JPS6256426B2 - - Google Patents

Info

Publication number
JPS6256426B2
JPS6256426B2 JP55062082A JP6208280A JPS6256426B2 JP S6256426 B2 JPS6256426 B2 JP S6256426B2 JP 55062082 A JP55062082 A JP 55062082A JP 6208280 A JP6208280 A JP 6208280A JP S6256426 B2 JPS6256426 B2 JP S6256426B2
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
hot water
heating
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55062082A
Other languages
Japanese (ja)
Other versions
JPS56160567A (en
Inventor
Kazuo Yamagishi
Shigeru Oonishi
Toshuki Toyonaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP6208280A priority Critical patent/JPS56160567A/en
Publication of JPS56160567A publication Critical patent/JPS56160567A/en
Publication of JPS6256426B2 publication Critical patent/JPS6256426B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は気体又は液体燃料により運転されるエ
ンジンと、このエンジンにより駆動される冷媒圧
縮用のコンプレツサーと、該エンジンとコンプレ
ツサーを収納密封したケーシングを収納した水槽
を主要構成要素として成り立つ冷暖房給湯装置に
関するものである。 従来の家庭用の冷暖房給湯装置としては、冷
房専用ルームエアコン(冷房)+ガス(又は灯
油)ストーブ(暖房)+ガス湯沸器(給湯)、冷
房専用ルームエアコン(冷房)+ガス(又は灯
油)セントラル暖房給湯、冷暖房兼用ルームエ
アコン(冷暖房)+ガス湯沸器(給湯)、冷暖房
兼用ルームエアコン(冷暖房)+電気温水器など
が主だつたものであるが、これらについて共通の
欠点は夫々目的に応じて別々に器具を運転するた
め、エネルギー多消費型の効率の悪いシステムで
あるということである。又,については暖房
時の立上りが遅く、厳寒時には能力不足を露呈す
るなどの欠点を有している。 本発明はエンジン駆動による冷暖房給湯システ
ムに関するもので、上述の欠点をカバーした省エ
ネルギー時代に適合した装置を提供するものであ
る。 以下本発明の一実施例を第1図に従つて詳しく
説明する。図において、1はコンプレツサーにし
てエンジン2によつて動力伝達装置3を介して駆
動される。4はコンプレツサー1及びエンジン2
を収納密封したケーシング、5は前記ケーシング
4を収納した水槽である。水槽5内には、コンプ
レツサー1を通る冷媒が凝縮又は蒸発を行う冷媒
コイル6、エンジン2からの回収熱を放熱するた
めの放熱コイル7、及び水槽5内の温熱を回収す
るための暖房用温水コイル8が下から順に配置さ
れている。 水槽5の上方部にはコンプレツサー1を通過す
る冷媒が凝縮又は蒸発する室外側冷媒熱交換器
9、エンジン2の余剰排熱を放出するための放熱
用熱交換器10、霜とり用熱交換器28が設けら
れている。11はコンプレツサー1を通る冷媒が
凝縮又は蒸発する室内側冷媒熱交換器、12は温
水コイル8で授受した熱量を室内に放熱する為の
暖房用熱交換器である。 図中13はエンジン2の冷却水回路、14はエ
ンジン2の排気熱を吸収するための排気熱交換
器、15は冷却水回路13、排気熱交換器14、
放熱コイル7、放熱用熱交換器10を介する回路
内の熱媒の循環ポンプである。 16は前記室外側冷媒熱交換器9、放熱用熱交
換器10に対して送風するためのフアン、17は
四方弁にして、コンプレツサー1からの冷媒を室
外側冷媒熱交換器9、室内側冷媒熱交換器11、
コンプレツサー1に循環せしめて冷房運転を行
い、又はコンプレツサー1からの冷媒を室内側冷
媒熱交換器11、室外側冷媒熱交換器用膨張弁3
3(以下単に膨張弁33と称す)、室外側冷媒熱
交換器9、コンプレツサー1に循環せしめて暖房
運転の切り替えを行うものである。 18,19は電磁弁、20は逆止弁、21はド
ライヤー、22は受液器、23は室内側冷媒熱交
換器用膨張弁(以下単に膨張弁23と称す)、2
4,25,26,27は電磁弁、28は室外側冷
媒熱交換器9に隣接して配置した霜とり用熱交換
器にして、この熱交換器28内には前記暖房用温
水コイル8内を通る熱媒が通る。 29は水槽1の底部に給水するための給水管内
に取り付けた給水用電磁弁、30は電磁弁、31
はストレーナー、32は電磁弁、33は膨張弁、
34は電磁弁、35は気液分離器、36は水槽1
内の温水を逆止弁37を介して蛇口39に送り出
すための給湯ポンプ、38は膨張タンク、40,
41は逆止弁、42は暖房用温水コイル8を通る
熱媒を暖房用熱交換器12及び(又は)霜とり用
熱交換器28に循環せしめる循環ポンプ、43は
電磁弁、44は逆止弁、45は電磁弁、46は冷
媒コイル用膨張弁(以下単に膨張弁46と称
す)、47,48は電磁弁、49は流量調整弁、
50はフイルター、51はキヤブレタ、52はエ
ンジン2に対する燃料供給管に取り付けられた燃
料用電磁弁である。 本発明を実施した装置の一例は以上の如き構成
から成り、次に各運転モードを説明する。 まず冷房時については、水槽5の水位が満水の
場合と満水になつていない場合について運転方法
が異なる。満水の場合で且水槽5内の温度が貯湯
温度例えば75℃以上の場合には、室外側冷媒熱交
換器9を凝縮器、室内側冷媒熱交換器11を蒸発
器として運転する。エンジン2の排熱はエンジン
冷却水回路13、排気ガス熱交換器14で回収さ
れ、電磁弁27を経てポンプ15によつて放熱用
熱交換器10に至りフアン16で放熱される。コ
ンプレツサー1で圧縮された冷媒は四方弁17,
電磁弁18、電磁弁19を経て室外側冷媒熱交換
器9に至り凝縮する。凝縮した冷媒は逆止弁2
0,ドライヤー21、受液器22を経て膨張弁2
3に至り、室内側冷媒熱交換器11で蒸発して室
内から熱量を奪つて冷房効果をもたらす。次に水
槽5が満水で且水槽5内温度が貯湯温度以下の場
合はコンプレツサー1を出た冷媒蒸気は四方弁1
7、電磁弁24、冷媒コイル6、電磁弁25、電
磁弁19を経て室外側冷媒熱交換器9に至り冷媒
蒸器が凝縮する。この場合、凝縮器は冷媒コイル
6と室外側冷媒熱交換器9である。エンジン2の
排熱はエンジン冷却水回路13、排気ガス熱交換
器14、電磁弁26を経て、放熱コイル7に至
り、水槽5内の温水と熱交換を行う。非満水時も
冷媒の流れは同じであるが、冷房運転と同時に給
水用電磁弁29が開いて給水される点に於て異な
る。この場合の冷房効率は冷媒コイル6が給水温
度にほぼ近い温度で冷却される為非常に高い効率
を与える。 冷房運転時の効率実測値を表1に示す。
The present invention relates to an air-conditioning/heating water supply system whose main components include an engine operated by gas or liquid fuel, a compressor for compressing refrigerant driven by the engine, and a water tank containing a sealed casing housing the engine and compressor. It is something. Conventional home air-conditioning, heating, and water supply systems include a room air conditioner for cooling only (cooling) + gas (or kerosene) stove (heating) + gas water heater (hot water), and a room air conditioner for cooling only (cooling) + gas (or kerosene). The main types include central heating and hot water supply, room air conditioners for both air conditioning and heating (cooling and heating) + gas water heaters (hot water), and room air conditioners for air conditioning and heating (air conditioning and heating) + electric water heaters. This means that the system is energy consuming and inefficient because the appliances are operated separately depending on the situation. In addition, it has drawbacks such as slow start-up during heating and lack of performance in severe cold weather. The present invention relates to an engine-driven cooling, heating, and hot water supply system, and provides an apparatus that overcomes the above-mentioned drawbacks and is suitable for the energy-saving era. An embodiment of the present invention will be described in detail below with reference to FIG. In the figure, a compressor 1 is driven by an engine 2 via a power transmission device 3. 4 is compressor 1 and engine 2
5 is a water tank in which the casing 4 is housed. Inside the water tank 5, there are a refrigerant coil 6 for condensing or evaporating the refrigerant passing through the compressor 1, a heat radiation coil 7 for radiating the heat recovered from the engine 2, and a heating hot water supply for recovering the warm heat in the water tank 5. The coils 8 are arranged in order from the bottom. In the upper part of the water tank 5, there is an outdoor refrigerant heat exchanger 9 where the refrigerant passing through the compressor 1 condenses or evaporates, a heat radiation heat exchanger 10 for discharging excess exhaust heat from the engine 2, and a defrosting heat exchanger. 28 are provided. 11 is an indoor refrigerant heat exchanger in which the refrigerant passing through the compressor 1 condenses or evaporates; 12 is a heating heat exchanger for radiating heat transferred and received by the hot water coil 8 into the room. In the figure, 13 is a cooling water circuit of the engine 2, 14 is an exhaust heat exchanger for absorbing exhaust heat of the engine 2, 15 is a cooling water circuit 13, an exhaust heat exchanger 14,
This pump circulates the heat medium in the circuit via the heat radiation coil 7 and the heat radiation heat exchanger 10. 16 is a fan for blowing air to the outdoor refrigerant heat exchanger 9 and the heat radiation heat exchanger 10, and 17 is a four-way valve to transfer the refrigerant from the compressor 1 to the outdoor refrigerant heat exchanger 9 and the indoor refrigerant. heat exchanger 11,
The refrigerant is circulated through the compressor 1 for cooling operation, or the refrigerant from the compressor 1 is transferred to the indoor refrigerant heat exchanger 11 and the expansion valve 3 for the outdoor refrigerant heat exchanger.
3 (hereinafter simply referred to as an expansion valve 33), the outdoor refrigerant heat exchanger 9, and the compressor 1 to switch between heating operations. 18 and 19 are electromagnetic valves, 20 is a check valve, 21 is a dryer, 22 is a liquid receiver, 23 is an expansion valve for indoor refrigerant heat exchanger (hereinafter simply referred to as expansion valve 23), 2
4, 25, 26, and 27 are solenoid valves, and 28 is a defrosting heat exchanger placed adjacent to the outdoor refrigerant heat exchanger 9. The heating medium passes through. 29 is a water supply solenoid valve installed in the water supply pipe for supplying water to the bottom of the water tank 1; 30 is a solenoid valve; 31
is a strainer, 32 is a solenoid valve, 33 is an expansion valve,
34 is a solenoid valve, 35 is a gas-liquid separator, and 36 is a water tank 1.
38 is an expansion tank; 40;
41 is a check valve, 42 is a circulation pump that circulates the heat medium passing through the heating hot water coil 8 to the heating heat exchanger 12 and/or the defrosting heat exchanger 28, 43 is a solenoid valve, and 44 is a check valve. Valves, 45 is a solenoid valve, 46 is an expansion valve for refrigerant coil (hereinafter simply referred to as expansion valve 46), 47 and 48 are solenoid valves, 49 is a flow rate adjustment valve,
50 is a filter, 51 is a carburetor, and 52 is a fuel solenoid valve attached to a fuel supply pipe to the engine 2. An example of an apparatus embodying the present invention has the above configuration, and each operation mode will be explained next. First, during cooling, the operating method differs depending on whether the water level of the water tank 5 is full or not. When the water tank 5 is full of water and the temperature in the water tank 5 is higher than the hot water storage temperature, for example, 75° C., the outdoor refrigerant heat exchanger 9 is operated as a condenser and the indoor refrigerant heat exchanger 11 is operated as an evaporator. Exhaust heat from the engine 2 is recovered by an engine cooling water circuit 13 and an exhaust gas heat exchanger 14, passes through a solenoid valve 27, is sent to a heat radiating heat exchanger 10 by a pump 15, and is radiated by a fan 16. The refrigerant compressed by the compressor 1 is transferred to a four-way valve 17,
The refrigerant passes through the solenoid valve 18 and the solenoid valve 19, reaches the outdoor refrigerant heat exchanger 9, and is condensed. The condensed refrigerant passes through check valve 2
0, Expansion valve 2 via dryer 21 and liquid receiver 22
3, the refrigerant evaporates in the indoor refrigerant heat exchanger 11 and removes heat from the room, producing a cooling effect. Next, when the water tank 5 is full of water and the temperature inside the water tank 5 is below the hot water storage temperature, the refrigerant vapor leaving the compressor 1 is transferred to the four-way valve 1.
7. The refrigerant passes through the solenoid valve 24, the refrigerant coil 6, the solenoid valve 25, and the solenoid valve 19, and reaches the outdoor refrigerant heat exchanger 9, where the refrigerant evaporator condenses. In this case, the condenser is the refrigerant coil 6 and the outdoor refrigerant heat exchanger 9. The exhaust heat from the engine 2 passes through the engine cooling water circuit 13, the exhaust gas heat exchanger 14, and the electromagnetic valve 26, reaches the heat radiation coil 7, and exchanges heat with the hot water in the water tank 5. The flow of refrigerant is the same even when the water is not full, but the difference is that the water supply solenoid valve 29 opens and water is supplied at the same time as the cooling operation. The cooling efficiency in this case is extremely high because the refrigerant coil 6 is cooled at a temperature substantially close to the water supply temperature. Table 1 shows the measured efficiency values during cooling operation.

【表】 次に給湯運転時について説明する。給湯運転の
場合、冷房運転と同様に水槽5内が満水の場合と
そうでない場合とで運転方法が異なる。満水時で
水槽5内の温度が冷媒の凝縮温度例えば45℃以下
の場合と45℃以上の場合とで更に運転方法は異な
る。まず水槽5内の温度が45℃以下の場合につい
て説明する。コンプレツサー1を出た冷媒蒸気は
四方弁17、電磁弁24を通り冷媒コイル6に至
り、水槽内の水と熱交換し自らは凝縮して、電磁
弁25、電磁弁30、気液分離器22、ストレー
ナー31、電磁弁32、膨張弁33を経て室外側
冷媒熱交換器9に至り蒸発し、電磁弁34、四方
弁17、気液分離器35を経てコンプレツサー1
に戻る。一方エンジンの排熱はエンジン冷却水回
路13、排気ガス熱交換器14、電磁弁26を通
り、放熱コイル7に至り、水槽5内の水と熱交換
する。かくして冷媒コイル6に於ける冷媒の凝縮
潜熱及び放熱コイル7に於けるエンジン排熱によ
つて水槽5内で温水が得られ、ポンプ36、逆止
弁37、膨張タンク38を経て蛇口39から給湯
が行われる。次に水槽5内の温度が冷媒の凝縮温
度以上に上昇した場合には、エンジン2をアイド
リング運転てエンジン2の排熱だけによつて水槽
5内を加熱して給湯に用いる。非満水時の場合は
満水時の水槽内温度45℃以下の運転モードと同様
であるが、給水用電磁弁29を開いて給水しつつ
熱交換を行う。 給湯運転時の効率の実測値を表2に示す。
[Table] Next, the hot water supply operation will be explained. In the hot water supply operation, the operating method differs depending on whether the water tank 5 is full of water or not, similar to the cooling operation. The operating method also differs depending on whether the temperature in the water tank 5 is below the refrigerant condensation temperature, for example 45°C, or above 45°C when full. First, a case where the temperature inside the water tank 5 is 45° C. or lower will be explained. The refrigerant vapor leaving the compressor 1 passes through the four-way valve 17 and the solenoid valve 24 and reaches the refrigerant coil 6, where it exchanges heat with the water in the water tank and condenses itself. , the strainer 31, the solenoid valve 32, and the expansion valve 33, the refrigerant reaches the outdoor refrigerant heat exchanger 9, where it evaporates, and the compressor 1 passes through the solenoid valve 34, the four-way valve 17, and the gas-liquid separator 35.
Return to On the other hand, exhaust heat from the engine passes through the engine cooling water circuit 13, the exhaust gas heat exchanger 14, and the electromagnetic valve 26, reaches the heat radiation coil 7, and exchanges heat with the water in the water tank 5. In this way, hot water is obtained in the water tank 5 by the condensation latent heat of the refrigerant in the refrigerant coil 6 and the engine exhaust heat in the heat dissipation coil 7, and hot water is supplied from the faucet 39 via the pump 36, check valve 37, and expansion tank 38. will be held. Next, when the temperature inside the water tank 5 rises above the condensation temperature of the refrigerant, the engine 2 is operated in idling mode, and the inside of the water tank 5 is heated only by the exhaust heat of the engine 2 and used for hot water supply. When the tank is not full of water, the operation mode is the same as the operation mode when the tank is full of water and the temperature in the tank is 45° C. or less, but the water supply solenoid valve 29 is opened to supply water and perform heat exchange. Table 2 shows the measured efficiency values during hot water supply operation.

【表】 なおエンジン2及びコンプレツサー1等を収納
したケーシング4内の温度はエンジン2とコンプ
レツサー1からの排熱によつて徐々に昇温してい
くが、水槽5内のスカート部の温度が十分に低い
ため、上記の熱を回収し、エンジン2とコンプレ
ツサー1の放熱をはかることができる。ケーシン
グ4内にヒートパイプ等の放熱機構が不要である
ことは非常に大きなメリツトになる。 次に暖房運転方法について述べる。暖房運転方
法は大別して、室内側冷媒熱交換器11の設置さ
れているA部屋のみを暖房する場合、暖房用熱交
換器12の設置されているB部屋のみを暖房する
場合及びA,B両室を暖房する3ケースに分けら
れる。まずA部屋のみを暖房する場合であるが、
この場合外気温が比較的高くて室外側冷媒熱交換
器9に着霜のおそれがない時と、外気温が低く着
霜の懸念が強い場合とで異なる。前者の着霜のお
それのない場合については、室内側冷媒熱交換器
11が凝縮器、室外側冷媒熱交換器9が蒸発器と
して作用する通常のヒートポンプ運転である。即
ちコンプレツサー1を出た冷媒蒸気は四方弁17
を経て室内側冷媒熱交換器11に至り凝縮し、凝
縮潜熱を室内側空気に与え暖房効果をもたらす。
凝縮した冷媒は逆止弁41、受液器22、フイル
ター31、電磁弁32、膨張弁33を経て室外側
冷媒熱交換器9に至り蒸発して四方弁17を経て
コンプレツサー1に戻る。一方エンジンの排熱は
エンジン冷却水回路13、排気ガス熱交換器1
4、によつて回収され、放熱コイル7によつて水
槽5に蓄熱され、給湯やB室用の暖房に使用され
る。次に着霜の心配がある場合については運転方
法として2つ考えられる。その1つは冷媒循環回
路は上述したとおりであるが、暖房用温水コイル
8を通る温水がポンプ42、電磁弁43を経て霜
とり用熱交換器28に至り、水槽5内の熱を室外
側冷媒熱交換器9に与えて除霜を行う。この場合
冷媒の蒸発温度が上昇するのでヒートポンプサイ
クルの効率が向上する。他の1つは、冷媒コイル
6を蒸発器、室内側冷媒熱交換器を凝縮器として
運転する方法である。コンプレツサー1を出た冷
媒蒸気は四方弁17を経て室内側冷媒熱交換器1
1に至り凝縮し、A室を暖房する。冷媒は逆止弁
41、気液分離器22、ストレーナー31、逆止
弁44、電磁弁45、膨張弁46を経て冷媒コイ
ル6に至り、水槽5内の温水と熱交換して、自ら
は蒸発して四方弁17、気液分離器35を経てコ
ンプレツサー1の吸入側に戻る。この場合所謂温
水熱源のヒートポンプサイクルとなる。冷媒コイ
ル6の近辺の温度が低下した場合には、水槽5内
の温水をポンプ36で電磁弁47を経て循環さ
せ、水槽5内上部の温水を冷媒コイル6近傍に供
給する。 例えば比較的気温の高い昼間は普通のヒートポ
ンプ運転でA室を暖房し、その間水槽5内に蓄熱
し、夜間気温が下がつた時点で温水熱源ヒートポ
ンプを動かす運転が考えられる。このようにする
と液間の気温低下に伴う暖房能力不足といつた従
来の電気式ヒートポンプが抱えていた欠点を解消
することができ、又エンジン排熱も棄てることな
く有効に利用できるため非常に効率の高い運転が
のぞめる。 次に暖房用熱交換器12の設置されているB室
のみを暖房しようとする場合の運転方法について
述べる。この場合、水槽5内の温度が45℃以下の
時、冷媒コイル6を凝縮器、室外側冷媒熱交換器
9を蒸発器とした前述の給湯運転モードと同じ運
転方法となる。水槽5内の温度が45℃以上に上昇
した場合はエンジン2をアイドリング運転にし
て、温水を水槽5内に蓄熱する。水槽5内の温熱
は暖房用温水コイル8で熱交換され、ポンプ4
2、電磁弁48、流量調整弁49を経て暖房用熱
交換器12に至り、B室を暖房する。 次にA,B両室を暖房しようとする時はA室の
室内側冷媒熱交換器11を凝縮器、室外側冷媒熱
交換器9を蒸発器とした通常のヒートポンプサイ
クルで運転し、B室は水槽5内の温水を温水コイ
ル8で熱交換してB室内の暖房用熱交換器12で
放熱して暖房する。暖房運転時の実測効率を表3
に示す。
[Table] The temperature inside the casing 4 that houses the engine 2, compressor 1, etc. gradually rises due to the exhaust heat from the engine 2 and compressor 1, but the temperature of the skirt inside the water tank 5 is sufficient. Since the heat is low, the above heat can be recovered and radiated from the engine 2 and compressor 1. The fact that a heat dissipation mechanism such as a heat pipe is not required inside the casing 4 is a very big advantage. Next, the heating operation method will be described. Heating operation methods can be broadly divided into: heating only room A where the indoor refrigerant heat exchanger 11 is installed, heating only room B where the heating heat exchanger 12 is installed, and heating both A and B. It is divided into three cases that heat the room. First, when heating only room A,
In this case, there is a difference between when the outside temperature is relatively high and there is no risk of frost formation on the outdoor refrigerant heat exchanger 9, and when the outside temperature is low and there is a strong fear of frost formation. The former case where there is no risk of frost formation is a normal heat pump operation in which the indoor refrigerant heat exchanger 11 acts as a condenser and the outdoor refrigerant heat exchanger 9 acts as an evaporator. That is, the refrigerant vapor leaving the compressor 1 passes through the four-way valve 17.
The refrigerant reaches the indoor refrigerant heat exchanger 11 and is condensed, imparting latent heat of condensation to the indoor air and producing a heating effect.
The condensed refrigerant passes through the check valve 41, receiver 22, filter 31, solenoid valve 32, and expansion valve 33, reaches the outdoor refrigerant heat exchanger 9, evaporates, and returns to the compressor 1 via the four-way valve 17. On the other hand, exhaust heat from the engine is transferred to the engine cooling water circuit 13 and the exhaust gas heat exchanger 1.
4, the heat is stored in the water tank 5 by the heat radiation coil 7, and used for hot water supply and heating of room B. Next, if there is a concern about frost formation, there are two possible operating methods. One of them is the refrigerant circulation circuit as described above, in which the hot water passing through the heating hot water coil 8 passes through the pump 42 and the solenoid valve 43 to the defrosting heat exchanger 28, and transfers the heat in the water tank 5 to the outdoor side. The refrigerant is supplied to the refrigerant heat exchanger 9 for defrosting. In this case, the evaporation temperature of the refrigerant increases, so the efficiency of the heat pump cycle improves. Another method is to operate the refrigerant coil 6 as an evaporator and the indoor refrigerant heat exchanger as a condenser. The refrigerant vapor leaving the compressor 1 passes through the four-way valve 17 to the indoor refrigerant heat exchanger 1.
1 and condenses, heating room A. The refrigerant passes through the check valve 41, gas-liquid separator 22, strainer 31, check valve 44, solenoid valve 45, and expansion valve 46, reaches the refrigerant coil 6, exchanges heat with the hot water in the water tank 5, and evaporates itself. The air then returns to the suction side of the compressor 1 via the four-way valve 17 and the gas-liquid separator 35. In this case, it becomes a so-called heat pump cycle of hot water heat source. When the temperature near the refrigerant coil 6 drops, the hot water in the water tank 5 is circulated by the pump 36 via the electromagnetic valve 47, and the hot water in the upper part of the water tank 5 is supplied to the vicinity of the refrigerant coil 6. For example, during the day when the temperature is relatively high, room A may be heated by normal heat pump operation, during which heat is stored in the water tank 5, and when the temperature drops at night, the hot water heat source heat pump may be operated. In this way, it is possible to eliminate the drawbacks of conventional electric heat pumps, such as the lack of heating capacity due to the drop in temperature between the liquids, and also to make it possible to effectively utilize engine exhaust heat without wasting it, making it extremely efficient. You can expect high-quality driving. Next, an operating method when attempting to heat only room B in which the heating heat exchanger 12 is installed will be described. In this case, when the temperature in the water tank 5 is 45° C. or lower, the operation method is the same as the above-mentioned hot water supply operation mode in which the refrigerant coil 6 is used as a condenser and the outdoor refrigerant heat exchanger 9 is used as an evaporator. When the temperature in the water tank 5 rises to 45° C. or higher, the engine 2 is put into idling operation to store hot water in the water tank 5. The heat in the water tank 5 is exchanged with the heating hot water coil 8, and the pump 4
2. It reaches the heating heat exchanger 12 via the electromagnetic valve 48 and the flow rate adjustment valve 49, and heats room B. Next, when trying to heat both rooms A and B, the indoor refrigerant heat exchanger 11 of room A is operated as a condenser and the outdoor refrigerant heat exchanger 9 is used as an evaporator. The hot water in the water tank 5 is heat exchanged with the hot water coil 8, and the heat is radiated by the heating heat exchanger 12 in the B room for heating. Table 3 shows the measured efficiency during heating operation.
Shown below.

【表】 本実施例は室外側冷媒熱交換器9をはさんで放
熱用熱交換器と霜とり用熱交換器を配置した例に
ついて述べたものであるが、正逆回転可能なフア
ンを用いるならば、放熱用熱交換器と霜とり用熱
交換器を兼用してシステムの単純化をはかること
が可能である。 以上に説明した本発明の特長を列記すると以下
の通りとなる。 1 エンジン2及びコンプレツサー1を水槽5内
のケーシング4に納めることにより、室外機ユ
ニツトがコンパクトとなり又エンジン騒音がケ
ーシング4と水槽5になる吸音、遮音効果によ
つて極めて低くなる。 2 エンジン2及びコンプレツサー1から発生す
る熱は水槽5によつて吸熱されるため、ケーシ
ング4内にヒートパイプ等の熱交換(放熱)装
置を設ける必要がない。 3 冷房運転時、水槽5内の冷媒コイル6が凝縮
器となり、給水によつて冷却され凝縮温度が低
くなるため、冷房時の立上りは速く、効率が高
い。加えて冷媒の凝縮潜熱、エンジン排熱を給
湯に利用できるために高い総合効率を期待でき
る。 4 中間期の給湯運転は蒸発温度が高いためヒー
トポンプサイクルの効率が高く、しかもエンジ
ン2の排熱をも利用できるため高い給湯効率を
実現できる。 5 厳寒期の霜とり運転がエンジン2の排熱を利
用してできるため、従来の電気式ヒートポンプ
が抱えていた逆サイクル運転による効率低下、
冷房モードから暖房モード切換のための待ち時
間による快適性の欠如等が皆無で従つて快適な
運転ができる。 6 水槽5内に蓄積された温水を熱源とした運転
が可能なため、エンジン2の排熱を棄てること
なく高効率の運転が可能であり、従来の電気式
ヒートポンプが抱えていた厳寒期の能力不足と
いつた欠点をカバーできる。ちなみに個別住宅
に本システムを採用した場合の、年間を通した
省エネルギー率を試算とする42%となる。
[Table] This example describes an example in which a heat exchanger for heat radiation and a heat exchanger for defrosting are arranged with an outdoor refrigerant heat exchanger 9 in between, but a fan that can rotate forward and backward is used. If so, it is possible to simplify the system by using both the heat exchanger for heat radiation and the heat exchanger for defrosting. The features of the present invention explained above are listed below. 1. By housing the engine 2 and compressor 1 in the casing 4 inside the water tank 5, the outdoor unit becomes compact, and engine noise is extremely reduced due to the sound absorption and sound insulation effects of the casing 4 and the water tank 5. 2. Since the heat generated from the engine 2 and the compressor 1 is absorbed by the water tank 5, there is no need to provide a heat exchange (radiation) device such as a heat pipe inside the casing 4. 3. During cooling operation, the refrigerant coil 6 in the water tank 5 acts as a condenser and is cooled by the supplied water, resulting in a low condensation temperature, so the cooling operation is quick and efficient. In addition, high overall efficiency can be expected because the latent heat of condensation of the refrigerant and engine exhaust heat can be used for hot water supply. 4. During hot water supply operation during the intermediate period, the evaporation temperature is high, so the efficiency of the heat pump cycle is high, and since the exhaust heat of engine 2 can also be used, high hot water supply efficiency can be achieved. 5. Defrosting operation during extremely cold periods can be performed using the exhaust heat of engine 2, which reduces efficiency due to reverse cycle operation that conventional electric heat pumps suffer from.
There is no lack of comfort due to waiting time for switching from cooling mode to heating mode, and therefore comfortable driving is possible. 6 Since it is possible to operate using the hot water accumulated in the water tank 5 as a heat source, highly efficient operation is possible without wasting the exhaust heat of the engine 2, and the ability to operate in severe cold seasons, which conventional electric heat pumps have, is possible. It can cover deficiencies and shortcomings. By the way, if this system is adopted in an individual house, the annual energy saving rate is estimated to be 42%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はエンジン駆動冷暖房給湯システムのフ
ロー図、第2図は概念図、第3図は室外機の断面
図、第4図は室外機の平面図である。 1…コンプレツサー、2…エンジン、3…動力
伝達装置、4…ケーシング、5…水槽、6…冷媒
コイル、7…放熱コイル、8…暖房用温水コイ
ル、9…室外側冷媒熱交換器、10…放熱用熱交
換器、11…室内側冷媒熱交換器、12…暖房用
熱交換器、13…エンジン冷却水回路、14…排
気ガス熱交換器、15…ポンプ、16…フアン、
17…四方弁、18…電磁弁、19…電磁弁、2
0…逆止弁、21…ドライヤー、22…受液器、
23…膨張弁、24…電磁弁、25…電磁弁、2
6…電磁弁、27…電磁弁、28…霜とり用熱交
換器、29…給水用電磁弁、30…電磁弁、31
…ストレーナー、32…電磁弁、33…膨張弁、
34…電磁弁、35…気液分離器、36…ポン
プ、37…逆止弁、38…膨張タンク、39…蛇
口、40…逆止弁、41…逆止弁、42…ポン
プ、43…電磁弁、44…逆止弁、45…電磁
弁、46…膨張弁、47…電磁弁、48…電磁
弁、49…流量調整弁、50…フイルター、51
…キヤブレタ、52…燃料用電磁弁。
FIG. 1 is a flowchart of an engine-driven heating, cooling, and hot water supply system, FIG. 2 is a conceptual diagram, FIG. 3 is a sectional view of the outdoor unit, and FIG. 4 is a plan view of the outdoor unit. DESCRIPTION OF SYMBOLS 1...Compressor, 2...Engine, 3...Power transmission device, 4...Casing, 5...Water tank, 6...Refrigerant coil, 7...Radiation coil, 8...Hot water coil for heating, 9...Outdoor refrigerant heat exchanger, 10... Heat radiation heat exchanger, 11... Indoor refrigerant heat exchanger, 12... Heating heat exchanger, 13... Engine cooling water circuit, 14... Exhaust gas heat exchanger, 15... Pump, 16... Fan,
17...Four-way valve, 18...Solenoid valve, 19...Solenoid valve, 2
0...Check valve, 21...Dryer, 22...Liquid receiver,
23...Expansion valve, 24...Solenoid valve, 25...Solenoid valve, 2
6... Solenoid valve, 27... Solenoid valve, 28... Defrosting heat exchanger, 29... Water supply solenoid valve, 30... Solenoid valve, 31
... Strainer, 32... Solenoid valve, 33... Expansion valve,
34... Solenoid valve, 35... Gas-liquid separator, 36... Pump, 37... Check valve, 38... Expansion tank, 39... Faucet, 40... Check valve, 41... Check valve, 42... Pump, 43... Solenoid Valve, 44... Check valve, 45... Solenoid valve, 46... Expansion valve, 47... Solenoid valve, 48... Solenoid valve, 49... Flow rate adjustment valve, 50... Filter, 51
...Carburetor, 52...Fuel solenoid valve.

Claims (1)

【特許請求の範囲】 1 a 内部にエンジン2と該エンジン2によつ
て駆動されるコンプレツサー1を収納密封した
ケーシング4及び下方に給水口、上方に給湯口
を取り付けると共に内部に前記ケーシング4、
夫々独立した系路から成る冷媒コイル6、放熱
コイル7、暖房用温水コイル8を収納した水槽
5、屋外に取り付けられた室外側冷媒熱交換器
9、この室外側冷媒熱交換器9に併設された放
熱用熱交換器10及び霜とり用熱交換器28、
室内側冷媒熱交換器用膨張弁23付の室内側冷
媒熱交換器11、内部を温水が通る温水放熱器
12と、 b 前記エンジン2の排熱を吸収した温水が前記
放熱コイル7を介して循環する排熱系路と、 c 前記コンプレツサー1から送り出された冷媒
が四方弁17を介して前記室外側冷媒熱交換器
9を通り、そして室内側冷媒熱交換器用膨張弁
23から前記室内側冷媒熱交換器11内に至
り、そして前記四方弁からコンプレツサー1に
戻る第1冷房系路と、 d 前記コンプレツサー1から送り出された冷媒
が前記四方弁17を介して冷媒コイル6内に入
り、この冷媒コイル6から室外側冷媒熱交換器
9に至り、室内側冷媒熱交換器用膨張弁23か
ら室内側冷媒熱交換器11を経由して再び四方
弁17を通り、コンプレツサー1に戻る第2冷
房系路と、 e 前記コンプレツサー1から送り出された冷媒
蒸気が前記四方弁17を介して室内側冷媒熱交
換器11に至つて凝縮し、この凝縮した冷媒が
室外側冷媒熱交換器用膨張弁33を経て室外側
冷媒熱交換器9に至つて蒸発し、四方弁17を
介してコンプレツサー1に戻る暖房系路と、 f 前記暖房用温水コイル8内の湯が前記霜とり
用熱交換器28を循環する第1霜とり系路と、 g コンプレツサー1から送り出された冷媒蒸気
が四方弁17を介して室内側熱交換器11に至
つて凝縮し、そして冷媒コイル用膨張弁46を
介して冷媒コイル6に至り、ここで蒸発して四
方弁17からコンプレツサー1に戻る第2霜と
り系路と、 h 前記水槽5内の暖房用温水コイル8を経由し
た温水が暖房用熱交換器12内に至り、再び水
槽5内の暖房用温水コイル8に戻る循環回路か
ら成る第2暖房系路と、 から成るエンジン駆動冷暖房給湯装置。
[Scope of Claims] 1 a. A sealed casing 4 that houses an engine 2 and a compressor 1 driven by the engine 2, and a water inlet at the bottom and a hot water inlet at the top, and the casing 4,
A water tank 5 housing a refrigerant coil 6, a heat radiation coil 7, and a hot water coil 8 for heating each consisting of an independent system, an outdoor refrigerant heat exchanger 9 installed outdoors, and an outdoor refrigerant heat exchanger 9 attached to the outdoor refrigerant heat exchanger 9. a heat radiation heat exchanger 10 and a defrosting heat exchanger 28,
an indoor refrigerant heat exchanger 11 with an expansion valve 23 for the indoor refrigerant heat exchanger; a hot water radiator 12 through which hot water passes; c. The refrigerant sent out from the compressor 1 passes through the outdoor refrigerant heat exchanger 9 via the four-way valve 17, and the indoor refrigerant heat is transferred from the expansion valve 23 for the indoor refrigerant heat exchanger. a first cooling system line leading into the exchanger 11 and returning from the four-way valve to the compressor 1; d) the refrigerant sent out from the compressor 1 enters the refrigerant coil 6 via the four-way valve 17; 6 to the outdoor refrigerant heat exchanger 9, from the indoor refrigerant heat exchanger expansion valve 23, through the indoor refrigerant heat exchanger 11, through the four-way valve 17 again, and back to the compressor 1. , e The refrigerant vapor sent out from the compressor 1 passes through the four-way valve 17 to the indoor refrigerant heat exchanger 11 and condenses, and the condensed refrigerant passes through the outdoor refrigerant heat exchanger expansion valve 33 to the outdoor refrigerant heat exchanger. a heating system line in which the hot water in the heating hot water coil 8 circulates through the defrosting heat exchanger 28; The refrigerant vapor sent out from the defrosting system line and the g compressor 1 reaches the indoor heat exchanger 11 via the four-way valve 17, condenses, and reaches the refrigerant coil 6 via the refrigerant coil expansion valve 46, The hot water that evaporates here and returns from the four-way valve 17 to the compressor 1 through the second defrost line and the heating hot water coil 8 in the water tank 5 reaches the heating heat exchanger 12 and returns to the water tank 5. A second heating system path consisting of a circulation circuit returning to a heating hot water coil 8 in the engine-driven air-conditioning/heating/water supply system.
JP6208280A 1980-05-10 1980-05-10 Engine driven air conditioning hot water feeder Granted JPS56160567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6208280A JPS56160567A (en) 1980-05-10 1980-05-10 Engine driven air conditioning hot water feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6208280A JPS56160567A (en) 1980-05-10 1980-05-10 Engine driven air conditioning hot water feeder

Publications (2)

Publication Number Publication Date
JPS56160567A JPS56160567A (en) 1981-12-10
JPS6256426B2 true JPS6256426B2 (en) 1987-11-25

Family

ID=13189776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6208280A Granted JPS56160567A (en) 1980-05-10 1980-05-10 Engine driven air conditioning hot water feeder

Country Status (1)

Country Link
JP (1) JPS56160567A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310411Y2 (en) * 1981-03-31 1988-03-28
JPH0774709B2 (en) * 1985-07-24 1995-08-09 株式会社東芝 Air conditioner
JPH0827092B2 (en) * 1993-03-11 1996-03-21 株式会社東芝 Refrigeration cycle
JP2530094B2 (en) * 1993-03-11 1996-09-04 株式会社東芝 Refrigeration cycle
JP5720237B2 (en) * 2010-12-24 2015-05-20 株式会社ノーリツ Heat pump heat source machine

Also Published As

Publication number Publication date
JPS56160567A (en) 1981-12-10

Similar Documents

Publication Publication Date Title
US5558273A (en) Two-pipe system for refrigerant isolation
US4856578A (en) Multi-function self-contained heat pump system
JP2736278B2 (en) Closed space heating device and space heating method
KR19990067577A (en) Heat energy storage air conditioner
JPH0341747B2 (en)
CN101236024A (en) Improved steam compression type refrigeration system and uses thereof
CN102132111A (en) Heat pump-type cooling/heating system
US4194368A (en) Combination split system air conditioner and compression cycle domestic hot water heating apparatus
JP2006090689A (en) Solar hot water supply system with heat pump heat source unit
JPS6155018B2 (en)
JPS6256426B2 (en)
CN101097098A (en) Air conditioner residual heat utilization device
CN214581537U (en) Air conditioner and heat pump integrated machine control system using water as heat-conducting medium to operate
WO2007043952A1 (en) Heat exchanger device
JPS6337856B2 (en)
JPS6367633B2 (en)
CN220524389U (en) Heat pump unit
JPH0823421B2 (en) Heat storage heat pump
JPS6255063B2 (en)
JPS581345B2 (en) Air conditioning/heating/hot water equipment
CN219389941U (en) Air conditioning system
JPH04306425A (en) Heat exchanger of air conditioner
CN2349483Y (en) Semiconductor air cnditioner
JPS6360305B2 (en)
CN2230424Y (en) Solar water-heating air conditioner