JPS6255503A - Ultrasonic measuring apparatus - Google Patents

Ultrasonic measuring apparatus

Info

Publication number
JPS6255503A
JPS6255503A JP60193971A JP19397185A JPS6255503A JP S6255503 A JPS6255503 A JP S6255503A JP 60193971 A JP60193971 A JP 60193971A JP 19397185 A JP19397185 A JP 19397185A JP S6255503 A JPS6255503 A JP S6255503A
Authority
JP
Japan
Prior art keywords
wave
ultrasonic
value
received
test body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60193971A
Other languages
Japanese (ja)
Inventor
Yoshiaki Suzuki
嘉昭 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP60193971A priority Critical patent/JPS6255503A/en
Publication of JPS6255503A publication Critical patent/JPS6255503A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To enable ultrasonic measurement with higher accuracy, by a method wherein the receiving wave of ultrasonic beam is sampled and subjected to restoration processing on the basis of the value thereof to calculate the max. amplitude position and the position of the peak point of the receiving wave on a time axis is measured. CONSTITUTION:The electrical signal transmitted from a transmission part 4 comes to ultrasonic beam 11 through a transmitting/receiving probe 1. A part of the beam 11 is reflected from the surface of a test body 3 to be received as a S-echo by the probe 1 and a part of the beam 11 propagates through the test body 3 and reflected from the bottom surface of said test body 3 to be received as a B-echo by the probe 1. Both echoes are converted to electrical signals to be inputted to a receiving part 5 while the said electrical signals are converted to digital signals by an A/D converting part 6 to be sent to a FET board 7 where subjected not only to high speed Fourier transformation but also to inverse Fourier transformation processing for the restoration of an original wave form. That is, the wave forms of S- and B-echoes are obtained as wave form data in a digital value form and stored in an operation part 8 to calculate the time between the peak values of both echoes. When sonic velocity is inputted from an input part 9 with respect to the known test body 3, a plate thickness D can be calculated. When a known plate thickness D is inputted, sonic velocity can be calculated.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、超音波測定装置に関し、特に、超音波ビー
ムの反射波又は透過波を受信して、超音波が伝搬した材
料中の音速や厚み、材料の欠陥等を検査する場合の超音
波測定装置に関する。
[Detailed Description of the Invention] [Industrial Field of Application] This invention relates to an ultrasonic measurement device, and in particular, it measures the speed of sound in a material through which the ultrasonic wave has propagated by receiving reflected waves or transmitted waves of an ultrasonic beam. The present invention relates to an ultrasonic measuring device for inspecting thickness, material defects, etc.

[従来の技術] 超音波を利用した測定技術としては、超音波高速を利用
して距離とか、厚み、積雪刃のM1定、そして超音波探
傷、各種の診断等があるが、この種の測定にあっては、
一般に、測定対象物での超音波の伝搬時間、そのエコー
の受信時間を計4υ1することがよく行われる。
[Prior art] Measurement techniques using ultrasonic waves include measuring distance, thickness, M1 constant of snow-covered blades, ultrasonic flaw detection, and various diagnostics using high-speed ultrasonic waves. In the case of
Generally, it is often done that the propagation time of the ultrasonic wave in the object to be measured and the reception time of its echo are 4υ1 in total.

例えば、材料中の超行波音速を自動測定する場合には、
第4図に見るように、アナログ波形信号としての原信号
波形f (t)rA/D変換して、そのサンプリングデ
ータ81  (i=11 21  ・・・)中において
、その振幅値が最大となるサンプリング位置S1mを検
出して、測定点とする。この場合、第4図に示すように
、サンプリング処理により得たサンプリングデータ中の
最大振幅点は、必ずしも原波形信号f (t)中の最大
振幅点M6−・致しない。
For example, when automatically measuring the ultrasonic speed in a material,
As shown in Fig. 4, the original signal waveform f (t)r as an analog waveform signal is A/D converted, and its amplitude value becomes maximum in the sampling data 81 (i=11 21 ...). The sampling position S1m is detected and set as a measurement point. In this case, as shown in FIG. 4, the maximum amplitude point in the sampling data obtained by the sampling process does not necessarily coincide with the maximum amplitude point M6-. in the original waveform signal f (t).

したがって、その測定値は、最大、振幅点のずれ分の誤
差を含んでしまうことになる。すなわち、波形のサンプ
リング間隔をΔj  [sec]とすると、測定値は最
低でも±Δt / 2 [:sec]の誤差を含んでし
まうことになる。
Therefore, the measured value will include an error corresponding to the deviation of the amplitude point at the maximum. That is, if the sampling interval of the waveform is Δj [sec], the measured value will include an error of at least ±Δt/2 [:sec].

[解決しようとする問題点コ そこで、超音波検査法等の中で波動の伝搬時間等を測定
する2妥がある場合、L記のようにす/プリング処理に
て最大値を得るようなものにあっては、測定値に誤差が
発生し、より高精度な測定ができないという問題が生じ
る。
[Problem to be solved] Therefore, if there are two ways to measure the propagation time of waves etc. in ultrasonic inspection methods, etc., do something like L / Obtain the maximum value by pulling processing. In this case, the problem arises that errors occur in the measured values, making it impossible to perform more accurate measurements.

[発明の[1的コ この発明は、このような従来技術の問題点を解決すると
ともに、より精度の高い超音波71111定に適する超
音波測定装置を提供することを目的とする。
[1] An object of the present invention is to solve the problems of the prior art and to provide an ultrasonic measuring device suitable for ultrasonic 71111 measurement with higher precision.

[問題点を解決するための手段コ この発明は、情報理論における伝送波形の1tr生復元
に着目したものであって、受信波形のA/D変換による
サンプリング処理を情報伝送における波形伝送の送信側
のサンプリング処理とみて、そのサンプリング値から原
波形を復元処理するというものである。
[Means for solving the problem] This invention focuses on 1TR raw restoration of transmitted waveforms in information theory, and is based on sampling processing by A/D conversion of received waveforms on the transmitting side of waveform transmission in information transmission. This is a sampling process in which the original waveform is restored from the sampled values.

ところで、情報の伝送処理において、非周期的な関数を
フーリエ変換−逆フーリエ変換処理により復元すること
が提案されている。その1つに、非周期的な関数である
波形をサンプリングして送信し、受信側でフーリエ変換
処理により原波形を再生復元するというものがある。例
えば、時間とともに変化するある関数f (t)の周波
数スペクそして逆フーリエ変換の際には、ある関数f(
ここで、フーリエ変換した場合の最高周波数をrlとし
、サンプリング周期をTとすると、T=1/(2fm) のときにある関数f (t)のほぼ完全な波形復元とな
る。ただし、2πf11=ω重である。
By the way, in information transmission processing, it has been proposed to restore an aperiodic function by Fourier transform-inverse Fourier transform processing. One method is to sample and transmit a waveform that is an aperiodic function, and then reproduce and restore the original waveform by Fourier transform processing on the receiving side. For example, when performing frequency spectrum and inverse Fourier transform of a function f (t) that changes over time, a certain function f (
Here, if the highest frequency in the case of Fourier transformation is rl, and the sampling period is T, the waveform of a certain function f (t) will be almost completely restored when T=1/(2fm). However, 2πf11=ω weight.

ここで、前記フーリエ変換関数F(ω)を級数展開して
、各サンプリング時点tをt=n/2fIIl (n=
1,2,3.・・・、そのサンプリング間隔は、1/2
f+e)とすると、 ある関数f (t)は、次の式で表される。
Here, the Fourier transform function F(ω) is expanded into a series, and each sampling time point t is set to t=n/2fIIl (n=
1, 2, 3. ..., the sampling interval is 1/2
f+e), a certain function f(t) is expressed by the following formula.

・・・・・・・・・・・・■ この式から、フーリエ変換における最高周波数fmを知
ることにより、その復元が可能となる。
・・・・・・・・・・・・■ From this equation, by knowing the highest frequency fm in Fourier transform, it becomes possible to restore it.

しかして、前記のような目的を達成するためのこの発明
におけるL段は、超音波ビームの受43波をサンプリン
グしてそのサンプリング値に基づき受信波を復元処理し
てこの復元受信波の最大振幅位置を算出することにより
受信波のピーク点の時間軸での位置、及び/又はピーク
点の振幅を測定するというものである。
Therefore, in order to achieve the above object, the L stage of the present invention samples 43 received waves of the ultrasonic beam, performs restoration processing on the received waves based on the sampled values, and calculates the maximum amplitude of the restored received waves. By calculating the position, the position of the peak point of the received wave on the time axis and/or the amplitude of the peak point is measured.

具体的には、最大振幅値は、アナログ波形信号をA/D
変換してサンプリングし、フーリエ回路を通して波形の
有限フーリエ近似を行い、近似値中の最大振幅点を検出
するということで行う。そして測定に際しては、任意の
トリガ点から受信した超音波の最大振幅値までの時間を
測定するものである。
Specifically, the maximum amplitude value is
This is done by converting and sampling the waveform, performing finite Fourier approximation of the waveform through a Fourier circuit, and detecting the maximum amplitude point in the approximate value. In the measurement, the time from an arbitrary trigger point to the maximum amplitude value of the received ultrasonic wave is measured.

[作用コ そこで、このように構成することにより、例えば超音波
ビームの反射波又は透過波を受信して超音波が伝搬した
材料中の音速などのより市確な最大振幅位置を測定する
ことができ、より精度の高い測定が期待できる。
[Operation] Therefore, by configuring it in this way, it is possible to more accurately measure the maximum amplitude position, such as the sound velocity in the material in which the ultrasonic wave has propagated, by receiving the reflected wave or transmitted wave of the ultrasonic beam, for example. Therefore, more accurate measurements can be expected.

その結果、材料の音速測定精度の向」二が期待でき、例
えば黒鉛球状化率等の測定精度を向−1−させることが
できる。
As a result, it is possible to expect an improvement in the accuracy of measuring the sound velocity of the material, and for example, it is possible to improve the accuracy in measuring the graphite nodularity.

[実施例コ 以下、この発明の一実施例について図面を用いて詳細に
説明する。
[Example 1] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は、この発明を適用した一実施例のブロック図、
第2図は、超音波測定の原理的説明図、第3図は、その
検出波形の関係を説明する図である。
FIG. 1 is a block diagram of an embodiment to which the present invention is applied;
FIG. 2 is a diagram explaining the principle of ultrasonic measurement, and FIG. 3 is a diagram explaining the relationship between detected waveforms.

第1図に見るように、パルス反射法における送受信兼用
のプローブ1(又はパルス透過法における送受信兼用プ
ローブ1)とその受信用プローブ2とを試験体3」−に
配置して、送信部4からノ<ルス信号を発し、受信部5
により受信エコーを捉えて、超音波ビームの送信/受信
処理を行う。
As shown in FIG. 1, a transmitter/receiver probe 1 in the pulse reflection method (or a transmitter/receiver probe 1 in the pulse transmission method) and its receiving probe 2 are placed on the test specimen 3'-, and the transmitter 4 is The signal is sent to the receiver 5.
The received echo is captured and the ultrasound beam is transmitted/received.

ここで、超音波ビームの送受信の様子をパルス反射法を
例に採って説明する。
Here, the transmission and reception of ultrasonic beams will be explained using the pulse reflection method as an example.

まず、送信部4より送信された電気的信号(パルス信号
)は、送受兼用プローブ1において機械振動に変換され
、超音波ビーム11となって発信する。
First, an electrical signal (pulse signal) transmitted from the transmitter 4 is converted into mechanical vibration in the transmitter/receiver probe 1, and is transmitted as an ultrasonic beam 11.

発信された超音波ビーム11は、第2図に見るように試
験体3の表面で一部は反射してSエコーとして受信され
、さらに試験体3の中に伝搬して、試験体3の底面で反
射し、これがSエコーとして送受兼用プローブ1にて受
信される。そしてこのプローブ1にて受信エコーは電気
信号に変換される。
As shown in FIG. 2, the emitted ultrasonic beam 11 is partially reflected from the surface of the test object 3 and received as an S echo, and further propagates into the test object 3 to reach the bottom surface of the test object 3. This is reflected by the transmitter/receiver probe 1 as an S echo. The received echo is converted into an electrical signal by this probe 1.

この受信された変換された信号は、受信部5に入力され
、増幅されてA/D変換部6へと送仕される。
This received converted signal is input to the receiving section 5, amplified, and sent to the A/D converting section 6.

A/D変換部6では、この受信アナログ信号を所定の周
期でサンプリングしてデジタル信号に変換し、高速フー
リエ変換処理回路(FFTボード)7に送られる。ここ
で、このデジタル値に変換されたサンプリング波形信号
は、高速フーリエ変換されるとともに、先にフーリエ変
換処理済みの各サンプリング値のフーリエ変換データ値
とに基づき、原波形復元のための逆フーリエ変換処理が
なされる。その結果、FFTボード7で原信号の近似信
号が合成されて、それがマイクロプロセッサ子メモリ等
で構成される演算部8に送出される。
The A/D converter 6 samples this received analog signal at a predetermined period, converts it into a digital signal, and sends it to a fast Fourier transform processing circuit (FFT board) 7. Here, the sampling waveform signal converted into a digital value is subjected to fast Fourier transform, and based on the Fourier transform data value of each sampling value that has undergone Fourier transform processing, inverse Fourier transform is performed to restore the original waveform. Processing is done. As a result, an approximate signal of the original signal is synthesized by the FFT board 7, and sent to the arithmetic unit 8, which is comprised of a microprocessor child memory and the like.

このFFTボード7で近似された原波形復元信号は、S
エコーの波形とSエコーの波形とが第3図に見るような
波形信号に対応するデジタル値の形態で波形データとし
て得られ、それが演算部8のメモリに記憶される。そし
て演算部8にてそのメモリから読み出され、第3図に示
すように、例えば、SエコーのピークポイントとSエコ
ーのピークポイントを前記デジタル波形データから算出
し、かつこれら復元波形データのピーク値の間の時間2
tdを算出される。
The original waveform restored signal approximated by this FFT board 7 is S
The echo waveform and the S-echo waveform are obtained as waveform data in the form of digital values corresponding to the waveform signals as shown in FIG. 3, and are stored in the memory of the calculation unit 8. The arithmetic unit 8 reads out the memory from the memory, and calculates, for example, the peak point of the S echo and the peak point of the S echo from the digital waveform data, as shown in FIG. time between values 2
td is calculated.

こうして算出された時間2tdは、第2図から理解でき
るように超音波ビーム11が試験体3の中を伝搬した往
復の伝搬時間に相当する。
As can be understood from FIG. 2, the time 2td calculated in this manner corresponds to the round-trip propagation time during which the ultrasonic beam 11 propagated inside the test object 3.

そこで、試験体3の板厚を1)、音速をVとすると、上
記伝搬時間2tdとこれらとの間には、次の関係が成立
する。
Therefore, assuming that the thickness of the specimen 3 is 1) and the speed of sound is V, the following relationship holds true between the above-mentioned propagation time 2td and these.

V=D/la したがって、演算部8のメモリ等にこの関係式を記憶し
ておき、それぞれの変数等を算出できるようにすると、
例えばその板厚りが既知の試験体(材料)3について、
キーボード等を有する入力部9から試験体3の板厚りを
入力すると、試験体3における音速Vが算出でき、また
、音速Vが既知の試験体(材料)について音速Vを人力
すると試験体3の板厚1)が計算される。
V=D/la Therefore, if this relational expression is stored in the memory of the calculation unit 8, etc., and each variable etc. can be calculated,
For example, regarding test specimen (material) 3 whose plate thickness is known,
By inputting the thickness of the test body 3 from the input unit 9 having a keyboard etc., the sound velocity V in the test body 3 can be calculated, and if the sound velocity V is manually calculated for a test body (material) with a known sound velocity V, the test body 3 can be calculated. The plate thickness 1) is calculated.

このような演算結果は、次に、CRT、LED。The results of such calculations are then applied to CRTs and LEDs.

プリンタなどで代表される表示部10(又は印字部10
)に送出されて、その値が表示(又は印字)されるもの
である。
Display section 10 (or printing section 10 typified by a printer, etc.)
) and its value is displayed (or printed).

ところで、前記の場合のFFTボード7における逆フー
リエ変換は、先の式■で説明したごとく、等樋内には、
そのサンプリング周期T=1/ (2fm)又はT絢1
/(2fm)の関係においてフーリエ変換して得た原波
形の周波数スペクトル分析における最大周波数f−に基
づき、原波形をそのサンプリング散nに従って復元近似
することにほかならない。
By the way, in the above case, the inverse Fourier transform on the FFT board 7 is as explained in the equation
The sampling period T = 1/ (2fm) or T 1
This is nothing more than restoring and approximating the original waveform according to its sampling dispersion n, based on the maximum frequency f- in the frequency spectrum analysis of the original waveform obtained by Fourier transformation in the relationship of /(2fm).

なお、実施例に見るように、原波形をサンプリングし、
その結果を基にフーリエ近似すれば、波形の数値的解析
をたやすく行うことができる利点がある。
In addition, as seen in the example, the original waveform is sampled,
If Fourier approximation is performed based on the result, there is an advantage that numerical analysis of the waveform can be easily performed.

以]二説明してきたが、実施例では、フーリエ変換−逆
変換処理によりサンプリングデータから原受仁波形を近
似復元して、その最大振幅位置を算出しているが、要す
るに、この発明は、サンプリング処理をそのピーク値検
出の直接手段とすることはな(、サンプリング処理は、
単に原波形復元のデータとして処理することにある。そ
してその波形の復元処f’lは、このようなフーリエ変
換処理によるものに限定されない。
As described above, in the embodiment, the original waveform is approximately restored from the sampling data by Fourier transform-inverse transform processing, and its maximum amplitude position is calculated. Do not use processing as a direct means of detecting the peak value (sampling processing is
The purpose is simply to process it as data for restoring the original waveform. The waveform restoration processing f'l is not limited to such Fourier transform processing.

[発明の効果コ 以上の説明から理解できるようにこの発明にあっては、
超音波ビームの受信波をサンプリングしてそのサンプリ
ング値に基づき受信波を復元処理してこの復元受信波の
最大振幅位置を算出することにより受信波のピーク点の
時間軸での位置を測定するようにしているので、例えば
超音波ビームの反射波又は透過波を受信して超音波が伝
搬した材料中の音速などのより正確な最大振幅位置を測
定することができ、より精度の高い測定が期待できる。
[Effects of the invention As can be understood from the above explanation, this invention has the following effects:
The received wave of the ultrasound beam is sampled, the received wave is restored based on the sampled value, and the maximum amplitude position of the restored received wave is calculated to measure the position of the peak point of the received wave on the time axis. For example, by receiving the reflected or transmitted waves of an ultrasonic beam, it is possible to measure the maximum amplitude position more accurately, such as the speed of sound in the material through which the ultrasonic wave propagated, and more accurate measurements are expected. can.

その結果、材料等の音速測定精度の向上が期待でき、特
に、黒鉛球状化率等の測定精度を向」ニさせることがで
きる。
As a result, it is possible to expect an improvement in the accuracy of measuring the sound velocity of materials, etc., and in particular, it is possible to improve the accuracy of measuring the graphite nodularity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明を適用した〜実施例のブロツク図、
第2図は、超音波測定の原理的説明図、第3図は、その
検出波形の関係を説明する図、第4図は、従来のピーク
点測定方式の説明図である。 1・・・送受兼用プローブ、2・・・受信用プローブ、
3・・・試験体、4・・・送信部、5・・・受信部、6
・・・A/D変換部、7・・・高速フーリエ変換(FF
T)ボード、8・・・演算部、9・・・人力部、10・
・・表示部。
FIG. 1 is a block diagram of an embodiment to which this invention is applied.
FIG. 2 is an explanatory diagram of the principle of ultrasonic measurement, FIG. 3 is an explanatory diagram of the relationship between detected waveforms, and FIG. 4 is an explanatory diagram of a conventional peak point measurement method. 1... Transmission/reception probe, 2... Receiving probe,
3... Test object, 4... Transmitting section, 5... Receiving section, 6
... A/D converter, 7... Fast Fourier transform (FF
T) board, 8... calculation section, 9... human power section, 10.
...Display section.

Claims (3)

【特許請求の範囲】[Claims] (1)超音波ビームの受信波をサンプリングしてそのサ
ンプリング値に基づき前記受信波を復元処理してこの復
元受信波の最大振幅位置を算出することにより前記受信
波のピーク点の時間軸での位置を測定することを特徴と
する超音波測定装置。
(1) The received wave of the ultrasonic beam is sampled, the received wave is restored based on the sampled value, and the maximum amplitude position of the restored received wave is calculated, thereby determining the peak point of the received wave on the time axis. An ultrasonic measuring device characterized by measuring position.
(2)サンプリング値からの受信波の復元処理は、サン
プリング値をフーリエ変換して、このフーリエ変換値を
基に、逆フーリエ変換処理をすることにより行われるこ
とを特徴とする特許請求の範囲第1項記載の超音波測定
装置。
(2) The process of restoring the received wave from the sampling value is performed by Fourier transforming the sampling value and performing inverse Fourier transformation processing based on the Fourier transformed value. The ultrasonic measuring device according to item 1.
(3)サンプリング値は、A/D変換してデジタル値に
変換されて得られ、このデジタル値がフーリエ展開され
、デジタル値として受信波付の復元処理がされることを
特徴とする特許請求の範囲第2項記載の超音波測定装置
(3) The sampling value is obtained by A/D conversion and converted into a digital value, and this digital value is subjected to Fourier expansion and then subjected to restoration processing with received waves as a digital value. The ultrasonic measuring device according to scope 2.
JP60193971A 1985-09-04 1985-09-04 Ultrasonic measuring apparatus Pending JPS6255503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60193971A JPS6255503A (en) 1985-09-04 1985-09-04 Ultrasonic measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60193971A JPS6255503A (en) 1985-09-04 1985-09-04 Ultrasonic measuring apparatus

Publications (1)

Publication Number Publication Date
JPS6255503A true JPS6255503A (en) 1987-03-11

Family

ID=16316815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60193971A Pending JPS6255503A (en) 1985-09-04 1985-09-04 Ultrasonic measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6255503A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02276905A (en) * 1989-04-18 1990-11-13 Kandenko Co Ltd Method and device for ultrasonic thickness measurement
JP2012037294A (en) * 2010-08-05 2012-02-23 Jtekt Corp Ultrasonic measuring method and ultrasonic workpiece diameter measuring device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236055A (en) * 1975-09-17 1977-03-19 Mitsubishi Electric Corp Unit for detecting the position of sound source

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236055A (en) * 1975-09-17 1977-03-19 Mitsubishi Electric Corp Unit for detecting the position of sound source

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02276905A (en) * 1989-04-18 1990-11-13 Kandenko Co Ltd Method and device for ultrasonic thickness measurement
JP2012037294A (en) * 2010-08-05 2012-02-23 Jtekt Corp Ultrasonic measuring method and ultrasonic workpiece diameter measuring device

Similar Documents

Publication Publication Date Title
US5078013A (en) Ultrasonic measuring apparatus using a high-damping probe
JPH06506055A (en) Utilizing Doppler modulation parameters for amplitude estimation
GB2298277A (en) Delay line for an ultrasonic probe with an interface allowing inbuilt calibration
SU917711A3 (en) Method of tuning ultrasonic apparatus
JPS60233547A (en) Method and device for maintaining parallel relationship between working surface of acoustic transducer and flat surface of object
JP2000241397A (en) Method and apparatus for detecting surface defect
JP2740872B2 (en) Method of measuring compressive strength of concrete using ultrasonic waves
JPS6255503A (en) Ultrasonic measuring apparatus
Bucci et al. Numerical method for transit time measurement in ultrasonic sensor applications
JP2001343365A (en) Thickness resonance spectrum measuring method for metal sheet and electromagnetic ultrasonic measuring method for metal sheet
JPH0353137A (en) Stress measuring method
JP2740871B2 (en) Method and apparatus for measuring shear wave velocity in ultrasonic test
JP2003149214A (en) Nondestructive inspecting method and its apparatus using ultrasonic sensor
JP2001066130A (en) Film thickness measuring method and its device
KR101964758B1 (en) Non-contact nonlinear ultrasonic diagnosis apparatus
JP2560787B2 (en) Ultrasonic flaw detection method
JPH07248317A (en) Ultrasonic flaw detecting method
JPH05333003A (en) Method and apparatus for measuring attenuating amount of ultrasonic wave in body to be inspected
JPH09257773A (en) Ultrasonic transmission and reception apparatus for sizing flaw and method for ultrasonic transmission and reception thereof
JP2001343366A (en) Crystal grain measuring method and device for metal sheet
JP2824488B2 (en) Method of measuring plate thickness of concrete structure by ultrasonic pulse reflection method
JPS62170830A (en) Stress distribution measuring instrument
JP2812688B2 (en) Measuring method of thickness of coated object
JP3088614B2 (en) Array flaw detection method and device therefor
JP2004294190A (en) Ultrasonic microscope