JPS6257931B2 - - Google Patents

Info

Publication number
JPS6257931B2
JPS6257931B2 JP54064126A JP6412679A JPS6257931B2 JP S6257931 B2 JPS6257931 B2 JP S6257931B2 JP 54064126 A JP54064126 A JP 54064126A JP 6412679 A JP6412679 A JP 6412679A JP S6257931 B2 JPS6257931 B2 JP S6257931B2
Authority
JP
Japan
Prior art keywords
value
sensor
engine
sensor output
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54064126A
Other languages
Japanese (ja)
Other versions
JPS55155213A (en
Inventor
Mitsutama Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP6412679A priority Critical patent/JPS55155213A/en
Publication of JPS55155213A publication Critical patent/JPS55155213A/en
Publication of JPS6257931B2 publication Critical patent/JPS6257931B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 本発明は内燃機関、特に自動車用エンジンにお
いて例えば空気流量を検出し、これから燃料供給
量を算出して燃料供給を行なう場合の空気流量セ
ンサの出力値の信号処理法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a signal processing method for the output value of an air flow rate sensor in an internal combustion engine, particularly an automobile engine, in which, for example, the air flow rate is detected and the amount of fuel supplied is calculated from this to supply fuel. .

信号処理はマイコンによりデイジタル計算が行
なわれる場合空気流量センサとしてはカルマンセ
ンサのようにデイジタル値で周期的に検出され
る、又は倒れ板式、ホツトワイヤ式のようなアナ
ログであつて、周期的にサンプリングしA/D変
換でデイジタル値が蒐集される場合等がある。
For signal processing, digital calculations are performed by a microcomputer.As for the air flow sensor, it is a Kalman sensor that detects digital values periodically, or it is an analog type such as a tilting plate type or a hot wire type that samples periodically. There are cases where digital values are collected through A/D conversion.

カルマンセンサの信号処理法としてある時間例
えばエンジン1回転中の渦の数を計数する方法が
あるが、1回転中の渦の数は数個であり、渦の数
は整数で与えられるので平均値を求める場合丸め
の誤差が大きくなる。
As a signal processing method for the Kalman sensor, there is a method of counting the number of vortices during a certain period of time, for example, one revolution of the engine, but since the number of vortices during one revolution is several, and the number of vortices is given as an integer, the average value is When calculating, the rounding error becomes large.

カルマン渦の周期又はアナログで与えられる出
力をサンプリングする場合、1個の測定値をその
まま燃料供給量決定に使用すると、センサ出力の
変動(ゆらぎ)の影響を受け精度がよくない(し
かも多くの有効なデータを利用せず捨てることに
なる)。
When sampling the period of the Karman vortex or the output given by analog, if one measurement value is directly used to determine the fuel supply amount, the accuracy will be poor due to the influence of fluctuations in the sensor output. data will be discarded without being used).

計測又はサンプリングされたセンサ出力データ
のいくつかを移動平均して用いる方法は電算機の
記憶容量、計算時間を多く必要とする。特に異常
データのチエツク、データの増減の傾向を把握し
定常か過渡かの判定、又そのような運転条件の違
いによる計算方法の変更等行なうことがむずかし
い。
The method of using a moving average of some measured or sampled sensor output data requires a large amount of computer storage capacity and calculation time. In particular, it is difficult to check abnormal data, grasp trends in increase and decrease of data and determine whether it is steady or transient, and change calculation methods depending on such differences in operating conditions.

本発明は上記に対処するもので、下記のような
特色をもつものである。
The present invention addresses the above problems and has the following features.

データ処理計算時間及びそれに要する記憶容
量の節減。
Savings in data processing calculation time and storage capacity required.

ノイズその他により異常値が得られた時これ
をチエツク可能とする。
When an abnormal value is obtained due to noise or other reasons, this can be checked.

運転条件による計算方法の変更が容易。 Easy to change calculation method depending on operating conditions.

データの増減の傾向をつかみ、定常か過渡か
を判定し計算方法を変える。
Understand the trend of increase or decrease in data, determine whether it is steady or transient, and change the calculation method.

蒐集したデータを無駄に捨てる事なく活用
し、精度をあげる。
Utilize the collected data without wasting it and improve accuracy.

データの変動状況をチエツクし補正を加える
ことも可能とする。
It is also possible to check data fluctuations and make corrections.

以下カルマンセンサの出力を例にとり説明す
る。
The following will explain the output of the Kalman sensor as an example.

第1図はカルマンセンサの出力波形を示す。そ
の波形は空気量に比例した周波数を示す。従つて
周期を測ると空気量はその逆数に比例する。
FIG. 1 shows the output waveform of the Kalman sensor. The waveform exhibits a frequency proportional to the amount of air. Therefore, when measuring the period, the amount of air is proportional to its reciprocal.

図中の〇印は燃料を噴射する時期でエンジン1
回転に1回である。現在図の右端の〇印の点にあ
り、ここで噴射する燃料量を決定するものとす
る。
The circle in the diagram indicates the timing of fuel injection for engine 1.
Once per rotation. It is currently located at the point marked with a circle on the right side of the diagram, and the amount of fuel to be injected is determined here.

そのためカルマン渦が発生する都度その周期ti
を測り、これから平均化した値として次式により
Tiを算出する。tiの測定は熱線を利用したカルマ
ンセンサ等によつて容易に行なわれる。
Therefore, each time a Karman vortex occurs, its period ti
is measured, and the averaged value is calculated using the following formula:
Calculate Ti. Measurement of ti is easily performed using a Kalman sensor or the like that uses hot wire.

Ti=Ti-1+α(ti−Ti-1) ………(1) Ti-1の計算は専用回路又はマイコン等によつて
求める。
Ti = Ti -1 + α (ti - Ti -1 ) ...... (1) Ti -1 is calculated using a dedicated circuit or microcomputer.

ここにTi-1はtiが測定される前に、ti-1までの
測定値から算出された周期の平均値である。αは
1より小さい係数でαが小さい程多くのデータ
(すなわち古い値まで)を平均化した事になり、
ゆらぎの影響を受け難いが応答性(あるいは追随
性)が悪くなる。
Here, Ti -1 is the average value of the period calculated from the measured values up to ti -1 before ti is measured. α is a coefficient smaller than 1, and the smaller α is, the more data (that is, up to old values) has been averaged.
It is less susceptible to fluctuations, but the responsiveness (or followability) deteriorates.

(1)式を書き直すと Ti=αti+α(1−α)ti-1+α(1−α)2ti-2+…+α(1−α)mti-n+…… このTiを用いて燃料噴射量を決定する。 Rewriting equation (1), Ti = αti + α (1-α) ti -1 + α (1-α) 2 ti -2 +...+α (1-α) m ti -n +... Fuel injection is performed using this Ti. Determine the amount.

ここでα=1/2nなる形で表せるαを用いると
計算が容易となる(αをかける計算が2進法で表
わした数字の桁をずらすだけでできる)。
Here, calculation becomes easier by using α, which can be expressed in the form α=1/2n (multiplying α can be done by simply shifting the digits of the number expressed in binary).

通常n=2あるいは3が適当である。 Usually n=2 or 3 is appropriate.

尚ノイズ又は波形の乱れにより正しい渦でない
ものを拾つたり、渦による波形の変化が小さくて
落したりする場合があるので(第2図のt2,t3
はt7)、これをチエツクする必要がある。これに
対処するため次のような方策を採る事ができる。
Note that due to noise or waveform disturbance, incorrect vortices may be picked up, or the waveform may be dropped due to small changes in the waveform due to the vortex (t 2 , t 3 or t 7 in Figure 2), so check this. There is a need. To deal with this, the following measures can be taken.

(イ) 通常周期tiはある変動(ゆらぎ)を有するの
でそれを把握しておき、平均からのずれの著る
しいものをチエツクする。
(b) The normal period ti has a certain fluctuation (fluctuation), so keep this in mind and check for significant deviations from the average.

tiを計算する毎に平均値からのずれ値Si(標
準偏差類似)を次式に従つて求める。
Every time ti is calculated, the deviation value Si (similar to standard deviation) from the average value is calculated according to the following formula.

Si=β|ti−Ti-1|+(1−β)Si-1 ……(2) このSiを算出すればこれがtiのゆらぎの指標
となる。Si-1は前の渦までの平均ずれ値とす
る。
Si = β | ti - Ti -1 | + (1 - β) Si -1 ... (2) If this Si is calculated, it becomes an index of the fluctuation of ti. Si -1 is the average deviation value up to the previous vortex.

ここに係数βは1/2n′で表わされる値、n′は
3又はそれ以上の整数とするのが適当である。
Here, it is appropriate that the coefficient β be a value expressed by 1/2n', and n' be an integer of 3 or more.

そして Ti-1−γl・Si-1<ti<Ti-1+γu・Si-1 ………(3) が満足されればtiは正常と判断し、この範囲外
であれば異常値と判断する。
Then, if Ti -1 -γl・Si -1 <ti<Ti -1 +γu・Si -1 ......(3) is satisfied, ti is judged to be normal, and if it is outside this range, it is judged to be an abnormal value. .

ただしγl,γuは5〜7、時には〜10位の
値の係数である。
However, γl and γu are coefficients with values of 5 to 7, sometimes ~10.

(ロ) tiのチエツク法の第2の方法として次の簡便
式が考えられる。
(b) The following simple formula can be considered as a second method for checking ti.

Ti-1−δl・Ti-1<ti<Ti-1+δu・Ti-1 ………(4) ここにδlは0.2〜0.5、δuは0.3〜1程度で
ある。
Ti −1 −δl・Ti −1 <ti<Ti −1 +δu・Ti −1 (4) Here, δl is about 0.2 to 0.5, and δu is about 0.3 to 1.

この方式は前段渦までの平均周期Ti-1に係数
δl、δuを加味した巾を考えればよい。
In this method, it is sufficient to consider the width obtained by adding the coefficients δl and δu to the average period Ti -1 up to the front-stage vortex.

(ハ) αの値を運転状態を示す信号を演算して得ら
れた値に対応して変更し、最適制御を行なう。
(c) Optimum control is performed by changing the value of α in accordance with the value obtained by calculating the signal indicating the operating state.

なお、運転状態を示す信号としてはセンサ出
力値ti及び又はそれ以外の運転状態を示す信号
例えば絞り弁位置、回転数等がある。
Note that the signals indicating the operating state include the sensor output value ti and/or other signals indicating the operating state, such as the throttle valve position, rotation speed, etc.

次にαの値を変更する例を記載する。 Next, an example of changing the value of α will be described.

(i) tiを異常と判断(即ち(3)又は(4)式が不成
立)の場合は(1)式においてα=0とする。
(i) If ti is determined to be abnormal (that is, equation (3) or (4) does not hold), set α = 0 in equation (1).

即ち Ti=Ti-1 これはその時点の異常周期tiを放棄し前段
までの平均周期Ti-1を採ることを意味する。
That is, Ti=Ti -1 This means that the abnormal cycle ti at that point is abandoned and the average cycle Ti -1 up to the previous stage is taken.

(ii) 異常値の発生の確率は小さいので上記チエ
ツクにひつかかる事が何回も(例えば3〜5
回)続いて起つた時は異常ではなく急に運転
状態が変つたものと判断し、新しいtiの値で
燃料噴射量を決めることとする。
(ii) Since the probability of an abnormal value occurring is small, the above check may occur many times (for example, 3 to 5 times).
(time) If this occurs again, it is assumed that there is no abnormality but a sudden change in operating conditions, and the fuel injection amount is determined based on the new ti value.

即ち式(3)(4)においてTi−γl・Si-1>tiあ
るいはTi−δl・Ti-1>tiがl回連続(l:
例えば5)、又は式(3)(4)においてti>Ti-1
γu・Si-1あるいはti>Ti+δu・Ti-1がu
回連続(u:例えば3)の場合は(1)式におい
てα=1とする。
That is, in equations (3) and (4), Ti−γl·Si −1 >ti or Ti−δl·Ti −1 >ti continues l times (l:
For example, 5), or in equations (3) and (4), ti>Ti -1 +
γu・Si -1 or ti>Ti+δu・Ti -1 is u
In the case of consecutive times (u: 3, for example), α=1 in equation (1).

これは前段までの周期平均値Ti-1を放棄
し、新しい周期tiにより判定を進める事を意
味する。
This means that the cycle average value Ti -1 up to the previous stage is abandoned and the determination is proceeded with a new cycle ti.

(iii) 尚(1)式の所で述べた事から係数αは正常の
時でも比較的コンスタントな、定常の時は小
さい方がよく、過渡時には大きい方がよい。
(iii) From what was stated in equation (1), the coefficient α is relatively constant even under normal conditions; it is better to be small when it is steady, and it is better to be large when it is transient.

従つて運転状態を示す信号(絞り弁位置、
回転数等)からαをかえるのが望ましい。
Therefore, signals indicating the operating status (throttle valve position,
It is desirable to change α based on the rotation speed, etc.).

特にアイドル時(絞り弁全閉、回転数
1000rpm以下)αを小さくする(例えばα=
1/16、第4図参照)。
Especially when idling (throttle valve fully closed, rotation speed
1000rpm or less) Reduce α (for example, α=
1/16, see Figure 4).

このためには周期tiの変動の傾向から定常
か過渡かを判定しαをかえる。変動の傾向を
示す指標として次式の変動指標diによつて求
める事ができる。
To do this, determine whether it is steady or transient based on the tendency of fluctuations in the period ti and change α. As an index indicating the tendency of fluctuation, it can be obtained by the fluctuation index di of the following formula.

di=ε(ti−Ti-1)+(1−ε)di-1 ……(5) ここにεは1より小さい定数でやはり1/2
n″で表わされる値が望ましい。n″=2〜3
が適当である。
di=ε(ti−Ti −1 )+(1−ε)di −1 ……(5) Here ε is a constant smaller than 1 and is also 1/2
A value expressed as n″ is desirable. n″ = 2 to 3
is appropriate.

|di|<ζTi-1なら定常と判定しαを小さ
く(例えばα=1/8)する。ζは経験的な係
数である。
If |di|<ζTi -1 , it is determined to be stationary and α is reduced (for example, α=1/8). ζ is an empirical coefficient.

|di|≧ζTi-1なら過渡と判定しαを大き
く(例えばα=1/4)する。
If |di|≧ζTi -1, it is determined that it is transient and α is increased (for example, α=1/4).

ζTi-1は前段渦までの平均周期に係数ζを
掛けたものである。よつてαの値を前記セン
サ出力値のそれ以前までの平均値Ti-1とセン
サ出力tiとのずれが大きい時はαの値を小さ
く、ずれが小さい時にはαの値を大きく変更
する。
ζTi -1 is the average period up to the front vortex multiplied by the coefficient ζ. Therefore, when the deviation between the previous average value Ti -1 of the sensor output value and the sensor output ti is large, the value of α is changed to a small value, and when the deviation is small, the value of α is changed to a large value.

更にエンジンの運転条件が全開付近の時は
吸入空気の流れが脈動的になる。その時空気
量センサの出力の変動(ゆらぎ)も大きく、
誤差も出やすい。しかも誤差がマイナスぎ
み、即ち空気量を少なめに計測する。従つて
(2)式によりずれ値Siを求めSi/Tiが大きい時
は補正係数K(<1)をTiに乗じたものか
ら燃料流量を定めるようにするとよい。
Furthermore, when the engine operating condition is near full throttle, the flow of intake air becomes pulsating. At that time, the fluctuation (fluctuation) of the air amount sensor output is also large.
It's easy to make errors. Moreover, the error is slightly negative, that is, the amount of air is measured rather small. accordingly
It is preferable to calculate the deviation value Si using the equation (2) and, when Si/Ti is large, to determine the fuel flow rate based on Ti multiplied by the correction coefficient K (<1).

第3図はKとSi/Tiの関係を示す。 Figure 3 shows the relationship between K and Si/Ti.

第4図は以上を総合した信号処理のフローチヤ
ートの例を示す。ただしtiのチエツク法として(4)
式を用い、又前記Si/Tiに基ずく補正は行なつて
いない例である。
FIG. 4 shows an example of a flowchart of signal processing that integrates the above. However, as a check method for ti (4)
This is an example in which the equation is used and the correction based on Si/Ti is not performed.

尚第4図中Fl、Fuは異常値の出現回数、l、
uは設定異常値出現回数を示すものとする。
In Fig. 4, Fl and Fu are the number of occurrences of abnormal values, l,
Let u indicate the number of times a set abnormal value appears.

尚(5)式に示す変動の傾向を示す指標として di′=ε′(Ti−Ti-1)+(1−ε′)di′-1 ……(6) としてもよい。 Note that di′=ε′(Ti−Ti −1 )+(1−ε′)di′ −1 ……(6) may be used as an index indicating the tendency of fluctuation shown in equation (5).

(1)式を用いて(6)式を書き直すと di′=ε′α(ti−Ti-1)+(1−ε′)di′-1 ……(7) (ここでdi′=αdi、ε′=ε) とおけば(7)式は(5)式と同一になる。即ち(6)式で定
義したdi′は(5)式で定義したdiのα倍になるだけ
で全く同等である。
Rewriting equation (6) using equation (1), di′=ε′α(ti−Ti −1 )+(1−ε′)di′ −1 ……(7) (Here, di′=αdi , ε′=ε), then equation (7) becomes the same as equation (5). In other words, di' defined in equation (6) is exactly equal to di defined in equation (5), just by α times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はエンジン吸入空気量を測定するカルマ
ンセンサの出力波形を示し、第2図は該出力波形
の見誤り易い例を説明する図、第3図はエンジン
運転状況が全開附近にある場合に使用する補正係
数Kの説明図であり、第4図は本発明実施例の信
号処理のフローチヤート例である。 ti…カルマン渦の周期、Ti…カルマン渦の平均
化した値、Ti-1…tiが測定される前にti-1までの
測定値から算出された周期の平均値。
Fig. 1 shows the output waveform of the Kalman sensor that measures the amount of intake air in the engine, Fig. 2 shows an example where the output waveform is easily misunderstood, and Fig. 3 shows the output waveform when the engine operating condition is near full throttle. FIG. 4 is an explanatory diagram of the correction coefficient K used, and FIG. 4 is an example of a flowchart of signal processing according to an embodiment of the present invention. ti...period of Karman vortex, Ti...average value of Karman vortex, Ti -1 ...average period calculated from the measured values up to ti -1 before ti is measured.

Claims (1)

【特許請求の範囲】 1 エンジンの運転パラメータに関連する数値を
空気流量センサで検出し、この値に関連してエン
ジンへの制御入力を決定する場合において、該セ
ンサの出力値が間欠的に得られるとき、得られた
値tiに対し Ti=Ti-1+α(ti−Ti-1) (但しαは1より小さい係数、Ti-1はそれまでの
センサ出力の平均化された代表値) なる関係式におけるαの値を前記センサ出力値の
それ以前までの平均値からのずれが大きい時はα
を、ずれが小さい時のαより小さい値に変更し
て、センサ出力値の平均化された代表値Tiを求
め、これを用いてエンジンへの制御入力を決定す
ることを特徴とするエンジン制御用空気流量セン
サ出力の信号処理法。
[Claims] 1. When a numerical value related to an engine operating parameter is detected by an air flow sensor and a control input to the engine is determined in relation to this value, the output value of the sensor is obtained intermittently. When the value ti is obtained, Ti = Ti -1 + α (ti - Ti -1 ) (where α is a coefficient smaller than 1, and Ti -1 is the averaged representative value of the sensor output up to that point). The value of α in the relational expression is α when the deviation from the average value of the sensor output value up to that point is large.
is changed to a value smaller than α when the deviation is small to obtain an averaged representative value Ti of the sensor output values, and this is used to determine the control input to the engine. Signal processing method for air flow sensor output.
JP6412679A 1979-05-24 1979-05-24 Processing method for output signal of engine controlling sensor Granted JPS55155213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6412679A JPS55155213A (en) 1979-05-24 1979-05-24 Processing method for output signal of engine controlling sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6412679A JPS55155213A (en) 1979-05-24 1979-05-24 Processing method for output signal of engine controlling sensor

Publications (2)

Publication Number Publication Date
JPS55155213A JPS55155213A (en) 1980-12-03
JPS6257931B2 true JPS6257931B2 (en) 1987-12-03

Family

ID=13249058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6412679A Granted JPS55155213A (en) 1979-05-24 1979-05-24 Processing method for output signal of engine controlling sensor

Country Status (1)

Country Link
JP (1) JPS55155213A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58150041A (en) * 1982-03-03 1983-09-06 Hitachi Ltd Electronic fuel injection device
DE3244940A1 (en) * 1982-12-04 1984-06-07 Robert Bosch Gmbh, 7000 Stuttgart METHOD AND CIRCUIT ARRANGEMENT FOR EVALUATING OUTPUT SIGNALS OF A MEASURING VALVE RECEIVED ON AN INTERNAL COMBUSTION ENGINE
JPS59180434A (en) * 1983-03-31 1984-10-13 Nec Home Electronics Ltd Circuit for interpolation of digital output of air flowmeter
DE3415214A1 (en) * 1984-04-21 1985-10-24 Robert Bosch Gmbh, 7000 Stuttgart Method and device for the analysis of a signal indicating the load state of an internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53148625A (en) * 1977-05-31 1978-12-25 Nippon Denso Co Ltd Method and apparatus for electronic fuel injection control
JPS5493717A (en) * 1978-01-06 1979-07-25 Hitachi Ltd Electronic fuel feeder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53148625A (en) * 1977-05-31 1978-12-25 Nippon Denso Co Ltd Method and apparatus for electronic fuel injection control
JPS5493717A (en) * 1978-01-06 1979-07-25 Hitachi Ltd Electronic fuel feeder

Also Published As

Publication number Publication date
JPS55155213A (en) 1980-12-03

Similar Documents

Publication Publication Date Title
US5465617A (en) Internal combustion engine control
US4275695A (en) Device for determining a fuel metering signal for an internal combustion engine
US6234012B1 (en) Air/fuel ratio control system
US4562814A (en) System and method for controlling fuel supply to an internal combustion engine
US4971009A (en) Fuel control apparatus for internal combustion engine
JP2796432B2 (en) Compensation method of measurement error of thermal thin film air weighing device
US4502325A (en) Measurement of mass airflow into an engine
US6556929B1 (en) Device for detecting a pulsating quantity
KR910006558B1 (en) Electronic control system for internal combustion engine
JPS63215848A (en) Fuel injection amount control method and device for internal combustion engine
US4527530A (en) Method for correcting a controlled variable for the control of the operation of an internal combustion engine on the basis of the quantity of suction air
US4457166A (en) Engine intake air flow measuring apparatus
JPH01244138A (en) Fuel injection control device for engine for automobile
US4450715A (en) Method for measuring the flow of a medium
US5243948A (en) Electronic control system for fuel metering in an internal combustion engine
JPS6257931B2 (en)
JPS6214705B2 (en)
JPS61116051A (en) Method for processing engine control signal
JPH04116249A (en) Control device for internal combustion engine
JP2712821B2 (en) Fuel injection amount control device for internal combustion engine
JPH09158762A (en) Control device for engine
JPH03145549A (en) Intake flow measuring device for internal combustion engine
JPS63173831A (en) Atmospheric pressure correcting method for volume flow meter in internal combustion engine
US5727526A (en) Device and method for determining a load signal in an internal combustion engine
JP3974209B2 (en) Measurement error correction device