JPS6255988A - Buried semiconductor laser - Google Patents

Buried semiconductor laser

Info

Publication number
JPS6255988A
JPS6255988A JP19702385A JP19702385A JPS6255988A JP S6255988 A JPS6255988 A JP S6255988A JP 19702385 A JP19702385 A JP 19702385A JP 19702385 A JP19702385 A JP 19702385A JP S6255988 A JPS6255988 A JP S6255988A
Authority
JP
Japan
Prior art keywords
type
layer
buried
semiconductor
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19702385A
Other languages
Japanese (ja)
Inventor
Makoto Ishikawa
信 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP19702385A priority Critical patent/JPS6255988A/en
Publication of JPS6255988A publication Critical patent/JPS6255988A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a buried semiconductor laser which can be readily manufactured and has preferable reproducibility by providing the first to fourth semiconductor layers having prescribed refractive indexes and conductivities by mesa etching, VPE and diffusing an impurity on a semiconductor substrate to provide effective current narrowing effect and high output operation in stable basic lateral mode. CONSTITUTION:An n-type Al0.4Ga0.6As clad layer 2, an n-type Al0.35Ga0.65As photowaveguide layer 3, an Al0.11Ga0.89As active layer 4, a p-type Al0.5Ga0.5As intermediate layer 5, a p-type Al0.4Ga0.6As clad layer 6, and a p-type Al0.15Ga0.85 As electrode layer 7 are formed on an n-type GaAs substrate 1. A mesa having an active region is formed by mesa etching in a stripe shape until arriving at the substrate 1. A p-type Al0.4Ga0.6As buried layer 9 and an n-type Al0.4Ga0.6 As buried layer 10 are formed by LPE. A p-n inversion layer 15 and p-type and n-type buried layers 9, 10 are formed by diffusing a diffusing impurity. Then, an SiO2 film 14 and a p-type impurity diffused layer 11, a p-type electrode 12 and an n-type electrode 13 are formed to obtain a semiconductor laser.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電流狭窄を施したストライプ状め込み型半導
体レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a striped inset type semiconductor laser with current confinement.

〔従来の技術とその問題点〕[Conventional technology and its problems]

埋め込み型半導体レーザの構造は、屈折率の高い活性領
域が屈折率の低い物質によって囲まれ、例えば、G、A
、活性層の場合、A、17GaA、層によって包囲され
た強い光導波作用をもっている。この結果、このpn接
合面に対して垂直方向のみならず、水平方向も完全な屈
折率導波となるため安定した基本横モード発振および低
非点収差が実現可能となる。この半導体レーザは、その
構造上比較的容易に電流狭窄ができるため、低発振しき
い値、高効率の半導体レーザを実現できる。
The structure of a buried semiconductor laser is such that an active region with a high refractive index is surrounded by a material with a low refractive index, such as G, A, etc.
In the case of the active layer, it has a strong optical waveguide effect surrounded by the A, 17GaA layer. As a result, complete refractive index waveguide is achieved not only in the vertical direction but also in the horizontal direction with respect to the pn junction surface, making it possible to realize stable fundamental transverse mode oscillation and low astigmatism. This semiconductor laser can achieve current confinement relatively easily due to its structure, so it is possible to realize a semiconductor laser with a low oscillation threshold and high efficiency.

このような埋め込み構造における電流狭窄を完全にする
ためには、メサストライプ部のpn順方向バイアス接合
と、埋め込み層のnp逆バイアス接合の接合面を一致さ
せる必要がある。しかし、その埋め込み成長過程では、
一般にメサ側面部から成長していくため、電流ブロック
層がメサ側面にせり上がった構造となることが多く、電
流狭窄が不完全になることが多い。
In order to achieve complete current confinement in such a buried structure, it is necessary to align the junction surfaces of the pn forward bias junction of the mesa stripe portion and the np reverse bias junction of the buried layer. However, in the embedded growth process,
Generally, the current blocking layer grows from the side surface of the mesa, so the current blocking layer often has a structure rising up from the side surface of the mesa, and current confinement is often incomplete.

この埋め込み成長の欠点を改良するために、メサストラ
イプのpn接合の上部にくびれを設け、その埋め込み層
の逆バイアス接合を、このくびれ部で制御する試みが提
案されている。これは、低しきい値で高効率の埋め込み
型半導体レーザを再現性良く実現しようとするものであ
る。
In order to improve this drawback of buried growth, it has been proposed to provide a constriction above the pn junction of the mesa stripe and to control the reverse bias junction of the buried layer using this constriction. This is an attempt to realize a low threshold, highly efficient buried semiconductor laser with good reproducibility.

このくびれ部分をもつメサストライプ型半導体レーザの
構造としては、例えば第2図に示すような構造が報告さ
れている(第31回応用物理学会講演予稿集(1984
>の講演番号30a−M−9参照)。この図において、
1はn型G、A、基板、2はn型An 、04GIIO
,6Allクラッド層、3は光導波層、4は活性層、5
はp型入!、。50nO−5^、中間層、6はp型A 
10.4G110.6Allクラッド層、7は゛オーミ
ック電極層、8はくびれ部、9はp型入β0.4GaO
−6As埋め込み層、10はn型、へ!o、4GmO−
6As埋め込み層、11はp型不純物拡散層、12はp
型電極、13はn型電極、14はSlO□膜をそれぞれ
示す。
For example, the structure shown in Figure 2 has been reported as a structure of a mesa stripe type semiconductor laser having this constricted part (Proceedings of the 31st Japan Society of Applied Physics (1984)).
(See lecture number 30a-M-9). In this diagram,
1 is n-type G, A, substrate, 2 is n-type An, 04GIIO
, 6 All cladding layer, 3 optical waveguide layer, 4 active layer, 5
Has p type! ,. 50nO-5^, intermediate layer, 6 is p-type A
10.4G110.6All cladding layer, 7 is ohmic electrode layer, 8 is constriction, 9 is p-type β0.4GaO
-6As buried layer, 10 is n type, to! o, 4GmO-
6As buried layer, 11 p-type impurity diffusion layer, 12 p
13 is an n-type electrode, and 14 is a SlO□ film.

この構造では、活性層4に隣接して光導波層3が設けら
れており、光の大部分がこの光導波層3の中を伝播する
ため、メサ部の実効屈折率が比較的小さくなり、メサ部
と埋め込み部との間の屈折率差を小さくすることができ
る。この結果、2μm以上のメサ幅に対しても安定した
基本横モード発振が得られ、低しきい値、高効率、低非
点収差に加えて、高出力が得られるという特徴を有して
いる。
In this structure, the optical waveguide layer 3 is provided adjacent to the active layer 4, and since most of the light propagates within the optical waveguide layer 3, the effective refractive index of the mesa portion becomes relatively small. The difference in refractive index between the mesa portion and the buried portion can be reduced. As a result, stable fundamental transverse mode oscillation can be obtained even for mesa widths of 2 μm or more, and it has the characteristics of low threshold, high efficiency, low astigmatism, and high output. .

しかしながら、この構造の欠点は、くびれがあるためn
型A i’ o、4Gao、6As埋め込み層10と、
n型光導波層3が、電気的に短絡していることにある。
However, the disadvantage of this structure is that it has a constriction.
type A i'o, 4Gao, 6As buried layer 10;
This is because the n-type optical waveguide layer 3 is electrically short-circuited.

このためp、n型の電極12.13間に加えられたバイ
アスは、メサ部のpn接合と共に、不純物拡散層11に
よるpn接合部にも加わり、その結果、不純物拡散層1
1、n型A 10.4G−0゜6 人S埋め込み層10
およびn型光導波層3を経由するリーク電流が流れる。
Therefore, the bias applied between the p-type and n-type electrodes 12 and 13 is applied not only to the pn junction in the mesa portion but also to the pn junction formed by the impurity diffusion layer 11.
1, n-type A 10.4G-0゜6 human S buried layer 10
A leakage current flows through the n-type optical waveguide layer 3.

このリーク電流は、メサ部のpn接合より高い拡散電位
を有するpn接合を経由して流れるため、バイアス電圧
が高くなるにつれて増加し、高出力動作時の微分量子効
率が低下し、温度特性Toが悪化する。このようなn型
埋め込み層10と、n型光導波層3の電気的短絡により
リーク電流が、メサくびれ型埋め込み半導体レーザの問
題となっていた。
This leakage current flows through the pn junction which has a higher diffusion potential than the pn junction in the mesa part, so it increases as the bias voltage increases, the differential quantum efficiency during high output operation decreases, and the temperature characteristic To Getting worse. Leakage current due to such an electrical short circuit between the n-type buried layer 10 and the n-type optical waveguide layer 3 has been a problem in the mesa constriction type buried semiconductor laser.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、このような従来の半導体レーザの問題
を除去し、確実な電流狭窄効果を有し、安定した基本横
モード発振でかつ高出力動作を可能にし、製作が容易で
再現性が良好な埋め込み型半導体レーザを提供すること
にある。
The purpose of the present invention is to eliminate such problems with conventional semiconductor lasers, to have a reliable current confinement effect, stable fundamental transverse mode oscillation, and high output operation, and to be easy to manufacture and reproducible. The object of the present invention is to provide a good buried semiconductor laser.

〔発明の構成〕[Structure of the invention]

本発明の半導体レーザの構成は、第1導電型の半導体基
板上に、少なくとも第1導電型の第1半導体層と、この
第1半導体層よりも屈折率の大きい第1導電型の第2半
導体層と、この第2半導体層よりも屈折率の大きい活性
層と、前記第1半導体層よりも屈折率の小さい第2導電
型の第3半導体層と、前記第1半導体層と同じ屈折率を
もつ第2導電型の第4半導体層とを順次積層してなるス
トライプ状の多層構造と;前記第2半導体層の側面に設
けられこの第2半導体層と同−又は小さい屈折率をもつ
第2導電型の第5半導体層と:前記活性層と第3.第4
半導体層の側面に設けられこの活性層よりも屈折率の小
さい第1導電型の第6半導体層と;前記第1.第2半導
体層および前記半導体基板のメサ側面部に設けられた第
2導電型領域とを備えたことを特徴とする。
The semiconductor laser of the present invention has a structure including, on a semiconductor substrate of a first conductivity type, at least a first semiconductor layer of a first conductivity type, and a second semiconductor of a first conductivity type having a higher refractive index than the first semiconductor layer. an active layer having a higher refractive index than the second semiconductor layer, a third semiconductor layer of a second conductivity type having a lower refractive index than the first semiconductor layer, and a third semiconductor layer having the same refractive index as the first semiconductor layer. a striped multilayer structure formed by sequentially laminating a fourth semiconductor layer of a second conductivity type; a fifth semiconductor layer of conductive type: the active layer and a third semiconductor layer; Fourth
a sixth semiconductor layer of a first conductivity type provided on a side surface of the semiconductor layer and having a refractive index lower than that of the active layer; The semiconductor device is characterized by comprising a second semiconductor layer and a second conductivity type region provided on the mesa side surface of the semiconductor substrate.

〔実施例〕〔Example〕

以下本発明の実施例について図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例の断面図を示す。図において
、第2図と同一番号のものは同一構成要素を示し、15
はpn反転層を示す。本実施例の製造工程を説明する。
FIG. 1 shows a cross-sectional view of one embodiment of the invention. In the figure, the same numbers as in Figure 2 indicate the same components, and 15
indicates a pn inversion layer. The manufacturing process of this example will be explained.

先ず、第1の液相エピタキシャル成長工程において、n
型G、A、基板1上に順次n聖人!0.4Ga0.6A
sクラッド層2、n型入f? 0−0−35O,65A
s光導波層3 、 A Ra−r 1GaO189As
  活性層4.p型入10−5Ga0.5人3中間N5
.p型^A! 0.4G110.6A3クラッド層6.
p型^f20−15Ga0.85人、電極層7を順次形
成する。これらの各層厚は各々、1.0μm、0.5μ
m、0.05μm、0.3μm、1.5μm。
First, in the first liquid phase epitaxial growth step, n
Type G, A, n saints on board 1 in sequence! 0.4Ga0.6A
s cladding layer 2, n-type f? 0-0-35O, 65A
s optical waveguide layer 3, A Ra-r 1GaO189As
Active layer 4. p-type 10-5Ga0.5 person 3 intermediate N5
.. p-type ^A! 0.4G110.6A3 cladding layer6.
A p-type ^f20-15Ga0.85 electrode layer 7 is formed one after another. The thickness of each of these layers is 1.0 μm and 0.5 μm, respectively.
m, 0.05 μm, 0.3 μm, 1.5 μm.

0.5μmとしている。しかる後、H2O2+)13P
O4+ 3C)+301(エッチャントを用いてn型G
、As基板1に達するまでストライプ状にメサエッチン
グを行って活性領域をもつメサ部を形成する。
It is set to 0.5 μm. After that, H2O2+)13P
O4+ 3C) + 301 (n-type G using etchant
, mesa etching is performed in a stripe pattern until the As substrate 1 is reached, thereby forming a mesa portion having an active region.

次に、HFiを用いて室温で1分間エツチングすると、
p型入120.5caO−5人3中間層5のみがメサ側
面部から深さ1)、3μmだけ選択的にエツチングされ
る。さらに、11□0□+H3PO4+3CH30Hエ
ツチヤントを用いて露出しな^1 o −t 】GaO
,89As活性N4を室温で10〜20秒間軽くエツチ
ングすると1図に示すようにメサ側面部に深さ0.3μ
inのくびれ部8が形成される。
Next, etching with HFi for 1 minute at room temperature yields
Only the p-type 120.5caO-5-3 intermediate layer 5 is selectively etched from the mesa side surface to a depth of 1) and 3 μm. Furthermore, do not expose using 11□0□+H3PO4+3CH30H etchant^1 o -t ]GaO
, 89As activated N4 is lightly etched at room temperature for 10 to 20 seconds to form a 0.3 μm deep layer on the side of the mesa as shown in Figure 1.
An in constriction portion 8 is formed.

次に、第2の液相エピタキシャル成長工程により、上部
メサ部を包囲する様に、p聖人!。71G80.6^3
埋込み層9.n型^10.4GaO16^3埋込み層1
0を順次形成する。このn型埋込み層9の不純物として
、Mg、Z、n、Be、Cd等の拡散(糸数の大きな物
質、例えばMgを用いた場合には、固相−同相拡散のた
め、n型埋込み層9を成長中にM gがn型光導波層3
.n型クラッド層2.。
Next, a second liquid phase epitaxial growth process is performed to surround the upper mesa part! . 71G80.6^3
Buried layer9. n-type^10.4GaO16^3 buried layer 1
0's are formed sequentially. As impurities in this n-type buried layer 9, diffusion of Mg, Z, n, Be, Cd, etc. (when a substance with a large number of threads, for example Mg, is used, the n-type buried layer 9 During the growth of Mg, the n-type optical waveguide layer 3
.. n-type cladding layer 2. .

型G、A、基板1に拡散し、pn反転層15が形成され
る。
Types G and A are diffused into the substrate 1, and a pn inversion layer 15 is formed.

この埋込み成長中の拡散過程は、n型埋込み層9が濃度
一定の拡散源となり、埋込み層9の成長時間に相当する
時間で固相拡散が発生すると考えられる。この拡散深さ
dは、−mに次式のよ)に表わされる。
In this diffusion process during buried growth, it is thought that the n-type buried layer 9 serves as a diffusion source with a constant concentration, and solid phase diffusion occurs in a time corresponding to the growth time of the buried layer 9. This diffusion depth d is expressed by -m as shown in the following equation.

a−2ロー 、、r −’ (1−C,IC,)−N)
ここで、Dは拡散係数、tは拡散時間、C3は被拡散物
質の濃度、coは拡散源の濃度、erf−(Z)はガウ
スの誤差関数の逆関数である。
a-2 low ,, r −' (1-C, IC,)-N)
Here, D is the diffusion coefficient, t is the diffusion time, C3 is the concentration of the substance to be diffused, co is the concentration of the diffusion source, and erf-(Z) is the inverse function of the Gaussian error function.

成長温度800℃は近傍におけるMgの人β(13^8
中への拡散係数はおよそD〜4 XI(1−12Cm5
ec  であるため、n型光導波層3.n型クラッド層
2の濃度を5X10”cm−″4.p型埋込み層9のM
 g iJR度を] X 1018.、−=とすると、
成長時間5分でd〜0.3μmとなり、くびれ部8上に
相当する深さだけ、pn反転層15が形成される。
The growth temperature of 800°C is the growth temperature of Mg in the vicinity (13^8
The diffusion coefficient into is approximately D~4XI (1-12Cm5
ec, the n-type optical waveguide layer 3. The concentration of the n-type cladding layer 2 is set to 5X10"cm-"4. M of p-type buried layer 9
g iJR degree] X 1018. , −=, then
When the growth time is 5 minutes, the thickness becomes d~0.3 μm, and the pn inversion layer 15 is formed to a depth corresponding to the constriction portion 8 .

前記式(1)から、pn反転層15の深さdは拡散時間
tおよびC,、Coによって決定されるが、ca、C0
はダブルへテロ結晶のレーザ特性および埋め込み層np
逆バイアス接合の耐圧を決定するバラ、メータであるた
め、むやみに変更することは出来ない、従って、成長時
間tで制御するのが最も簡便である。このp型入ジ。−
4G*O−6人s  埋込み層9は、成長時間を長くし
てもくびれ部8より上部には成長せず、必ずくびれ部8
の部分に止めることができるため、成長時間で拡散深さ
dを制御することは十分に可能である。
From the above equation (1), the depth d of the pn inversion layer 15 is determined by the diffusion time t and C,,Co, but ca, C0
are the laser characteristics of the double heterocrystal and the buried layer np
Since this is a meter that determines the withstand voltage of the reverse bias junction, it cannot be changed unnecessarily. Therefore, it is easiest to control using the growth time t. This p type is included. −
4G*O-6 peoples The buried layer 9 does not grow above the constriction part 8 even if the growth time is prolonged, and always grows above the constriction part 8.
Therefore, it is fully possible to control the diffusion depth d by changing the growth time.

この結果、第2の埋め込み液相エピタキシャル成長の後
、メサ部のpn接合とブロック層のnp逆バイアス接合
とが一致し、かつn型埋込み層10とn型光導波層3と
が電気的に分離したメサストライプ型埋め込み型構造が
再現性よく得られる。
As a result, after the second buried liquid phase epitaxial growth, the pn junction of the mesa portion and the np reverse bias junction of the block layer coincide, and the n-type buried layer 10 and the n-type optical waveguide layer 3 are electrically isolated. A mesa stripe type buried structure can be obtained with good reproducibility.

しかる後、S+02M 14を形成し、p型不純物拡散
層11、p型電極12、n型電極13を形成して埋め込
み型半導体レーザが形成される。
Thereafter, an S+02M layer 14 is formed, and a p-type impurity diffusion layer 11, a p-type electrode 12, and an n-type electrode 13 are formed to form a buried semiconductor laser.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、n型光導波層3、
n型クラッド層2中にpn反転相15が形成されるため
、n聖人10.4GllO,6^3埋込み層10とn型
光導波層3とを電気的に分離でき、この結果p型不純物
拡散層11、n型A 1’Q、4GsQ。
As described above, according to the present invention, the n-type optical waveguide layer 3,
Since a pn inversion phase 15 is formed in the n-type cladding layer 2, the n-type buried layer 10 and the n-type optical waveguide layer 3 can be electrically separated, resulting in p-type impurity diffusion. Layer 11, n-type A 1'Q, 4GsQ.

6人、埋込み層10、n型光導波層3を経由して流れる
リーク電流を防止することができる。このためメサ領域
以外へ流れるもれ電流を完全に阻止でき、光出力動作時
の効率低下が防止され、温度特性T。が改善され、高効
率、高光出力動作でかつ基本横モード発振を可能とする
ばかりでかく、再現性、量産性、信頼性に優れた半導体
レーザを形成することができる。
6, leakage current flowing through the buried layer 10 and the n-type optical waveguide layer 3 can be prevented. Therefore, leakage current flowing to areas other than the mesa region can be completely blocked, a decrease in efficiency during optical output operation can be prevented, and the temperature characteristic T can be reduced. It is possible to form a semiconductor laser that not only has improved efficiency and high optical output operation and fundamental transverse mode oscillation, but also has excellent reproducibility, mass production, and reliability.

なお、以上の実施例では、A p G、A、−G、A、
系半導体を用いた例について述べたが、他の化合物半導
体、例えばTnG、A3P/1.P系の半導体を用いて
も良いことは言うまでもない。
In addition, in the above example, A p G, A, -G, A,
Although an example using a compound semiconductor has been described, other compound semiconductors such as TnG, A3P/1. It goes without saying that a P-based semiconductor may also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構造断面図、第2図は従来
の埋め込み型半導体レーザの構造断面図をそれぞれ示す
。 1−−− n型GlIA、基板、2−・n型Al 0−
4G−0−6A3クラッド層、3−n型A f2 o−
s、Gao、6sAs光導波層、4・・・^f20.I
IGILO189All活性層、5−P型Aj? +1
−5GaO−5As  中間層、6 ・f)型A、17
8.4G。 0.6Atクラッド層、7 ・P型kl 0115Gl
lO085All電極層、8・・・くびれ部、9・・・
p型入1 o−40ao−bA3  埋込み層、10−
n型A (! 0.4G、0.6A。 埋込み層、11・・・p型不純物拡散層、12・・・ρ
型電極、13・・・n型電極、14・・・S、0□膜、
15・・・pn反転層。 +”−’:’7 、″;−
FIG. 1 shows a cross-sectional view of the structure of an embodiment of the present invention, and FIG. 2 shows a cross-sectional view of the structure of a conventional buried semiconductor laser. 1---- n-type GlIA, substrate, 2-, n-type Al 0-
4G-0-6A3 cladding layer, 3-n type A f2 o-
s, Gao, 6sAs optical waveguide layer, 4...^f20. I
IGILO189All active layer, 5-P type Aj? +1
-5GaO-5As intermediate layer, 6 ・f) type A, 17
8.4G. 0.6At cladding layer, 7 ・P type kl 0115Gl
lO085All electrode layer, 8... constriction, 9...
P type 1 o-40ao-bA3 buried layer, 10-
n-type A (! 0.4G, 0.6A. Buried layer, 11...p-type impurity diffusion layer, 12...ρ
type electrode, 13...n type electrode, 14...S, 0□ film,
15...pn inversion layer. +”-’:’7,”;-

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基板上に、少なくとも、第1導電型
の第1半導体層と、この第1半導体層よりも屈折率の大
きい第1導電型の第2半導体層と、この第2半導体層よ
りも屈折率の大きい活性層と、前記第1半導体層よりも
屈折率の小さい第2導電型の第3半導体層と、前記第1
半導体層と同じ屈折率を有する第2導電型の第4半導体
層とを順次積層してなり、前記活性層と前記第3半導体
層との横幅を他の半導体層の横幅より小さくしたストラ
イプ状の多層構造と;前記第2半導体層の側面に設けら
れこの第2半導体層と同一または小さい屈折率をもつ第
2導電型の第5半導体層と;前記第3、第4半導体層と
前記活性層との側面に設けられこの活性層よりも屈折率
の小さい第1導電型の第6半導体層と;前記第1、第2
半導体および前記半導体基板のメサ側面部の設けられた
第2導電型領域とを備えたことを特徴とする埋め込み型
半導体レーザ。
On a semiconductor substrate of a first conductivity type, at least a first semiconductor layer of a first conductivity type, a second semiconductor layer of a first conductivity type having a higher refractive index than the first semiconductor layer, and a second semiconductor layer of the first conductivity type. an active layer having a refractive index higher than that of the first semiconductor layer; a third semiconductor layer of a second conductivity type having a lower refractive index than the first semiconductor layer;
A fourth semiconductor layer of a second conductivity type having the same refractive index as the semiconductor layer is sequentially laminated, and the width of the active layer and the third semiconductor layer is smaller than the width of the other semiconductor layers. a multilayer structure; a fifth semiconductor layer of a second conductivity type provided on a side surface of the second semiconductor layer and having a refractive index that is the same as or smaller than that of the second semiconductor layer; the third and fourth semiconductor layers and the active layer; a sixth semiconductor layer of a first conductivity type provided on a side surface of the active layer and having a refractive index lower than that of the active layer;
1. A buried semiconductor laser comprising a semiconductor and a second conductivity type region provided with a mesa side surface of the semiconductor substrate.
JP19702385A 1985-09-05 1985-09-05 Buried semiconductor laser Pending JPS6255988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19702385A JPS6255988A (en) 1985-09-05 1985-09-05 Buried semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19702385A JPS6255988A (en) 1985-09-05 1985-09-05 Buried semiconductor laser

Publications (1)

Publication Number Publication Date
JPS6255988A true JPS6255988A (en) 1987-03-11

Family

ID=16367472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19702385A Pending JPS6255988A (en) 1985-09-05 1985-09-05 Buried semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6255988A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0433051A2 (en) * 1989-12-12 1991-06-19 Sharp Kabushiki Kaisha A semiconductor laser device and a method of producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0433051A2 (en) * 1989-12-12 1991-06-19 Sharp Kabushiki Kaisha A semiconductor laser device and a method of producing the same

Similar Documents

Publication Publication Date Title
US4631802A (en) Process for the production of a semiconductor device
JPS5957486A (en) Buried type semiconductor laser
JPS61284987A (en) Semiconductor laser element
JPS6255988A (en) Buried semiconductor laser
JPS59124183A (en) Light emitting semiconductor device
JPS61210689A (en) Structure of semiconductor laser and manufacture of said laser
JPS63144589A (en) Semiconductor laser element
JPH05226774A (en) Semiconductor laser element and its production
JPS61264776A (en) Optical semiconductor device
JPS62217690A (en) Semiconductor light-emitting device and manufacture thereof
JPS62259490A (en) Buried hetero structure semiconductor laser
JPS6392078A (en) Semiconductor laser element
JPS6266694A (en) Semiconductor laser element and manufacture thereof
JPS6045083A (en) Planar type semiconductor laser integrated circuit device
JPH0195583A (en) Buried-type semiconductor laser device
JPH01103893A (en) Semiconductor laser device
JPS61166192A (en) Semiconductor laser and manufacture thereof
JPS6260283A (en) Buried type semiconductor laser
JPS595690A (en) Semiconductor laser
JPS5832481A (en) Semiconductor laser element
JPS59205788A (en) Semiconductor laser
JPH01309393A (en) Semiconductor laser device and its manufacture
JPS62130583A (en) Semiconductor laser and manufacture thereof
JPS6260285A (en) Semiconductor laser element
JPH027488A (en) Buried heterostructure semiconductor laser