JPS6258139A - Method and apparatus for measuring particle - Google Patents

Method and apparatus for measuring particle

Info

Publication number
JPS6258139A
JPS6258139A JP60197666A JP19766685A JPS6258139A JP S6258139 A JPS6258139 A JP S6258139A JP 60197666 A JP60197666 A JP 60197666A JP 19766685 A JP19766685 A JP 19766685A JP S6258139 A JPS6258139 A JP S6258139A
Authority
JP
Japan
Prior art keywords
particles
particle
flow cell
measuring
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60197666A
Other languages
Japanese (ja)
Inventor
Muneharu Ishikawa
石川 宗晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kowa Co Ltd
Original Assignee
Kowa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kowa Co Ltd filed Critical Kowa Co Ltd
Priority to JP60197666A priority Critical patent/JPS6258139A/en
Publication of JPS6258139A publication Critical patent/JPS6258139A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging

Abstract

PURPOSE:To accurately perform measurement even when the density of particles is low, in a method for measuring particles to be measured by irradiating the particles to be measured with coherent beam, by forming luminous flux so as to run to the same direction in parallel in a measuring region. CONSTITUTION:Water containing fine particles 20 is made to flow in a flow cell 2 and laser beam is brought to be incident on the side surface 3 of the flow cell 2 from a laser beam source 1. The incident beam is refracted on the wall surface of the flow cell 2 and transmitted through water to be scattered by the fine particles 20 while the greater part of the remainder reaches the side wall 4 to be emitted to the outside while refracted. The beam emitted to the outside is successively reflected by a first reflective mirror 5, a second reflective mirror 6, a third reflective mirror 7 and a fourth reflective mirror 8 and formed into parallel beam which in turn again reaches the side surface 3. The beam transmits through water several times in the same direction. At this time, scattered light by the fine particles 20 is detected by a photomultiplier tube 12. Because the beam is allowed to run in parallel to the same direction to cover a measuring region, low density fine particles can be measured with high accuracy.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、粒子測定方法及びその装置、さらに詳細には
被測定粒子にレーザー光源のようなコヒーレント光源か
らの光束を照射して粒子からの散乱光を測定し、粒径及
び粒子数など粒子の特性を測定する粒子測定方法及びそ
の装置に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a particle measuring method and an apparatus thereof, and more particularly, to a particle measuring method and a device for measuring particles, and more particularly, to a method for measuring particles by irradiating the particles to be measured with a light beam from a coherent light source such as a laser light source. The present invention relates to a particle measurement method and apparatus for measuring particle characteristics such as particle size and number of particles by measuring scattered light.

[従来の技術] 従来から光子相関法の原理に基づいてレーザー光源から
の散乱光束を測定し、微粒子の粒径や粒子数などの粒子
特性の測定が行なわれている。例えば純水中の不純物を
測定する場合、測定対象である微粒子の粒径が小さく、
しかも粒子がまばらにしか存在しないために困難を伴う
。従来では微粒子からの散乱強度を増加させるために入
射光束を小さな領域に集光させ、高輝度の11111定
領域を設け、この領域を通過する粒子からの散乱光を受
光する方法が用いられている。例えば、純水中の不純物
を検知する超微粒子カウンタなどにこのような方法が用
いられている。
[Prior Art] Conventionally, the scattered light flux from a laser light source has been measured based on the principle of the photon correlation method, and particle characteristics such as the particle diameter and number of particles have been measured. For example, when measuring impurities in pure water, the particle size of the particles being measured is small;
Moreover, it is difficult because the particles exist only sparsely. Conventionally, in order to increase the scattering intensity from fine particles, a method has been used in which the incident light beam is focused on a small area, a high-intensity 11111 constant area is provided, and the scattered light from particles passing through this area is received. . For example, such a method is used in ultrafine particle counters that detect impurities in pure water.

[発明が解決しようとする問題点] このように従来の方法では粒子数密度の高い粒子一群を
対象としていたために小さなAll定領域で充分粒子の
81集団の性質を測定できる粒子計測がf17能であっ
たが−1例えば純水中の不純物微粒子を測定するような
場合、微粒子密度は稀薄な状態となっており、そのため
測定すべき純水の処理量を増加する必要が生じてくる。
[Problems to be solved by the invention] As described above, since the conventional method targets a group of particles with a high particle number density, it is difficult to measure particles with f17 capability, which can sufficiently measure the properties of 81 groups of particles in a small All constant area. However, -1 For example, when measuring impurity fine particles in pure water, the fine particle density is in a thin state, and therefore it becomes necessary to increase the amount of purified water to be measured.

そのために従来は純水の通過断面積は測定領域の断面積
の数百倍となっており、測定している粒子は実際に通過
する粒子のごくわずかなものとなり、短時間のうちに純
水自体の品質を反映するだけ充分な粒子数を測定するこ
とができないという問題がある。特に粒子a密度が稀薄
な純水中の微粒子を測定し、純水の品質検査をする場合
には、純水中の微粒子の全数検査をできることが望まし
い。
For this reason, in the past, the cross-sectional area of pure water passing through was several hundred times larger than the cross-sectional area of the measurement area, and the particles being measured were only a small fraction of the particles that actually passed through. There is a problem in that it is not possible to measure a sufficient number of particles to reflect the quality of the product itself. In particular, when measuring fine particles in pure water with a low particle a density and inspecting the quality of the pure water, it is desirable to be able to inspect all the fine particles in the pure water.

従って本発明はこのような点に鑑みなされたもので、粒
子数密度が稀薄な微粒子であっても、七の粒径や粒子数
などを正確に測定することが可能な粒子allll法及
びその装置を提供することを目的とする。
Therefore, the present invention has been made in view of these points, and provides a particle allll method and an apparatus therefor that can accurately measure the particle size and number of particles even if the particle number density is low. The purpose is to provide

[問題点を解決するための手段] 本発明はこのような問題点を解決するために、コヒーレ
ント光束を被fl11定粒子の存在するM1定領域で複
数回反射させることにより測定領域で同一方向に走るほ
ぼ平行なコヒーレント光束を形成しそのコヒーレント光
束からの散乱光を1llll定する構成を採用した。
[Means for Solving the Problems] In order to solve these problems, the present invention reflects the coherent light beam multiple times in the M1 constant region where the fl11 constant particle exists, so that the coherent light beam is reflected in the same direction in the measurement region. A configuration was adopted in which a running substantially parallel coherent light beam is formed and scattered light from the coherent light beam is determined one by one.

[作 用] このような構成において、1つのコヒーレント光源から
の光束は測定領域でほぼ同じ強度の数本の平行なコヒー
レント光束となり、そのコヒーレント光束で測定領域を
高範囲にわたって覆うことが可能となり、正確な粒子測
定が可能になる。
[Function] In such a configuration, the light beam from one coherent light source becomes several parallel coherent light beams with approximately the same intensity in the measurement area, and it is possible to cover a wide range of the measurement area with the coherent light beam, Accurate particle measurements are possible.

[実施例] 以下図面に示す実施例に従い本発明の詳細な説明する。[Example] The present invention will be described in detail below according to embodiments shown in the drawings.

第1図には純水中の不純物微粒子などの微粒子の特性を
測定する測定装置の概略構成が図示されている。同図に
おいて符号1で示すものはコヒー1/ント光源、例えば
レーザー光源であり、このレーザー光源lはその前面か
らコヒーレントなレーザー光束1aを発射する。このレ
ーザー光源1から出る光束1aは空気中を通ってガラス
質のフローセル2の第1の側面3に入射する。このフロ
ーセル2には矢印Aで示すように1一方布から純水が流
入しその下方部に流出する。この純水にはAl11定す
べき不純物微粒子20が含まれている。フローセル2の
第1の側面3に入射したレーザー光束は壁面で屈折して
純水中に透過する。純水中を透過するレーザー光束は散
乱体粒子がある場合にはその光量の一部が散乱され、残
りの大部分はフローセルの第1の側面3と対向する第2
の側面4ニ達し、屈折してフローセルの外部に出る。フ
ローセル2の第2の側面4に近接して第1の反射鏡5が
、またフローセル2のmlの側面3、すなわちレーザー
光源l側には第4の反射鏡8が配置され、また第1、第
4の反射鏡5.8の上部にはそれぞれ第2と1.第3の
反射鏡6,7が配置される。
FIG. 1 shows a schematic configuration of a measuring device for measuring the characteristics of fine particles such as impurity particles in pure water. In the figure, the reference numeral 1 indicates a coherent light source, for example a laser light source, and this laser light source 1 emits a coherent laser beam 1a from its front surface. A light beam 1a emitted from this laser light source 1 passes through the air and enters a first side surface 3 of a glassy flow cell 2. As shown by arrow A, pure water flows into the flow cell 2 from the cloth and flows out to the lower part thereof. This pure water contains impurity fine particles 20 to be determined as Al11. The laser beam incident on the first side surface 3 of the flow cell 2 is refracted by the wall surface and transmitted into the pure water. If there are scattering particles, part of the laser beam transmitted through pure water is scattered, and most of the remaining light is transmitted to the second side facing the first side 3 of the flow cell.
It reaches side 4 of the wall, is bent and exits the flow cell. A first reflecting mirror 5 is disposed close to the second side surface 4 of the flow cell 2, and a fourth reflecting mirror 8 is disposed on the ml side surface 3 of the flow cell 2, that is, on the laser light source l side. The upper part of the fourth reflector 5.8 has second and first mirrors, respectively. Third reflecting mirrors 6, 7 are arranged.

第1の反射鏡5に入射した光束は鏡面の反射率に応じて
反射され、空気中を伝播しながら第2の反射鏡6で反射
され、フローセル2の外側を伝播して、さらに第3の反
射鏡7で反射され、第4の反射鏡8に到達する。これら
4面の反射鏡は4面で反射された光束が始めの入射光束
と平行になるように、また各反射鏡における光束入射点
列がフローセルの第1及び第2の側面に平行になるよう
に精密に調整され配置されている。このため4面の反射
鏡で反射され、回転して第4の反射鏡8に戻ってきた光
束はその光路長に応じてわずかに進んだ位置で反射され
ることになり、フローセルの断面を横切る平行光束群が
形成される。このように繰り返し反射された光束は:5
3の反射鏡7を経て光トラップ9によって捕捉され、再
度放射されないように吸収される。
The light flux incident on the first reflecting mirror 5 is reflected according to the reflectance of the mirror surface, is reflected by the second reflecting mirror 6 while propagating in the air, propagates outside the flow cell 2, and is further reflected by the third reflecting mirror 6. It is reflected by the reflecting mirror 7 and reaches the fourth reflecting mirror 8. These four reflecting mirrors are arranged so that the light beam reflected by the four surfaces is parallel to the initial incident light beam, and the light beam incident point array on each reflecting mirror is parallel to the first and second side surfaces of the flow cell. precisely adjusted and placed. Therefore, the light beam reflected by the four reflecting mirrors, rotated, and returned to the fourth reflecting mirror 8 is reflected at a slightly advanced position according to its optical path length, and crosses the cross section of the flow cell. A parallel beam group is formed. The light flux that is repeatedly reflected in this way is: 5
The light is captured by the optical trap 9 through the reflecting mirror 7 of No. 3, and is absorbed so as not to be emitted again.

フローセル内の純水中に浮遊する散乱粒子群によって散
乱されたレーザー光はフローセルの第3側面10を通り
受光レンズ11によって光電子増倍管12の光電面12
aに結像される。このときフローセル内を貫通している
平行光束群はすべて同一方向に入射し伝播しているため
、受光レンズの軸方向に散乱される光の散乱角はすべて
の光束中の散乱粒子に対して等しくなり、同一条件での
散乱光計測が可能になる。
The laser light scattered by the scattering particles floating in the pure water in the flow cell passes through the third side surface 10 of the flow cell and is directed to the photocathode 12 of the photomultiplier tube 12 by the light receiving lens 11.
The image is focused on a. At this time, the parallel light beams passing through the flow cell are all incident and propagating in the same direction, so the scattering angle of the light scattered in the axial direction of the receiving lens is equal for the scattering particles in all the light beams. This makes it possible to measure scattered light under the same conditions.

またフローセル2内を多重反射しているレーザー光束1
aはコヒーレントな状態を保っているため、異なった光
束中にある粒子からの散乱光もコヒーレントになり互い
に干渉し得ることから、各粒子のブラウン運動に依存し
た散乱光の揺らぎが光電子増倍管の光電面12aで検知
される。この光強度の揺らぎはよく知られているように
光電子増倍管12により光電変換され、処理回路13に
より電気信号として処理され、その後段に接続された相
関計14に入力される。この相関計14により光強度の
揺らぎと粒子の特性間の相関関数が求められ、これがマ
イクロコンピュータ15によって粒子の拡散係数及び粒
子径に算出される。
Also, the laser beam 1 that is multiple-reflected within the flow cell 2
Since a maintains a coherent state, the scattered light from particles in different light fluxes also becomes coherent and can interfere with each other, so the fluctuation of the scattered light depending on the Brownian motion of each particle is reflected in the photomultiplier tube. is detected by the photocathode 12a. As is well known, this fluctuation in light intensity is photoelectrically converted by the photomultiplier tube 12, processed as an electrical signal by the processing circuit 13, and inputted to the correlator 14 connected to the subsequent stage. The correlator 14 determines a correlation function between the fluctuation of the light intensity and the characteristics of the particles, and the microcomputer 15 calculates this into the diffusion coefficient and particle diameter of the particles.

第2図には測定部の具体的な構成が図示されてい6゜第
2図において、フローセルは4面3・4.10.11透
明なガラス質のものを使用し。
FIG. 2 shows the specific configuration of the measuring section. In FIG.

レーザー光束の入射および出射面は幅の狭い面3.4と
し幅の広い面10を受光面とする。このような形状のセ
ルを使用することによって受光角を変化させ得る範囲が
広がり、散乱体粒子の特性および計測方法に応じて前方
、側方散乱光20あるいは後方散乱光21を受光するこ
とができる。
The incident and exit surfaces of the laser beam are the narrow surfaces 3.4, and the wide surfaces 10 are the light-receiving surfaces. By using a cell with such a shape, the range in which the acceptance angle can be changed is expanded, and it is possible to receive forward, side scattered light 20 or back scattered light 21 depending on the characteristics of the scatterer particles and the measurement method. .

散乱光を受光する場合、対向面11の方向に散乱された
光は対向面側のフローセル壁面すなわち純水とフローセ
ルとの界面およびフローセル外側界面で反射されノイズ
となるため、この反射光を極力抑える必要がある。この
ために特に強い反射光を生じるフローセル外側面におけ
る屈折率差を小さくするようにフローセルの材質と同じ
かほぼ等しい屈折率をもつ媒質すなわち、インデックス
マツチング液22をフローセルの対向面11の外側に配
置する。
When receiving scattered light, the light scattered in the direction of the opposing surface 11 is reflected at the flow cell wall surface on the opposing surface side, that is, the interface between pure water and the flow cell, and the outer interface of the flow cell, and becomes noise, so this reflected light is suppressed as much as possible. There is a need. Therefore, in order to reduce the difference in refractive index on the outer surface of the flow cell that causes particularly strong reflected light, a medium having the same or almost the same refractive index as the material of the flow cell, that is, the index matching liquid 22, is applied to the outside of the opposing surface 11 of the flow cell. Deploy.

[発明の効果] 以上説明したように本発明によれば1つの光源からのレ
ーザー光束から数本の同一方向に走るほぼモ行なコヒー
レントな光束を形成し、これにより測定領域を覆うよう
にしているので、光子相関法により稀薄な密度の粒子群
を高精度に測定することが可能になり、超稀薄な微粒子
の計測を短時間にしかも粒子群の母集団の統計性を反映
する粒子群をとらえることができるという優れた効果を
得られる。
[Effects of the Invention] As explained above, according to the present invention, several nearly uniform coherent light beams running in the same direction are formed from a laser beam from one light source, and this covers the measurement area. This makes it possible to measure particle groups with high precision using the photon correlation method, making it possible to measure ultra-dense fine particles in a short time and to measure particle groups that reflect the statistics of the population of particle groups. You can get the excellent effect of being able to capture images.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明する概略構成図、:JSZ
図は測定部のさらに詳細な構成を説明する断面図である
。 1・・・レーザー光源  2・・・フローセル5.6,
7.8・・・反射鏡
FIG. 1 is a schematic configuration diagram explaining the present invention in detail, :JSZ
The figure is a sectional view illustrating a more detailed configuration of the measuring section. 1... Laser light source 2... Flow cell 5.6,
7.8...Reflector

Claims (1)

【特許請求の範囲】 1)被測定粒子にコヒーレント光源からの光束を照射し
て粒子からの散乱光を測定し、粒子の特性を測定する粒
子測定方法において、前記光束を被測定粒子の存在する
測定領域で複数回反射させることによって、測定領域で
同一方向に走るほぼ平行なコヒーレント光束を形成し、
そのコヒーレント光束からの散乱光を測定することを特
徴とする粒子測定方法。 2)前記平行光束を少なくとも測定領域で重畳しないよ
うにすることを特徴とする特許請求の範囲第1項に記載
の粒子測定方法。 3)被測定粒子にコヒーレント光源からの光束を照射し
て粒子からの散乱光を測定し、粒子の特性を測定する粒
子測定装置において、第1、第2、第3、第4の反射手
段を測定領域を囲んで周囲に配置し、コヒーレント光源
からの光束を順次第1〜第4の反射手段間で複数回多重
反射させることにより前記第1と第2の反射手段間で同
一方向に走るほぼ平行なコヒーレント光束を形成し、そ
のコヒーレント光束からの散乱光を測定することを特徴
とする粒子測定装置。
[Scope of Claims] 1) A particle measurement method in which a particle to be measured is irradiated with a light beam from a coherent light source and scattered light from the particle is measured to measure the characteristics of the particle. By reflecting multiple times in the measurement area, a nearly parallel coherent light beam running in the same direction in the measurement area is formed.
A particle measurement method characterized by measuring scattered light from the coherent light beam. 2) The particle measuring method according to claim 1, characterized in that the parallel light beams are prevented from overlapping at least in the measurement area. 3) In a particle measuring device that measures the characteristics of the particles by irradiating the particles to be measured with a light beam from a coherent light source and measuring the scattered light from the particles, the first, second, third, and fourth reflecting means are provided. The light flux from the coherent light source is sequentially multiple-reflected a plurality of times between the first to fourth reflecting means, which are arranged around the measurement area, so that the light beam running approximately in the same direction between the first and second reflecting means is formed. A particle measuring device characterized by forming a parallel coherent light beam and measuring scattered light from the coherent light beam.
JP60197666A 1985-09-09 1985-09-09 Method and apparatus for measuring particle Pending JPS6258139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60197666A JPS6258139A (en) 1985-09-09 1985-09-09 Method and apparatus for measuring particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60197666A JPS6258139A (en) 1985-09-09 1985-09-09 Method and apparatus for measuring particle

Publications (1)

Publication Number Publication Date
JPS6258139A true JPS6258139A (en) 1987-03-13

Family

ID=16378308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60197666A Pending JPS6258139A (en) 1985-09-09 1985-09-09 Method and apparatus for measuring particle

Country Status (1)

Country Link
JP (1) JPS6258139A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012047571A (en) * 2010-08-26 2012-03-08 Japan Atomic Energy Agency Method and device for simultaneously measuring crack opening width and crack shape
JP2015161670A (en) * 2014-02-28 2015-09-07 株式会社東芝 Method for determining characteristic of exosome contained in specimen, diagnosing method, and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012047571A (en) * 2010-08-26 2012-03-08 Japan Atomic Energy Agency Method and device for simultaneously measuring crack opening width and crack shape
JP2015161670A (en) * 2014-02-28 2015-09-07 株式会社東芝 Method for determining characteristic of exosome contained in specimen, diagnosing method, and device

Similar Documents

Publication Publication Date Title
JP4594206B2 (en) Improved differential refractometer and measurement method for measuring refractive index differential
US3922093A (en) Device for measuring the roughness of a surface
US4523841A (en) Radiant energy reradiating flow cell system and method
US4876458A (en) Apparatus for measuring particles in liquid
JPH038686B2 (en)
US5229839A (en) Method and apparatus for measuring the size of a single fine particle and the size distribution of fine particles
JPH08114421A (en) Non-contact type measuring device for measuring thickness ofmaterial body comprising transparent material
KR950014849A (en) Photometric detectors scattered by thin films of colloidal media
US3650631A (en) Arrangement and process for measuring the refractive index of liquids
JPH0346777B2 (en)
JP3151036B2 (en) Method and apparatus for detecting submicron particles
JPS6258139A (en) Method and apparatus for measuring particle
US5742382A (en) Refractometer
EP0447991B1 (en) Apparatus for measuring the distribution of the size of diffraction-scattering type particles
JP2873450B2 (en) Defect inspection device using light
US3322024A (en) Optical method for the inspection of a transparent object for deffects including comparing light energy at two stations
JPS63201554A (en) Particle analyzing device
US3704955A (en) Radiation entrapping, multi-reflection raman sample cell employing a single concave mirror
WO1991014935A1 (en) A method and an apparatus for cleaning control
JPS5979122A (en) Laser power measuring device
JPH03214038A (en) Instrument for measuring aerosol, dust and the like spreaded in the air
JP3106521B2 (en) Optical inspection equipment for transparent substrates
JPH1062240A (en) Apparatus and method for measuring scattering
US4077723A (en) Method of measuring thickness
JPS6258138A (en) Method and apparatus for measuring particle