JPS6257117B2 - - Google Patents

Info

Publication number
JPS6257117B2
JPS6257117B2 JP3037881A JP3037881A JPS6257117B2 JP S6257117 B2 JPS6257117 B2 JP S6257117B2 JP 3037881 A JP3037881 A JP 3037881A JP 3037881 A JP3037881 A JP 3037881A JP S6257117 B2 JPS6257117 B2 JP S6257117B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
pulse train
frequency
optical pulse
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3037881A
Other languages
Japanese (ja)
Other versions
JPS57145385A (en
Inventor
Hitoshi Kawaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3037881A priority Critical patent/JPS57145385A/en
Publication of JPS57145385A publication Critical patent/JPS57145385A/en
Publication of JPS6257117B2 publication Critical patent/JPS6257117B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 本発明は、半導体レーザを用い、その半導体レ
ーザより、その半導体レーザより得られるレーザ
光がパルス列にて光強度変調されてなる態様の光
パルス列を発生せしめる光パルス列発生法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an optical pulse train generation method that uses a semiconductor laser and generates an optical pulse train from the semiconductor laser in which the laser light obtained from the semiconductor laser is modulated in optical intensity in a pulse train. Regarding.

斯種光パルス列発生法は、それによつて得られ
る光パルス例を用いて光フアイバの分散特性、光
検波器の応答特性等を測定するに適用し得るもの
であるが、従来の光パルス列発生法として、第1
図に示す如く、一端面にフアブリペローの反射面
1が形成され、他端面に無反射用膜2が附されて
なる半導体レーザ3と、その半導体レーザ3の無
反射用膜2に光学系4を介して対向せる反射鏡5
と、半導体レーザ3の無反射用膜2及び反射鏡5
間に配された、半導体レーザ3の反射面1及び反
射鏡5間の共振器長Lに相当する数多くの軸モー
ドを含む態様を以つて半導体レーザ3自体の共振
器長lに相当する数多くの軸モード中の1つの軸
モードを選択するエタロン6とを用い、而して半
導体レーザ3に、これにてレーザ発振の得られる
閾値電流値又はその近傍値を有するバイアス電流
Bを塞流線輪7を介してバイアス電流源8より
供給せしめ、且共振器長Lによつて決まる軸モー
ド間隔に相当する周波数を有する制御電流IC
を直流阻止用コンデンサ9を介して制御電流源1
0より供給せしめることにより、半導体レーザ3
の反射面1側より、その半導体レーザ3より得ら
れるレーザ光の上述せる周波数を有するパルス
列にて光強度変調されてなる態様の、第2図に示
す如き光パルス列Pを発生せしめるという方法が
提案されている。
This type of optical pulse train generation method can be applied to measuring the dispersion characteristics of an optical fiber, the response characteristics of a photodetector, etc. using the example optical pulses obtained thereby, but the conventional optical pulse train generation method As, the first
As shown in the figure, a semiconductor laser 3 has a Fabry-Perot reflective surface 1 formed on one end face and an anti-reflection film 2 attached to the other end face, and an optical system 4 is attached to the anti-reflection film 2 of the semiconductor laser 3. Reflector 5 facing through
, the anti-reflection film 2 of the semiconductor laser 3 and the reflecting mirror 5
In a mode including a large number of axial modes corresponding to the resonator length L between the reflecting surface 1 of the semiconductor laser 3 and the reflecting mirror 5 arranged in between, a large number of axial modes corresponding to the resonator length l of the semiconductor laser 3 itself are included. Using an etalon 6 that selects one of the axial modes, a bias current I B having a threshold current value or a value close to the threshold current value for laser oscillation is applied to the semiconductor laser 3 as a blockage line. A control current I C is supplied by a bias current source 8 via a ring 7 and has a frequency corresponding to the axial mode spacing determined by the resonator length L.
is connected to the controlled current source 1 via the DC blocking capacitor 9.
By supplying from 0, the semiconductor laser 3
A method has been proposed in which an optical pulse train P as shown in FIG. 2 is generated by modulating the optical intensity of the laser light obtained from the semiconductor laser 3 with a pulse train having the above-mentioned frequency from the reflective surface 1 side of the semiconductor laser 3. has been done.

然し乍ら斯る従来の方法の場合、目的とせる光
パルス列Pを発生せしめるにつき、半導体レーザ
3の外、光学系4、反射鏡5及びエタロン6を要
し、この為光パルス列Pを発生せしめる為の全体
の装置が大型、複雑化すると共に、半導体レーザ
3及び反射鏡5の相対的位置、及び半導体レーザ
3及び反射鏡5と光学系4との相対的位置の調整
を要する欠点を有していた。
However, in the case of such a conventional method, in addition to the semiconductor laser 3, an optical system 4, a reflecting mirror 5, and an etalon 6 are required to generate the desired optical pulse train P. The overall device is large and complicated, and has the disadvantage that the relative positions of the semiconductor laser 3 and the reflecting mirror 5 and the relative positions of the semiconductor laser 3 and the reflecting mirror 5 and the optical system 4 must be adjusted. .

又第1図にて上述せる従来の方法の場合、半導
体レーザ3の反射鏡5側の端面には無反射用膜2
が附されているとしても、その無反射用膜2でレ
ーザ光の反射が生ずるのは否めなく、この為光パ
ルス列Pを発生せしめる為の装置が共振器長Lを
有する共振器の外、共振器長lを有する共振器及
び共振器長(L−l)を有する共振器を構成せる
構成を有し、この為光パルス列Pが、共振器長l
によつて決まる軸モード間隔に相当する周波数を
有する不要パルス列、共振器長(L−l)によつ
て決まる軸モード間隔に相当する周波数を有する
不要パルス列等の不要パルス列を伴なつて発生す
るという欠点を有していた。
In addition, in the case of the conventional method described above in FIG.
is attached, it is undeniable that reflection of the laser beam occurs on the anti-reflection film 2, and for this reason, the device for generating the optical pulse train P is not connected to the resonator having the resonator length L. It has a configuration in which a resonator having a cavity length l and a resonator having a cavity length (L-l) are configured, so that the optical pulse train P is
It is said that unnecessary pulse trains are generated, such as an unnecessary pulse train having a frequency corresponding to the axial mode interval determined by , and an unnecessary pulse train having a frequency corresponding to the axial mode interval determined by the resonator length (L-l). It had drawbacks.

更に第1図にて上述せる従来の方法の場合、エ
タロン6により半導体レーザ3自体の共振器長l
に相当する数多くの軸モード中の1つの軸モード
みを選択して目的とせる光パルス列Pを発生せし
める様になされているので、半導体レーザ3の全
利得幅を利用して光パルス列Pを発生せしめてい
るものではなく、この為光パルス列Pがその各パ
ルスをして幅Wの狭いものとして発生するのが望
まれるとしても、各パルスをして幅Wの広いもの
としてしか発生しないという欠点を有していた。
Furthermore, in the case of the conventional method described above with reference to FIG.
The optical pulse train P is generated by using the entire gain width of the semiconductor laser 3. Therefore, even if it is desired that the optical pulse train P generates each pulse with a narrow width W, the disadvantage is that each pulse can only be generated with a wide width W. It had

依つて本発明は上述せる欠点のない新規な光パ
ルス列発生法を提案せんとするもので、以下詳述
する所より明らかとなるであろう。
The present invention therefore proposes a novel optical pulse train generation method free from the above-mentioned drawbacks, which will become clear from the detailed description below.

本発明者は種々の実験の結果、例えば第3図に
示す如き、例えばP型の半導体基板31上にP型
の半導体閉込層32、N型又はP型の半導体活性
層33及びN型の半導体閉込層34がそれ等の順
に順次積層されてなる積層体35を有し、而して
その積層体35の相対向する端面が夫々フアブリ
ペローの反射面36及び37となされ、又積層体
35の半導体基板31側の面及び半導体閉込層3
4側の面上に夫々電極38及び39が附されてな
るそれ自体は公知の所謂ダブルヘテロ型半導体レ
ーザ構成に於て、そのダブルヘテロ型半導体レー
ザ構成に、それを電極38上よりみたときダブル
ヘテロ型半導体構成の反射面36及び37間の共
振器長Dをとる方向に2分する如く、電極38側
より半導体基板31内に達する深さの切欠40が
附され、これにより電極38が共振器長Dをとる
方向に各別に配列せる2つの電極41及び42よ
りなるものとなされ、斯くて各別に励起される、
電極41、積層体35の電極41下の領域及び電
極39による励起領域M1と電極42、積層体3
5の電極42下の領域及び電極39による励起領
域M2とを共振器長Dをとる方向に配列形成して
なるという構成の半導体レーザUを用い、而して
その半導体レーザUの励起領域M1及びM2に半
導体レーザUにてレーザ発振の得られる閾値電流
値又は近傍値を有するバイアス電流IB1及びIB2
を夫々塞流線輪43及び44を介してバイアス電
流源45及び46より供給せしめ、又励起領域M
2に共振器長Dによつて決まる軸モード間隔に相
当する周波数′を有する制御電流IC′を直流阻
止用コンデンサ47を介して制御電流源48より
供給せしめれば、半導体レーザUの反射面36及
び37より、その半導体レーザUより得られるレ
ーザ光の上述せる軸モード間隔に相当する周波数
′を有するパルス列にて光強度変調されてなる
態様の第4図に示す如き光パルス列P′が発生して
得られること、又斯る光パルス列P′は、上述に於
てその制御電流IC′を上述せる軸モード間隔に相
当する周波数′を有するものとしなくても、周
波数′の整数m倍の周波数m′を有するもの、
又は周波数′の整数m分の1倍の周波数1/m
′を有するものとしても得られること、更に上
述せる光パルス列P′を得るにつき図示の如くバイ
アス電流IB2の外制御電流IC′の供給される励起
領域M2の共振器長Dをとる方向の長さd2がバイ
アス電流IB1のみの供給される励起領域M1のそ
れd1に比し小であるを可とすることを確認するに
到つた。
As a result of various experiments, the present inventor has found that, for example, as shown in FIG. It has a laminate 35 in which semiconductor confinement layers 34 are sequentially laminated in that order, and the opposing end surfaces of the laminate 35 serve as Fabry-Perot reflecting surfaces 36 and 37, respectively, and the laminate 35 The surface of the semiconductor substrate 31 side and the semiconductor confinement layer 3
In the so-called double hetero type semiconductor laser structure, which is known per se and in which electrodes 38 and 39 are attached on the four side surfaces, respectively, the double hetero type semiconductor laser structure has a double hetero type when viewed from above the electrode 38. A notch 40 with a depth reaching into the semiconductor substrate 31 from the electrode 38 side is provided so as to divide the resonator into two in the direction of the resonator length D between the reflecting surfaces 36 and 37 of the hetero-type semiconductor structure, thereby causing the electrode 38 to resonate. It is made up of two electrodes 41 and 42 that are arranged separately in the direction of the organ length D, and are thus excited separately.
The electrode 41, the region under the electrode 41 of the laminate 35, the excitation region M1 by the electrode 39, the electrode 42, the laminate 3
A semiconductor laser U having a configuration in which a region under the electrode 42 of No. 5 and an excitation region M2 formed by the electrode 39 are arranged in the direction of the resonator length D is used. Bias currents I B1 and I B2 having a threshold current value or a value close to the threshold current value that allows laser oscillation to be obtained in the semiconductor laser U in M2.
are supplied from bias current sources 45 and 46 via blocking wires 43 and 44, respectively, and the excitation region M
2, if a control current I C ' having a frequency ' corresponding to the axial mode spacing determined by the resonator length D is supplied from the control current source 48 via the DC blocking capacitor 47, the reflection surface of the semiconductor laser U 36 and 37 generate a light pulse train P' as shown in FIG. 4 in which the light intensity is modulated with a pulse train having a frequency 'corresponding to the above-mentioned axial mode spacing of the laser light obtained from the semiconductor laser U. In addition, such an optical pulse train P' can be obtained by multiplying the frequency by an integer m times the frequency', even if the control current I C ' has a frequency 'corresponding to the axial mode spacing'. with a frequency m' of
Or the frequency 1/m, which is one times the integer m of the frequency '
Furthermore, in order to obtain the optical pulse train P' mentioned above, as shown in the figure, the direction in which the resonator length D of the excitation region M2 to which the control current I C ' is supplied outside the bias current I B2 is taken. It has been confirmed that the length d 2 can be smaller than the length d 1 of the excitation region M1 to which only the bias current I B1 is supplied.

又本発明者は、第3図にて上述せる半導体レー
ザUでなくても、要は各別に励起される少くとも
第1及び第2の励起領域(第3図の場合の励起領
域M1及びM2に対応する)を共振器長(第3図
の場合の共振器長Dに対応する)をとる方向に配
列してなる構成を有する半導体レーザでありさえ
すれば、その半導体レーザを用い、その第1及び
第2の励起領域にその半導体レーザにてレーザ発
振の得られる閾値電流又はその近傍値を有するバ
イアス電流(第3図の場合のバイアス電流IB1
びIB2に対応す)を供給せしめ、又第2の励起領
域(第3図の場合の励起領域M2に対応する)に
共振器長によつて決まる軸モード間隔に相当する
周波数(第3図の場合の周波数′)又はその整
数倍若しくは整数分の1倍(第3図の場合の周波
数m′若しくは1/m′に対応する)を有する制
御電流(第3図の場合の制御電流IC′に対応す
る)を供給せしめれば、その半導体レーザよりそ
の半導体レーザより得られるレーザ光の上述せる
軸モード間隔に相当する周波数(第3図の場合の
周波数′に対応する)を有するパルス列にて光
強度変調されてなる態様の光パルス列(第4図に
示す光パルス列P′に対応する)を発生して得るこ
とが出来ることを確認するに到つた。
Furthermore, the present inventor has proposed that, even if the semiconductor laser U described above in FIG. As long as the semiconductor laser has a configuration in which the laser beams (corresponding to the resonator length D in the case of FIG. supplying the first and second excitation regions with a bias current (corresponding to bias currents I B1 and I B2 in the case of FIG. 3) having a threshold current or a value close to the threshold current at which laser oscillation is obtained in the semiconductor laser; Further, in the second excitation region (corresponding to excitation region M2 in the case of FIG. 3), a frequency corresponding to the axial mode spacing determined by the resonator length (frequency' in the case of FIG. 3), or an integral multiple thereof, or If a control current (corresponding to the control current I C ' in the case of FIG. 3) having a frequency m' or 1/m' multiplied by an integer (corresponding to the frequency m' or 1/m' in the case of Figure 3) is supplied, An optical pulse train in which the intensity of the laser light obtained from the semiconductor laser is modulated by a pulse train having a frequency corresponding to the above-mentioned axial mode spacing (corresponding to frequency' in the case of FIG. 3). (corresponding to the optical pulse train P' shown in FIG. 4) can be generated and obtained.

依つて此処に特許請求の範囲所載の本発明によ
る光パルス列発生法を提案するに到つたもので、
その1つの実施例は、第3図にて上述せる如く、
第3図にて上述せる共振器長Dを有する半導体レ
ーザUを用い、而してその励起領域M1及びM2
に第3図にて上述せると同様に半導体レーザUに
てレーザ発振の得られる閾値電流値又はその近傍
値を有するバイアス電流IB1及びIB2を夫々供給
せしめ、又励起領域M2に第3図にて上述せると
同様に共振器長Dによつて決まる軸モード間隔に
相当する周波数′又はその整数倍若しくは整数
分の1倍の周波数m′又は1/m′を有する制御
電流IC′を供給せしめることにより、半導体レー
ザUよりその半導体レーザUより得られるレーザ
光の上述せる軸モード間隔に相当する周波数′
を有するパルス列にて光強度変調されてなる態様
の第4図に示す如き光パルス列P′を発生せしめる
というものである。
Therefore, we have come to propose the optical pulse train generation method according to the present invention as set forth in the claims,
One embodiment is as described above in FIG.
In FIG. 3, a semiconductor laser U having the cavity length D described above is used, and its excitation regions M1 and M2 are
3, bias currents I B1 and I B2 each having a threshold current value or a value close to the threshold current value at which laser oscillation can be obtained in the semiconductor laser U are supplied to the excitation region M2 in the same manner as described above in FIG. 3. As mentioned above, the control current I C ' has a frequency 'corresponding to the axial mode spacing determined by the resonator length D, or a frequency m' or 1/m' that is an integral multiple or a fraction thereof. By supplying the semiconductor laser U, the frequency ' corresponding to the above-mentioned axial mode spacing of the laser light obtained from the semiconductor laser U is
The optical pulse train P' shown in FIG. 4 is generated by modulating the optical intensity with a pulse train having the following values.

以上にて本発明による光パルス列発生法の実施
例が明らかとなつたが、斯る方法によれば、目的
とせる光パルス列P′を発生せしめるにつき、半導
体レーザU以外に、第1図にて上述せる従来の方
法の場合の如くに光学系、反対鏡及びエタロンを
用いるを要せず、従つて光パルス列P′を発生せし
める為の全体の装置が第1図にて上述せる従来の
方法の場合に比し格段的に簡易、小型化されると
共に、第1図にて上述せる従来の方法の場合の如
くに位置調整を要しないという大なる特徴を有す
るものである。
The embodiment of the optical pulse train generation method according to the present invention has been clarified above, but according to this method, in order to generate the desired optical pulse train P', in addition to the semiconductor laser U, as shown in FIG. It is not necessary to use an optical system, a counter mirror and an etalon as in the conventional method described above, and therefore the entire apparatus for generating the optical pulse train P' is shown in FIG. This method has the great feature that it is much simpler and more compact than the conventional method, and that it does not require position adjustment unlike the conventional method described above with reference to FIG.

又第3図に示す本発明による光パルス列発生法
の場合、光パルス列P′を発生せしめる為の装置
が、半導体レーザUによる、共振器長Dを有する
共振器構成のみしか有しないので、光パルス列
P′が第1図にて上述せる従来の方法の場合の如く
に不要パルス列を伴なつて発生するということが
ないという大なる特徴を有するものである。
In addition, in the case of the optical pulse train generation method according to the present invention shown in FIG. 3, since the device for generating the optical pulse train P' only has a resonator configuration with a resonator length D using the semiconductor laser U, the optical pulse train
This method has the great feature that P' is not generated accompanied by an unnecessary pulse train as is the case with the conventional method described above with reference to FIG.

更に第3図に示す本発明による光パルス列発生
法の場合、光パルス列P′を発生せしめる為の装置
が半導体レーザUによる共振器構成のみしか有し
ないので、光パルス列P′を半導体レーザUの全利
得を利用して発生せしめているものであり、従つ
て光パルス列P′を、その各パルスをして幅Wの、
第1図にて上述せる従来の方法にて得られる光パ
ルス列Pの各パルスの幅Wに比し格段的に狭いも
のとして得られるという特徴を有するものであ
る。因みに、半導体レーザUをGaAs/AlGaAs
系を用いた共振器長Dが4mmであるものとし、こ
のとき共振器長Dによつて決まる軸モード間隔に
相当する周波数′が8.2GHzであることにより、
8.2GHzの周波数を有する制御電流IC′を半導体
レーザUの励起領域M2に供給した所、光パルス
列P′がその各パルスの幅W(半値全幅)をして
1psであるものとして得られた。従つて本発明に
よる方法は、これを各パルスをして幅Wの狭い光
パルス列を用いることが望まれる光フアイバの分
散特性、光検出器の応答特性等を測定するに適用
して好適なものである。
Furthermore, in the case of the optical pulse train generation method according to the present invention shown in FIG. It is generated using gain, and therefore the optical pulse train P' is made up of a width W of each pulse.
This method is characterized in that the width W of each pulse of the optical pulse train P obtained by the conventional method described above in FIG. 1 is much narrower than the width W of each pulse. By the way, the semiconductor laser U is GaAs/AlGaAs
Assume that the resonator length D using the system is 4 mm, and the frequency ' corresponding to the axial mode spacing determined by the resonator length D is 8.2 GHz.
When a control current I C ' having a frequency of 8.2 GHz is supplied to the excitation region M2 of the semiconductor laser U, the optical pulse train P' has a width W (full width at half maximum) of each pulse.
Obtained as being 1 ps. Therefore, the method according to the present invention is suitable for use in measuring dispersion characteristics of optical fibers, response characteristics of photodetectors, etc., where it is desired to use a narrow optical pulse train with a width W of each pulse. It is.

尚上述に於ては本発明の一例を示したに留ま
り、半導体レーザとして、第3図にて上述せる半
導体レーザに於てその切欠40を例えばイオン打
込により絶縁化されてなる絶縁領域、不純物のイ
オン打込乃至拡散により形成された半導体基板3
1とは逆の導電型を有する半導体領域に置換せし
めてなることを除いては第3図の半導体レーザU
と同様の半導体レーザを用いることも出来、その
他本発明の精神を脱することなしに種々の変型変
更をなし得るであろう。
The above description merely shows an example of the present invention, and the notch 40 of the semiconductor laser shown in FIG. A semiconductor substrate 3 formed by ion implantation or diffusion of
The semiconductor laser U in FIG. 3 except that it is replaced with a semiconductor region having a conductivity type opposite to that of 1
A semiconductor laser similar to the above may be used, and various other modifications may be made without departing from the spirit of the invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光パルス列発生法を示す略線
図、第2図はそれによつて得られる光パルス列を
示す図、第3図は本発明による光パルス列発生法
の一例を示す略線図、第4図はそれによつて得ら
れる光パルス列を示す図である。 図中Uは半導体レーザ、M1及びM2は励起領
域、45及び46はバイアス電流源、48は制御
電流源を夫々示す。
FIG. 1 is a schematic diagram showing a conventional optical pulse train generation method, FIG. 2 is a diagram showing an optical pulse train obtained thereby, and FIG. 3 is a schematic diagram showing an example of an optical pulse train generation method according to the present invention. FIG. 4 is a diagram showing the optical pulse train obtained thereby. In the figure, U indicates a semiconductor laser, M1 and M2 excitation regions, 45 and 46 bias current sources, and 48 a control current source, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 各別に励起される少くとも第1及び第2の励
起領域を共振器長をとる方向に配列形成してなる
半導体レーザを用い、該半導体レーザの第1及び
第2の励起領域に当該半導体レーザにてレーザ発
振の得られる閾値電流値又はその近傍値を有する
バイアス電流を供給せしめ、上記第2の励起領域
に上記共振器長によつて決まる軸モード間隔に相
当する周波数又はその整数倍若しくは整数分の1
倍の周波数を有する制御電流を供給せしめること
により、上記半導体レーザより当該半導体レーザ
より得られるレーザ光の上記軸モード間隔に相当
する周波数を有するパルス列にて光強度変調され
てなる態様の光パルス列を発生せしめる事を特徴
とする光パルス列発生法。
1. Using a semiconductor laser in which at least first and second excitation regions that are excited separately are arranged and formed in the direction of the resonator length, the first and second excitation regions of the semiconductor laser are A bias current having a threshold current value for laser oscillation or a value close to it is supplied to the second excitation region, or a frequency corresponding to the axial mode spacing determined by the resonator length, or an integral multiple thereof or an integer number. one part
By supplying a control current having twice the frequency, a light pulse train is generated from the semiconductor laser in which the light intensity is modulated by a pulse train having a frequency corresponding to the axial mode interval of the laser light obtained from the semiconductor laser. A light pulse train generation method characterized by the generation of light pulses.
JP3037881A 1981-03-03 1981-03-03 Method for generating light pulse train Granted JPS57145385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3037881A JPS57145385A (en) 1981-03-03 1981-03-03 Method for generating light pulse train

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3037881A JPS57145385A (en) 1981-03-03 1981-03-03 Method for generating light pulse train

Publications (2)

Publication Number Publication Date
JPS57145385A JPS57145385A (en) 1982-09-08
JPS6257117B2 true JPS6257117B2 (en) 1987-11-30

Family

ID=12302212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3037881A Granted JPS57145385A (en) 1981-03-03 1981-03-03 Method for generating light pulse train

Country Status (1)

Country Link
JP (1) JPS57145385A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165480A (en) * 1983-03-10 1984-09-18 Nec Corp Semiconductor light emitting element
JPS6032381A (en) * 1983-08-01 1985-02-19 Matsushita Electric Ind Co Ltd Surface light emitting semiconductor laser device
JPH067610B2 (en) * 1984-03-05 1994-01-26 日本電信電話株式会社 Semiconductor laser device
JPS61271887A (en) * 1985-05-27 1986-12-02 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser
KR950002137A (en) * 1993-06-30 1995-01-04 세끼사와 다까시 Modulator direct-distribution feedback laser diode module and device using the same

Also Published As

Publication number Publication date
JPS57145385A (en) 1982-09-08

Similar Documents

Publication Publication Date Title
JPS59205789A (en) Semiconductor device
JPH07335991A (en) Article containing integrated laser/modulator bound body
US4634928A (en) Superluminescent light-emitting diode and related method
JP2822994B2 (en) Mode-locked semiconductor laser
JPS63205984A (en) Surface emitting type semiconductor laser
JP3099921B2 (en) Surface emitting semiconductor laser device with light receiving element
US4675873A (en) Single mode injection laser structure
JPS61288479A (en) Semiconductor laser device
JPS6257117B2 (en)
JPH08330680A (en) Variable coherent light source and its controlling method
JPS63116489A (en) Optical integrated circuit
JPH0319292A (en) Semiconductor laser
JPH1084130A (en) Light emitting element
JPH0554716B2 (en)
JPH0750814B2 (en) Multi-point emission type semiconductor laser device
JP3022437B2 (en) Mode-locked semiconductor laser
JPH05160519A (en) Very short light pulse generating device
JPH09270556A (en) Tunable surface light-emitting semiconductor laser element
JPS6257279B2 (en)
JPS6362388A (en) Semiconductor laser device
JP2679583B2 (en) Semiconductor laser
JP2665286B2 (en) External cavity type semiconductor laser device
JPS63274192A (en) Semiconductor light emitting device
JPS60263490A (en) Semiconductor laser device
JPS6164182A (en) Optical feedback type semiconductor laser device