JPS625508A - Conducting paste - Google Patents

Conducting paste

Info

Publication number
JPS625508A
JPS625508A JP14373185A JP14373185A JPS625508A JP S625508 A JPS625508 A JP S625508A JP 14373185 A JP14373185 A JP 14373185A JP 14373185 A JP14373185 A JP 14373185A JP S625508 A JPS625508 A JP S625508A
Authority
JP
Japan
Prior art keywords
conductive
oxide
resistivity
conductive paste
conductive oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14373185A
Other languages
Japanese (ja)
Inventor
俊自 野村
芳野 久士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14373185A priority Critical patent/JPS625508A/en
Publication of JPS625508A publication Critical patent/JPS625508A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は導電ペーストに関し、特にバリスタ、圧電体、
セラミックコンデンサなどのセラミック電子部品の外部
又は内部電極用として用いられる導電ペーストの改良に
係る。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a conductive paste, particularly for varistors, piezoelectric materials,
This invention relates to improvements in conductive pastes used for external or internal electrodes of ceramic electronic components such as ceramic capacitors.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、バリスタをはじめとするセラミック電子部品は、
積層構造とすることにより大容量化を図る傾向にあり、
これに伴ってその内部電極等の面積が増大している。こ
の友め、セラミ。
In recent years, ceramic electronic components such as varistors,
There is a tendency to increase capacity by creating a laminated structure.
Along with this, the area of the internal electrodes and the like is increasing. My friend, Cerami.

り電子部品の価格は電極の材料コストで決定されるとい
っても過言ではない。
It is no exaggeration to say that the price of electronic components is determined by the cost of electrode materials.

ところで、従来、セラミ1.り市イ部品の電極に用いら
ノ1、る導?!l−″8−ストとしては、Pd、 Ag
By the way, conventionally, ceramic 1. Is it used for electrodes of commercial parts? ! As l-″8-st, Pd, Ag
.

Pd−Ag、 Ptなどの寅金属粉末を導宵材とし2、
ζf1.. ICバインダー、溶剤、ガラスフリットな
どを混合し7升−ものが使用されている。こう(7た導
電ペーストは10″′5(Ω・(:rlL)オーダの抵
抗率を有;21、焼き付は時及び使用時i/i″−酸化
性雰囲気(て強いという特長がある。
Using a metal powder such as Pd-Ag or Pt as a guide material2,
ζf1. .. A 7-liter mix of IC binder, solvent, glass frit, etc. is used. The conductive paste has a resistivity on the order of 10'''5 (Ω·(:rlL)); 21, and has the characteristic that it is strong against burning when used in an oxidizing atmosphere.

j、2かし、大容縫化を目的とした積層5−′Jンデン
1フー、積層圧電体、積層バリスタ等の積層セラぐツク
電子部品の内部電極とL〜て用い六場合Wは、1導電イ
ーストの熱膨張係数かセラミックスのそれと大きく異な
るため、割れや尺りが生し、易いという欠点がある。ま
念、導電ペーストを構成する導電体は高価な貝金属のみ
よりなるため、大容級化に伴う内部電極面積の増加によ
り積層セラミック電子部品のコストが著しく高騰すると
いう欠点かある。
When used as internal electrodes of laminated ceramic electronic components such as laminated 5-' J-den 1 fu, laminated piezoelectric bodies, laminated varistors, etc. for the purpose of large-capacity sewing, L~6 case W is, 1. Since the coefficient of thermal expansion of conductive yeast is significantly different from that of ceramics, it has the disadvantage of being prone to cracking and scaling. Unfortunately, since the conductor that makes up the conductive paste is made only of expensive metal shells, there is a drawback that the cost of multilayer ceramic electronic components increases significantly due to the increase in internal electrode area associated with larger sizes.

〔発明の目的〕[Purpose of the invention]

本発明は上記欠点を解消−I”る/で、めになさ、江〃
・ものであり、低い抵抗率を持ち、酸化性雰囲気に強く
、熱膨張係数が小さくセラミ、7り磁器との接合性が良
好で、し7かも安価な導電ペーストを提供(−ようとす
るものである。
The present invention overcomes the above-mentioned drawbacks.
・Provides an inexpensive conductive paste that has low resistivity, is resistant to oxidizing atmospheres, has a small coefficient of thermal expansion, and has good bonding properties with ceramics and porcelain. It is.

〔発明の概要〕[Summary of the invention]

本発明者らは導i、性1〆C優i]、ルー酸化物を4″
FC−灸討した結果5、LaCo03−LaMnO3−
IJaNio、、型の複合酸化物糸導■i性粉末を導電
体と1−、で汁イjする感電−(−ストにおい゛て、導
電性酸化物9′3〜り88重・チに対し低融点ガラスを
7 ” 2 N :fi: %添加量る仁とによ、(〕
9、低い抵抗率を有し、熱膨張係数が小さく、酸化性雰
囲気1に強く、し7かも安価な導電・2−ストが得らオ
)、ることを見出し、た。、二′。
The present inventors prepared a 4″
FC-Moxibustion result 5, LaCo03-LaMnO3-
IjaNio, an electric shock caused by mixing a conductive powder with a conductor and a conductive oxide (9'3 to 88% by weight). The low melting point glass was added to 7"2N:fi:%.
9. It has been found that a low resistivity, low coefficient of thermal expansion, resistance to oxidizing atmospheres 1, and 7 inexpensive conductive and 2-stroke materials can be obtained. ,two'.

こで低融点ガラスとして円)0− B 205− S 
102−p+iC)〜Zn、0−f3...O,等を主
成分とし軟化温度が400−800’C”?’あるガラ
スを用いることがも効である。
Here, the low melting point glass is 0-B 205-S
102-p+iC)~Zn, 0-f3. .. .. It is also effective to use a glass containing O, etc. as the main component and having a softening temperature of 400-800'C''.

本発明において、導電性酸化物1〕3〜98」tJチ【
対し、低融点ガラスを7 = 2重員係添加することと
したのは、ガラスの添加量が7重に係を超えると、抵抗
率の上昇が大きく、一方2重量多未満ではセラミック基
板への接着強度が不十分どなるためである。
In the present invention, the conductive oxide 1] 3 to 98"tJ
On the other hand, the reason why we decided to add low melting point glass by 7 = 2 parts is that if the amount of glass added exceeds 7 parts, the resistivity will increase significantly, while if it is less than 2 parts by weight, it will cause damage to the ceramic substrate. This is because the adhesive strength is insufficient.

本発明において、導電性酸化物と17では例えば次式%
式%) (ただし、A : Lmn Pro Nd、 Smt 
Gd+ Dy+ nopErのうち少なくとも1種、 B :  Ba、 C11,n Sr+ 0.4<:l
>≦0.8、D : Fo 、 Ni、 Mn+ O:
<d:<0.5 )にで表わ・されるものが用いられる
In the present invention, for example, the conductive oxide and 17 have the following formula %
Formula %) (However, A: Lmn Pro Nd, Smt
At least one of Gd+ Dy+ nopEr, B: Ba, C11,n Sr+ 0.4<:l
>≦0.8, D: Fo, Ni, Mn+O:
<d:<0.5) is used.

」−記式にて表わされる導電性酸化物は1− a Co
 O、=。
"-The conductive oxide represented by the formula 1-a Co
O,=.

−LaCoOs−T、aNto、型においてLaCoO
sが主体となこフているものである。このよう力、式で
表わされる導電性酸化物でけ1、#II−、1.外の他
の希七類元素、を力わちIFrt Nd+ Smt c
lI、 Dy+ Ho、 Erを用いるζ゛とがCきる
。なお、これらの希土類元素(A)の−・部はy′ルカ
リ上類元素(B)で置換する必要がある。希土類元素の
アルカリ上類元素による6゛ム1換量を示′jbを0.
4≦h < o、 8と[−念のは、bが044未満で
あると(0が十分に存在しなくなる几め抵抗率が十分低
いものとならず、一方0.8奈超えると再び抵抗率が上
昇する六二めである。
-LaCoOs-T, aNto, LaCoO in type
s is the subject. In this way, a conductive oxide expressed by the formula 1, #II-, 1. Other rare heptad elements, such as IFrt Nd+ Smt c
ζ゛ using lI, Dy+ Ho, Er can be converted to C. Incidentally, the -- part of these rare earth elements (A) needs to be replaced with the y' alkali superclass element (B). Indicates the amount of rare earth element converted into 6゛m1 by an upper alkaline element.'jb is 0.
4≦h<o, 8 and [- Just to be sure, if b is less than 044 (0 will not exist sufficiently), the resistivity will not be low enough; on the other hand, if it exceeds 0.8n, the resistance will increase again. This is the 62nd point where the rate increases.

捷た、Coの一部をFe、 Ni、 Mn(D)で置換
してもよい。Go、のF6による置換量を示ずdを0<
 ”5;; O−5としたのはdが0.5を超えるとC
o  が十分に存在しなくなり抵抗率が上昇するためで
ある。、CoのNL、Mnによる置換it示−idを0
< d < 0.5としたのは、LaCo(’)、−I
、aMno、−LaNiO。
A part of the spun Co may be replaced with Fe, Ni, or Mn (D). Go, does not indicate the amount of substitution by F6, and d is 0<
``5;; The reason why it was set as O-5 is that when d exceeds 0.5, C
This is because there is no sufficient amount of o and the resistivity increases. , Co's NL, Mn's replacement it-id is 0
< d < 0.5 because LaCo('), -I
, aMno, -LaNiO.

型のW含酸化物にお(Aで、L a Co O3楚の酸
化物1が主体であることを表わすものである。
In the W oxide containing type (A), it indicates that the oxide 1 of L a Co O3 So is the main component.

ま友、本発明におい−75、導電性酸化物としで、次式 %式%) 1・C″r:衣わされるもの全用い〜IHもよい。Mayu, according to the present invention-75, as a conductive oxide, the following formula %formula%) 1.C″r: Use all clothed items ~ IH is also good.

−h、記式C・ζ゛C表わさ′!する導′Iバ怜酸化物
はT、acoo −LaMnO−LaNiO八iJ i
4おい””(、’ X−aMnOsが」5      
  3        3 −・体となっているもので
ある。このような式で表わされる導電性酸化物に含有さ
れる希土類元素はLaだけである。Laの一部はアルカ
リ土類元素(E)で置換する必要がある。Laのアルカ
リ土類元素(E) Kよる置換量を示すeを0.01≦
e≦0.4としたのは、・が0.01未満では焼結性を
向上させることができず、一方0.4を超えると抵抗率
が上昇するためである。
-h, notation C・ζ゛Cexpress′! The conductive oxide is T,acoo-LaMnO-LaNiO8iJ i
4 Hey""(,'X-aMnOs"5
3 3-・It is a body. La is the only rare earth element contained in the conductive oxide represented by such a formula. A part of La needs to be replaced with an alkaline earth element (E). The alkaline earth element (E) of La, e indicating the amount of substitution by K, is 0.01≦
The reason why e≦0.4 is set is that if the value is less than 0.01, the sinterability cannot be improved, whereas if it exceeds 0.4, the resistivity increases.

また、Mnの一部をFe、 Co、 N1(F)で置換
してもよい。MnのFeによる置換量を示すfを0くf
<0.5とし念のはfが0.5を超えると抵抗率が上昇
するためである。MnのCo * Nlによる置換量を
示すfを0≦f≦0.5としたのは、La Co Os
 −LaMnO3−LaNIO,型の複合酸化物におい
てLaMnO3型の酸化物が主体であることを表わすも
のである。
Further, a part of Mn may be replaced with Fe, Co, or N1(F). f, which indicates the amount of Mn replaced by Fe, is 0.
The reason for setting <0.5 is that when f exceeds 0.5, the resistivity increases. The reason why f, which indicates the amount of substitution of Mn by Co*Nl, is set to 0≦f≦0.5 is because La Co Os
This indicates that -LaMnO3-LaNIO, type composite oxide is mainly composed of LaMnO3 type oxide.

また、本発明において、導電性酸化物として、次式 %式%) (ただし、G 二Fe、 Co、 Mn、 0≦g≦0
.5)にて表わされるものを用いてもよい。
In addition, in the present invention, as a conductive oxide, the following formula % formula %) (However, G2Fe, Co, Mn, 0≦g≦0
.. 5) may be used.

上記式にて表わされる導電性酸化物は LaCo0−LaMnO−LaNiO型においてLaN
iO3が主体となっているものである。このような式で
表わされる導電性酸化物に含有される希土類元素はLa
だけである。また、Laの一部をアルカリ土類元素で置
換することは抵抗率を低下させる効果がない。
The conductive oxide represented by the above formula is LaCo0-LaMnO-LaNiO type.
It is mainly composed of iO3. The rare earth element contained in the conductive oxide represented by this formula is La
Only. Furthermore, replacing a portion of La with an alkaline earth element has no effect of lowering resistivity.

これに対して、Nlの一部はFa、 Co、 Mn(G
)で置換してもよい。N1のFeによる置換量を示すg
をO≦g≦0.5としたのはgが0.5を超えると抵抗
率が上昇するためである。NlのCo、Mnによる置換
量を示すgを0≦g≦0.5としたのは、LaCo0−
LaMnO−LaNiO5型の複合酸化物においてLa
N i Os型の酸化物が主体であることを表わすもの
である。
On the other hand, a part of Nl is Fa, Co, Mn(G
) may be replaced. g indicating the amount of substitution of N1 by Fe
The reason why O≦g≦0.5 is set is that when g exceeds 0.5, the resistivity increases. The reason why g, which indicates the amount of substitution of Nl by Co and Mn, is set to 0≦g≦0.5 is because LaCo0-
In the LaMnO-LaNiO5 type composite oxide, La
This indicates that the oxide is mainly of the N i Os type.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例1〜18及び比較例1〜5 原料としてLa20.、 Pr20.、 Nd2O3,
Sm2O3゜Gd2O3,Dy2o、、 Ho2O3,
Er2O3* BaC0,、CaCO5゜5rCOCo
 OFe ONIO,MnO2を用い、そ3’    
25’    23’ れぞれ下記第1表及び第2表に示す組成となるように秤
量・調合した。次に、ボールミルで均一に粉砕混合し念
後、乾燥した。つづいて、アルミナルツボに入れて大気
中、約1100”Cで3時間仮焼した。次いで、ボール
ミルで粉砕・混合し次後、再び仮焼した。更に、ゴール
ミルで粉砕・混合し、導電性酸化物粉末を得た。
Examples 1 to 18 and Comparative Examples 1 to 5 La20. , Pr20. , Nd2O3,
Sm2O3゜Gd2O3, Dy2o, Ho2O3,
Er2O3* BaC0,, CaCO5゜5rCOCo
Using OFe ONIO, MnO2,
25' and 23' were weighed and prepared to have the compositions shown in Tables 1 and 2 below, respectively. Next, the mixture was uniformly ground and mixed using a ball mill, and then dried. Next, it was placed in an aluminum crucible and calcined in the air at about 1100"C for 3 hours. Next, it was crushed and mixed in a ball mill, and then calcined again. Furthermore, it was crushed and mixed in a goal mill, and conductive oxidation was performed. A powder was obtained.

実施例19〜24及び比較例6,7 原料としてLal Ni+ Fe、 Co+ Mnの各
金属元素の酢酸塩を用い、それぞれ下記第3表に示す組
成となるように秤量した。次に、水溶液として十分に攪
拌し友後、当量のシュウ酸を加え、構成金属シュウ酸塩
の共沈物を得た。これを水洗、乾燥し几後、700〜1
000℃で仮焼して導電性酸化物粉末を得た。
Examples 19 to 24 and Comparative Examples 6 and 7 Acetate salts of each metal element, Lal Ni+Fe and Co+Mn, were used as raw materials and were weighed so as to have the compositions shown in Table 3 below. Next, the aqueous solution was sufficiently stirred and an equivalent amount of oxalic acid was added to obtain a coprecipitate of the constituent metal oxalates. After washing this with water and drying it, 700-1
A conductive oxide powder was obtained by calcining at 000°C.

以上のようにして得られた導電性酸化物粉末にテレピネ
オール、酢酸エチル及びPbO−B203−8 iO2
を主成分とするガラスフリットを加えて導電ペーストを
作製し友。これらの導電ペーストをそれぞれスクリーン
を用いてアルミナ基板上に印刷し、100℃で30分間
予備乾燥した後、大気中、700〜1000℃で30分
間焼成して導体層を形成した。
Terpineol, ethyl acetate and PbO-B203-8 iO2 were added to the conductive oxide powder obtained as above.
A conductive paste is made by adding glass frit whose main ingredient is . Each of these conductive pastes was printed on an alumina substrate using a screen, pre-dried at 100°C for 30 minutes, and then fired in the air at 700-1000°C for 30 minutes to form a conductive layer.

これら導体層について、直流四端子法で測定した抵抗率
及び熱膨張係数を下記第1表〜第3表に併記する。なお
、第3表中の比較例8は従来のAgを導体とするペース
トの測定結果である。
The resistivities and thermal expansion coefficients of these conductor layers measured by the DC four-probe method are also listed in Tables 1 to 3 below. Note that Comparative Example 8 in Table 3 is the measurement result of a conventional paste using Ag as a conductor.

第1表〜第3表から明らかなように、希土類元素による
置換量が適当でない場合(比較例1.2.4.5)、あ
るいはCo又はNlのFeによる置換量が多い場合(比
較例3.6)には、抵抗率が上昇し実用的でない。また
、導電性酸化物に対して低融点ガラスを全く添加しなか
った場合(比較例7)には、アルミナ基板上での接着強
度が0であり、導電ペーストとしては使用できない。こ
れに対して、実姉例の導電ペーストはガラスの添加量が
増加するに伴い、抵抗率が上昇し、熱膨張係数が減少す
る傾向があるが、全ての実施例で抵抗率が10−2(Ω
・clrL)オーダーの低い値となり、熱膨張係数もア
ルミナ基板の熱膨張係数(3〜7 X 10−6/”C
)とほぼ同等になっている。なお、比較例8(銀を導体
とする市販のイースト)では、抵抗率は10−50・ぼ
と極めて低いが、熱膨張係数が大きく、割れや1反りが
生じることがある。
As is clear from Tables 1 to 3, when the amount of substitution with rare earth elements is inappropriate (Comparative Example 1.2.4.5), or when the amount of Co or Nl replaced with Fe is large (Comparative Example 3), .6) increases the resistivity and is not practical. Further, in the case where no low melting point glass was added to the conductive oxide (Comparative Example 7), the adhesive strength on the alumina substrate was 0, and it could not be used as a conductive paste. On the other hand, as the amount of glass added increases in the conductive pastes of the sister examples, the resistivity tends to increase and the coefficient of thermal expansion tends to decrease; however, in all examples, the resistivity was 10-2 ( Ω
- A low value on the order of clrL), and the thermal expansion coefficient is the same as that of an alumina substrate (3 to 7
) is almost equivalent. In addition, in Comparative Example 8 (commercially available yeast using silver as a conductor), the resistivity is extremely low at 10-50, but the coefficient of thermal expansion is large and cracks and warping may occur.

なお、実施例2の導電ペーストをPMN系電正電歪素子
コンデンサ用B a T I O3にスクリーン印刷し
た後、120℃で30分間乾燥し、更に大気中、900
℃で30分間焼き付けて導体層を形成し友ところ、電極
として十分機能することが確認された。
In addition, after screen printing the conductive paste of Example 2 on B a T I O3 for PMN-based electropositive electrostrictive element capacitors, it was dried at 120°C for 30 minutes, and further dried at 900°C in the air.
A conductive layer was formed by baking at ℃ for 30 minutes, and it was confirmed that it functioned well as an electrode.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、抵抗率が小さく、セ
ラミック磁器との接合性が良好で、しかも安価であり、
特に積層タイプのセラミック電子部品の電極用として工
業的価値が極めて大きい導電ペーストを提供できるもの
である。
As detailed above, according to the present invention, the resistivity is low, the bondability with ceramic porcelain is good, and the cost is low.
In particular, it is possible to provide a conductive paste that has extremely high industrial value as an electrode for laminated ceramic electronic components.

Claims (4)

【特許請求の範囲】[Claims] (1)Co、Mn、Ni系複合酸化物系導電性粉末を導
電体として含有する導電ペーストにおいて、導電性酸化
物93〜98重量%に対し、低融点ガラスを7〜2重量
%添加することを特徴とする導電ペースト。
(1) In a conductive paste containing Co, Mn, Ni-based composite oxide-based conductive powder as a conductor, 7-2% by weight of low-melting glass is added to 93-98% by weight of conductive oxide. A conductive paste featuring:
(2)導電性酸化物が次式 (A_1_−_bB_b)(Co_1_−_dD_d)
O_3(ただし、A:La、Pr、Nd、Sm、Gd、
Dy、Ho、Erのうち少なくとも1種、 B:Ba、Ca、Sr、0.4≦b≦0.8D:Fe、
Ni、Mn、0≦d≦0.5) にて表わされることを特徴とする特許請求の範囲第1項
記載の導電ペースト。
(2) The conductive oxide has the following formula (A_1_-_bB_b) (Co_1_-_dD_d)
O_3 (However, A: La, Pr, Nd, Sm, Gd,
At least one of Dy, Ho, Er, B: Ba, Ca, Sr, 0.4≦b≦0.8D: Fe,
The conductive paste according to claim 1, characterized in that it is represented by Ni, Mn, 0≦d≦0.5).
(3)導電性酸化物が次式 (La_1_−_eE_e)(Mn_1_−_fF_f
)O_3(ただし、E:Ba、Ca、Sr、0.01≦
e≦0.4F:Fe、Co、Ni、0≦f≦0.5) にて表わされることを特徴とする特許請求の範囲第1項
記載の導電ペースト。
(3) The conductive oxide has the following formula (La_1_-_eE_e)(Mn_1_-_fF_f
)O_3 (however, E: Ba, Ca, Sr, 0.01≦
The conductive paste according to claim 1, characterized in that e≦0.4F: Fe, Co, Ni, 0≦f≦0.5).
(4)導電性酸化物が次式 La(Ni_1_−_gG_g)O_3 (ただし、G:Fe、Co、Mn、0≦g≦0.5)に
て表わされることを特徴とする特許請求の範囲第1項記
載の導電ペースト。
(4) The conductive oxide is represented by the following formula La(Ni_1_-_gG_g)O_3 (G: Fe, Co, Mn, 0≦g≦0.5) The conductive paste according to item 1.
JP14373185A 1985-06-29 1985-06-29 Conducting paste Pending JPS625508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14373185A JPS625508A (en) 1985-06-29 1985-06-29 Conducting paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14373185A JPS625508A (en) 1985-06-29 1985-06-29 Conducting paste

Publications (1)

Publication Number Publication Date
JPS625508A true JPS625508A (en) 1987-01-12

Family

ID=15345696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14373185A Pending JPS625508A (en) 1985-06-29 1985-06-29 Conducting paste

Country Status (1)

Country Link
JP (1) JPS625508A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5705100A (en) * 1994-12-30 1998-01-06 Murata Manufacturing Co., Ltd. Resistive material, and resistive paste and resistor comprising the material
US5705099A (en) * 1995-04-18 1998-01-06 Murata Manufacturing Co., Ltd. Resistive material composition, resistive paste, and resistor
US5773566A (en) * 1995-04-18 1998-06-30 Murata Manufacturing Co., Ltd. Resistive material composition, resistive paste, and resistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5705100A (en) * 1994-12-30 1998-01-06 Murata Manufacturing Co., Ltd. Resistive material, and resistive paste and resistor comprising the material
US5705099A (en) * 1995-04-18 1998-01-06 Murata Manufacturing Co., Ltd. Resistive material composition, resistive paste, and resistor
US5773566A (en) * 1995-04-18 1998-06-30 Murata Manufacturing Co., Ltd. Resistive material composition, resistive paste, and resistor

Similar Documents

Publication Publication Date Title
JP3902546B2 (en) Reduction-resistant dielectric ceramic composition
JP2001230146A (en) Laminated ceramic capacitor and method of manufacturing it
JPH0821257B2 (en) Non-reducing dielectric ceramic composition and multilayer ceramic capacitor using the same
CN100371295C (en) Dielectric ceramic composition and electronic component
JPH0222806A (en) Laminated ceramic capacitor
JP3323801B2 (en) Porcelain capacitors
JPS6224388B2 (en)
JPS625508A (en) Conducting paste
JP3030557B2 (en) Electronic components using dielectric porcelain materials
US20020105022A1 (en) Monolithic semiconducting ceramic electronic component
JP2669184B2 (en) Non-reducing dielectric porcelain composition
JP4984958B2 (en) Multilayer thermistor and manufacturing method
JP2001307944A (en) Method for manufacturing laminated ceramic capacitor and paste for external electrode
JP3030558B2 (en) Dielectric porcelain material
JP3158553B2 (en) Non-reducing dielectric ceramic composition
JPS6139314A (en) Nonreduced dielectric porcelain composition
JP2671422B2 (en) Non-reducing dielectric porcelain composition
JPS6386319A (en) Dielectric ceramic composition
JP2669185B2 (en) Non-reducing dielectric porcelain composition
JP3158567B2 (en) Porcelain multilayer capacitors
JP3158569B2 (en) Non-reducing dielectric ceramic composition
JPH05139813A (en) Non-reducing dielectric ceramic composition
JP3158552B2 (en) Non-reducing dielectric ceramic composition
JPS61225711A (en) Conducting paste
JPS61107605A (en) Donductive paste