3 OH 0.12 N 2 0.12 H 2 O 0.36 H 2 O 0.36 100.00 100.00 A 1 , A 2 , A 3 are the first stage adsorption towers, B 1 , B 2 are the second stage adsorption towers. Filled with activated carbon that selectively adsorbs 2 or CH 4 , the remaining water and
Filled with synthetic zeolite that adsorbs CO, CO 2 and CH 3 OH. The column capacity (and thus the amount of adsorbent packed) of the two columns in the B column is smaller than that in the A column with the three columns.

原料粗水素ガス1は下方よりA1吸着塔に入
り、ここで水分、CO2,CH4の大部分を吸着し、
出口管2より約98%純度の一次精製水素ガスが得
られる。このガスは次にB1吸着塔に入り、ここ
で残りのCO,CO2,CH4またはCH3OH,H2Oな
ど少量の不純分が殆ど完全に吸着除去され、B1
出口管より99.999%の高純度水素4が得られる。
The raw material crude hydrogen gas 1 enters the A 1 adsorption tower from below, where it adsorbs most of the water, CO 2 and CH 4 ,
From the outlet pipe 2, primary purified hydrogen gas with a purity of approximately 98% is obtained. This gas then enters the B 1 adsorption column, where small amounts of impurities such as remaining CO, CO 2 , CH 4 or CH 3 OH, H 2 O are almost completely adsorbed and removed, and the B 1
High purity hydrogen 4 of 99.999% is obtained from the outlet pipe.

第2図は上記2段PSA法の吸着−再生工程のサ
イクルの一例を示す。横方向はサイクルタイム時
間を、点線は塔内圧レベルを、斜線の部分は吸着
工程中を示す。本例ではA列(3塔)B列(2
塔)とも、吸着時間は約6分、減圧、脱着、掃気
時間は約6分、また圧力平衡化、再加圧時間は約
6分であり、1サイクルは約18分で終わる。しか
しA列B列のタイムスケジユールは、スタート時
期を少しずらし第2図に示すとおりA1塔が吸着
に入つてから約2分後にB1塔が吸着工程に入る
ようにする。これはB列の減圧脱着ガスおよび掃
気ガスをA列の掃気ガスとして利用するためであ
る。
FIG. 2 shows an example of the adsorption-regeneration step cycle of the two-stage PSA method. The horizontal direction indicates the cycle time, the dotted line indicates the internal pressure level, and the diagonal line indicates the adsorption process. In this example, row A (3 towers) row B (2 towers)
For both columns, the adsorption time is about 6 minutes, the depressurization, desorption, and scavenging times are about 6 minutes, and the pressure equilibration and repressurization times are about 6 minutes, and one cycle ends in about 18 minutes. However, the time schedule for column A and column B is such that the start timing is slightly shifted so that column B1 starts the adsorption process about 2 minutes after column A1 starts adsorption, as shown in Figure 2. This is because the reduced pressure desorption gas and scavenging gas in the B row are used as the scavenging gas in the A row.

第1図において、前段A1塔が吸着中は、A2
A3塔の入口、出口弁は閉められており、A3塔は
減圧脱着中である。A3塔の減圧脱着ガスは再生
完了後のA2塔に送り、約1分程度で圧力平衡と
なるまで回収する。A3塔の約2分の1残圧は、
5,7ライン(6ライン閉)より3分以内でパー
ジする。14はパージガスで、大気放出または燃
料ラインへ送る。後段B1塔は吸着中、B2塔は減
圧脱着再生中であるが、この減圧ガスは、9,1
0(11閉)をとおり、前記大気圧近くまで減圧
後の前段A3塔の出口側より送り込み、掃気とし
て使用する。このA3塔掃気パージガスは大部
分、5,6ライン(7は閉)より回収タンク8へ
回収する。ただし一部分B2塔末期減圧ガスによ
る比較的不純分の多いA3塔掃気後のパージガス
は、7ラインよりパージする。B2塔が大気圧近
くまで減圧(脱着再生)されたら、次に製品ガス
4の一部を3から分流して出口方向より送り込み
逆洗掃気する。この掃気用製品ガスの所要量はB
塔の容量が小さいので少なくてよく、掃気時間も
短時間で済む。掃気パージガスは引続き、ライン
9,10をとおり、前段A3塔の掃気に使用後、
回収タンク8へ回収するか直接9,11、(10
ライン閉)ラインより回収タンク8へ回収する。
回収タンク8内の回収ガスは、コンプレツサーに
てA2塔(再生、均圧後の待機塔)へ加圧回収す
る。従つて製品ガスの外部への損失はない。
In Fig. 1, when the first stage A1 column is adsorbing, A2 ,
The inlet and outlet valves of the A3 tower are closed, and the A3 tower is undergoing vacuum desorption. After completion of regeneration, the vacuum desorbed gas from the A3 tower is sent to the A2 tower, where it is recovered in about 1 minute until the pressure reaches equilibrium. Approximately 1/2 residual pressure in A3 tower is
Purge within 3 minutes from lines 5 and 7 (line 6 closed). 14 is a purge gas, which is discharged into the atmosphere or sent to a fuel line. The latter stage B1 tower is under adsorption, and the B2 tower is under reduced pressure desorption and regeneration.
0 (closed at 11), and after being depressurized to near the atmospheric pressure, it is sent from the outlet side of the first stage A3 tower and used as scavenging gas. Most of this A3 column scavenging purge gas is recovered to the recovery tank 8 through lines 5 and 6 (7 is closed). However, the purge gas after scavenging from the A3 tower, which contains a relatively large amount of impurities due to the reduced pressure gas at the end of the B2 tower, is purged from the 7th line. When the pressure in the B2 tower is reduced to near atmospheric pressure (desorption and regeneration), a part of the product gas 4 is then diverted from 3 and sent from the outlet direction for backwashing and scavenging. The required amount of product gas for scavenging is B
Since the capacity of the tower is small, only a small amount is required, and the scavenging time can be shortened. The scavenging purge gas continues to pass through lines 9 and 10, and after being used for scavenging of the first stage A3 tower,
Collect into recovery tank 8 or directly 9, 11, (10
Collected from the line (closed line) to the recovery tank 8.
The recovered gas in the recovery tank 8 is compressed and recovered by a compressor to the A2 tower (standby tower after regeneration and pressure equalization). Therefore, there is no loss of product gas to the outside.

最後にA2塔は、一次精製水素ガス(A1塔出口
ガス)による向流加圧と、入口より原料ガスで加
圧して、入口、出口弁をA1塔と切替え吸着工程
に入る。
Finally, the A2 column is pressurized in countercurrent by the primary purified hydrogen gas ( A1 column outlet gas) and pressurized with the raw material gas from the inlet, and the inlet and outlet valves are switched to the A1 column to enter the adsorption process.

B列についても、同様B2塔の掃気が終われ
ば、製品水素ガス、一次精製水素ガスで加圧し、
入口、出口弁を切替えて、B2塔が吸着、B1塔が
再生工程に入る。
Similarly for column B, once the scavenging of the B2 tower is finished, it is pressurized with product hydrogen gas and primary purified hydrogen gas.
By switching the inlet and outlet valves, the B2 tower enters the adsorption process and the B1 tower enters the regeneration process.

以上の工程がプログラムシーケンスにより繰り
返されて、連続して99.999%の高純度水素を得
る。
The above steps are repeated according to the program sequence to continuously obtain 99.999% high purity hydrogen.

上記方法では、第2図、第4図に示すごとく、
A列とB列のサイクルタイムをずらすことにして
いるが、同時期とすることも勿論可能である。た
だしこの場合は、B列の減圧ガスはそのままA列
の掃気に使用することが出来ず、一度回収タンク
へ減圧し、さらにコンプレツサーで昇圧してA列
へリサイクルする必要がある。
In the above method, as shown in Figs. 2 and 4,
Although the cycle times of the A column and the B column are staggered, it is of course possible to set them to the same period. However, in this case, the depressurized gas in the B row cannot be used as is for scavenging in the A row, and must be depressurized once to a recovery tank, and further pressurized by a compressor and recycled to the A row.

以上のごとく、本発明方法によれば系外に放出
される再生パージガス量はA列塔、B列塔の吸着
圧の約2分の1圧平衡後の残圧のみで、このA列
の減圧脱着ガスは水素濃度が低いので放出される
水素損失は比較的少なく、またB列は入口ガス量
が少なく吸着塔容量も小さいので、減圧脱着ガス
量もそれだけ少量となり、通常のPSA法に比べて
水素損失を低くおさえられ、全体として水素収率
は大幅に向上する。
As described above, according to the method of the present invention, the amount of regenerated purge gas discharged outside the system is only the residual pressure after equilibrium of about half of the adsorption pressure in column A and column B, and the pressure in column A is reduced. Since the desorption gas has a low hydrogen concentration, the loss of released hydrogen is relatively small.Also, since the inlet gas amount in column B is small and the adsorption tower capacity is small, the amount of vacuum desorption gas is also small, compared to the normal PSA method. Hydrogen loss is kept low, and overall hydrogen yield is significantly improved.

例えば200Nm3/hr水素精製PSAユニツトで、
前記組成(b)のガスを15Kg/cm2G35℃で処理する場
合(再生サイクルタイム6分) A塔、空隙容積は0.49m3、7.5Kg/cm2Gから0.1
Kg/cm2Gまで減圧のパージガス水素量は(水素濃
度70%) (0.49)(60/6)(7.4)(273/308)(0.7)=22.5
(Nm3/hr) A塔、空隙容積は0.15m3、7.5Kg/cm2Gから0.1
Kg/cm2Gまで減圧のパージガス水素量は(水素濃
度90%) (0.15)(60/6)(7.4)(273/308)(0.9)=8.85
(Nm3/hr) パージ水素量合計 22.5+8.85=31.35(Nm3
hr) 従つて水素収率は 200/231.35=0.864 すなわち約86%の水素収率となる。
For example, in a 200Nm 3 /hr hydrogen purification PSA unit,
When processing the gas with the above composition (b) at 15Kg/cm 2 G at 35°C (regeneration cycle time 6 minutes) A tower, void volume is 0.49m 3 , 7.5Kg/cm 2 G to 0.1
The amount of purge gas hydrogen when depressurized to Kg/cm 2 G is (hydrogen concentration 70%) (0.49) (60/6) (7.4) (273/308) (0.7) = 22.5
(Nm 3 /hr) A tower, void volume is 0.15m 3 , 7.5Kg/cm 2 G to 0.1
The amount of purge gas hydrogen when depressurized to Kg/cm 2 G is (hydrogen concentration 90%) (0.15) (60/6) (7.4) (273/308) (0.9) = 8.85
(Nm 3 /hr) Total purge hydrogen amount 22.5 + 8.85 = 31.35 (Nm 3 /
hr) Therefore, the hydrogen yield is 200/231.35=0.864, or approximately 86% hydrogen yield.

次に前段3塔、後段3塔の実施例を第3図フロ
ーシート、第4図吸着サイクルプログラム図で説
明する。後段塔が前段塔より小サイズであること
は前例と同じである。
Next, an example of the three first-stage columns and the second-stage three columns will be explained with reference to a flow sheet in FIG. 3 and an adsorption cycle program diagram in FIG. 4. As in the previous example, the rear tower is smaller in size than the front tower.

後段3塔の場合は、再生時間が前記2塔の場合
よりも長くとれるので、操作のフレキシビリテイ
は増加する。第4図はA列とB列の吸着時間を圧
平衡化時間分ずらした例であるが、B列塔の減圧
脱着ガスをA列塔の掃気に利用して、そのパージ
ガスの一部を回収タンクに収集し、一部の比較的
不純分の多い掃気ガスは系外へパージする。また
B列の製品水素による向流掃気ガスをさらにA列
掃気に利用して回収タンクに回収する。
In the case of three columns in the latter stage, the regeneration time can be longer than in the case of the two columns, so that the flexibility of operation is increased. Figure 4 shows an example in which the adsorption times of columns A and B are shifted by the pressure equilibration time, and a part of the purge gas is recovered by using the reduced pressure desorption gas of column B for scavenging of column A. The scavenging gas is collected in a tank, and some relatively impure scavenging gas is purged out of the system. Further, the countercurrent scavenging gas generated by the product hydrogen in the B row is further utilized for the A row scavenging gas and recovered in the recovery tank.

またコンプレツサーを用いてパージガスをリサ
イクルする。さらにこれらのガスをコンプレツサ
ーで昇圧してA列吸着前の塔へ加圧回収する。
The purge gas is also recycled using a compressor. Further, these gases are pressurized by a compressor and recovered under pressure to the column before the A column adsorption.

上記第3図の方法は、後段を3塔にすることに
より、再生時間が長くとれる利点はあるが、全体
の設備費は増加する。
The method shown in FIG. 3 has the advantage that the regeneration time can be extended by using three towers in the latter stage, but the overall equipment cost increases.

以上の説明では、B列の減圧脱着ガスそのまま
A列掃気に利用するため、A列、B列の吸着タイ
ムを均圧タイムないし1サイクルの1/2タイムだ
けずらしているが、B列均圧後の残圧を一度回収
タンクに回収し、コンプレツサーで昇圧して掃気
に利用する(掃気ガスリサイクル)ことも可能で
あり、この場合はA列、B列のサイクルタイムは
自由に設定出来る。
In the above explanation, in order to use the reduced pressure desorption gas in row B for scavenging in row A, the adsorption times in rows A and B are shifted by the pressure equalization time or 1/2 time of one cycle. It is also possible to once collect the remaining pressure in a recovery tank, increase the pressure with a compressor, and use it for scavenging (scavenging gas recycling). In this case, the cycle time of the A and B rows can be set freely.

なお、前記二例のほか前段A列を2塔、後段B
列を2塔または3塔にすることも可能で、この場
合はA列に蓄圧タンクを設け、A列の吸着後の減
圧脱着ガス(水素リツチのもの)を中間圧まで蓄
圧タンクに回収し、その回収中間圧ガスを再生後
の塔の加圧に利用する。
In addition to the above two examples, the front stage A row has two towers, and the rear stage B
It is also possible to have two columns or three columns in the column. In this case, a pressure accumulator tank is provided in column A, and the reduced pressure desorption gas (hydrogen-rich gas) after adsorption in column A is collected in the pressure accumulator tank to an intermediate pressure. The recovered intermediate pressure gas is used to pressurize the tower after regeneration.

B列減圧ガス、掃気ガスのA列掃気への利用
及、A列再生後の加圧に利用することは、前記二
例と同様である。
The use of the B-row depressurizing gas and scavenging gas for A-row scavenging and for pressurization after A-row regeneration is the same as in the above two examples.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の前段3塔後段2塔の場合のフ
ローシート。第2図は同上の吸着サイクルプログ
ラム説明図。第3図は前段3塔後段3塔の場合の
フローシート。第4図は同上の吸着サイクルプロ
グラム説明図。 A1,A2,A3,B1,B2,B3……吸着塔、1……
原料ガス入口、2……A列出口ガス、3……B列
出口ガス、4……精製水素、8……回収ガスタン
ク、12……コンプレツサー。
FIG. 1 is a flow sheet for the case of the present invention with three columns in the front stage and two columns in the latter stage. FIG. 2 is an explanatory diagram of the adsorption cycle program same as above. Figure 3 is a flow sheet for the case of three towers in the front stage and three towers in the latter stage. FIG. 4 is an explanatory diagram of the adsorption cycle program same as above. A 1 , A 2 , A 3 , B 1 , B 2 , B 3 ...Adsorption tower, 1...
Raw material gas inlet, 2... Row A exit gas, 3... Row B exit gas, 4... Purified hydrogen, 8... Recovery gas tank, 12... Compressor.

Claims (1)

【特許請求の範囲】[Claims] 1 粗水素ガスを前後段二段の各複数の吸着塔に
とおし水素を精製する二段圧力スイング吸着法に
おいて、前段と後段の塔径、サイズまたは本数を
変えて、前段塔にたいし後段塔を小容量とした吸
着塔を用い、前段の吸着塔では高濃度不純ガス成
分を吸着除去し、引続き後段の吸着塔にて残りの
低濃度不純ガス成分を吸着除去するようにし、次
に後段塔の吸着工程が終わり減圧工程で出る脱着
ガスを前段塔の吸着が終わり減圧された掃気工程
にある塔の掃気に使用するか、または回収タンク
に回収して掃気に使用し、またそのパージガスの
一部を回収タンクに回収し、さらに後段塔の製品
水素による塔出口からの掃気ガスを直接、前段塔
の前記減圧ガスによる掃気後の塔掃気に使用する
か、または一時回収タンクに回収後、前段塔の掃
気時期にその掃気ガスとして使用するとともに、
上記前段塔の掃気パージガスは回収タンクに戻し
てコンプレツサーでリサイクルし、前記回収タン
クのガスはコンプレツサーを用いて前段塔の再生
完了後の再加圧過程の塔の加圧に用い、かつ吸着
塔切り替えのタイムスケジユールは前段塔と後段
塔でのサイクルタイムプログラムを吸着時間の約
2分1タイム以内ずらして行なうことを特徴とす
る二段圧力スイング吸着法による水素精製方法。
1 In the two-stage pressure swing adsorption method in which crude hydrogen gas is passed through a plurality of adsorption towers in the front and rear stages to purify hydrogen, the diameter, size, or number of columns in the front and rear stages are changed, so that the former stage column is replaced with the latter stage tower. Using an adsorption tower with a small capacity, the first-stage adsorption tower adsorbs and removes high-concentration impure gas components, and the second-stage adsorption tower adsorbs and removes the remaining low-concentration impure gas components. The desorption gas released in the depressurization process after the adsorption process in the previous column is completed is used for scavenging of the column in the scavenging process, or it is collected in a recovery tank and used for scavenging, and part of the purge gas is Furthermore, the scavenging gas from the column outlet by the product hydrogen of the latter column is directly used for column scavenging after scavenging by the depressurized gas in the former column, or after being temporarily collected in a recovery tank, the scavenging gas from the column outlet is It is used as a scavenging gas during the tower scavenging period, and
The scavenging purge gas from the front column is returned to the recovery tank and recycled by the compressor, and the gas in the recovery tank is used to pressurize the column during the repressurization process after the completion of regeneration of the first column, and the adsorption column is switched. The time schedule is a hydrogen purification method using a two-stage pressure swing adsorption method, characterized in that the cycle time programs in the first column and second column are shifted within about 2 minutes of the adsorption time.
JP2095583A 1983-02-10 1983-02-10 Hydrogen purification by two-stage pressure swing adsorption Granted JPS59207803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2095583A JPS59207803A (en) 1983-02-10 1983-02-10 Hydrogen purification by two-stage pressure swing adsorption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2095583A JPS59207803A (en) 1983-02-10 1983-02-10 Hydrogen purification by two-stage pressure swing adsorption

Publications (2)

Publication Number Publication Date
JPS59207803A JPS59207803A (en) 1984-11-26
JPS6259041B2 true JPS6259041B2 (en) 1987-12-09

Family

ID=12041602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2095583A Granted JPS59207803A (en) 1983-02-10 1983-02-10 Hydrogen purification by two-stage pressure swing adsorption

Country Status (1)

Country Link
JP (1) JPS59207803A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2848557B2 (en) * 1987-06-18 1999-01-20 三菱瓦斯化学株式会社 Hydrogen purification method
JP2600199B2 (en) * 1987-10-05 1997-04-16 三菱瓦斯化学株式会社 Hydrogen purification method
CN1250321C (en) * 2004-06-11 2006-04-12 成都天立化工科技有限公司 Two-stage recovering pressure swing adsorption gas separating method
JP4898194B2 (en) * 2005-11-14 2012-03-14 大陽日酸株式会社 Pressure fluctuation adsorption gas separation method and separation apparatus

Also Published As

Publication number Publication date
JPS59207803A (en) 1984-11-26

Similar Documents

Publication Publication Date Title
US4398926A (en) Enhanced hydrogen recovery from low purity gas streams
CA1201662A (en) Pressure swing absorption system
US5792239A (en) Separation of gases by pressure swing adsorption
CA1174181A (en) Pressure swing adsorption process and system
US4761167A (en) Hydrocarbon recovery from fuel gas
AU646704B2 (en) Hydrogen and carbon monoxide production by hydrocarbon steam reforming and pressure swing adsorption purification
JP2744596B2 (en) Method for selectively separating relatively strong adsorbent components from relatively weak adsorbent components of feed gas mixture
US4299596A (en) Adsorption process for the separation of gaseous mixtures
US5084075A (en) Vacuum swing adsorption process for production of 95+% n2 from ambient air
KR940006239B1 (en) Integrated processes for the production of carbon monoxide
CA1188231A (en) Repressurization for pressure swing adsorption system
JPS5922625A (en) Method for removing gaseous nitrogen contained in gaseous carbon monoxide or gaseous mixture of carbon monoxide and carbon dioxide by adsorption method
JPH01131005A (en) Recovery of nitrogen, hydrogen and carbon dioxide from hydrocarbon reformate
JPS6225407B2 (en)
JPS6247051B2 (en)
CA1238868A (en) Method for obtaining high-purity carbon monoxide
JPH07277702A (en) Process and apparatus for adsorptively separating argon and hydrogen in high concentration from ammonia plant purge gas
JPS6245315A (en) Pressure swing adsorbing method
JPS6137970B2 (en)
JPS6259041B2 (en)
JPS59227701A (en) Method for selective concentration and separative purification of hydrogen gas
JPS62279823A (en) Purification and recovery of methane from reclaimed garbage gas
KR19980016382A (en) Pressure swing adsorption method for producing high purity carbon dioxide
KR102439733B1 (en) Method of Separating and Purifying Deuterium from Gas Mixture of Deuterium and Nitrogen
KR100292555B1 (en) Pressure swing adsorption process for hydrogen purification with high productivity