JPS6254998B2 - - Google Patents

Info

Publication number
JPS6254998B2
JPS6254998B2 JP3082185A JP3082185A JPS6254998B2 JP S6254998 B2 JPS6254998 B2 JP S6254998B2 JP 3082185 A JP3082185 A JP 3082185A JP 3082185 A JP3082185 A JP 3082185A JP S6254998 B2 JPS6254998 B2 JP S6254998B2
Authority
JP
Japan
Prior art keywords
tooth profile
rotor
tooth
gap
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3082185A
Other languages
Japanese (ja)
Other versions
JPS61190184A (en
Inventor
Kyotada Mitsuyoshi
Noboru Tsuboi
Kunihiko Nishitani
Kazuo Kubo
Seiji Yoshimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3082185A priority Critical patent/JPS61190184A/en
Publication of JPS61190184A publication Critical patent/JPS61190184A/en
Publication of JPS6254998B2 publication Critical patent/JPS6254998B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/082Details specially related to intermeshing engagement type pumps
    • F04C18/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔技術分野〕 本発明は、スクリユー式流体機械のスクリユー
ロータの製造方法に関し、詳しくは、雌雄ロータ
をタイミングギヤ等の同期装置により両ロータを
互いに接触しないように同期回転せしめるタイプ
の無給油式スクリユー流体機械、例えばスクリユ
ー圧縮機やスクリユー式真空ポンプ、におけるス
クリユーロータの製造方法に関する。 〔従来技術〕 上記タイプの流体機械、例えば圧縮機は、油冷
式圧縮機に較べると、ロータは昇温し易く20℃以
上にもなる。従つて、このタイプの圧縮機の設計
においては、両ロータの熱膨張を十分考慮して運
転中に両ロータが干渉することのないようにしな
ければならない。 その為、従来は、運転中の両ロータの熱膨張に
よる干渉を回避する手段として、両ロータの軸間
距離(CD)を十分取るようにしている。即ち、
今、両ロータの線膨張係数をβ、設定上昇温度を
ΔTとして膨張量ΔLを次式: ΔL=CD×β×ΔT で求め、雄ロータの歯先円と雌ロータの歯底円間
の離隔寸法(歯面間隙間)が、上記膨張量に、運
転中最低必要とされる安全隙間を加えた値になる
ように、両ロータの軸心位置を決定している。 ところで、圧縮効率を大ならしめる為には、両
ロータ間のシールポイントにおける歯面間隙間を
最小として圧縮気体の吸気側への漏れを少なくす
ることが重要であるが、この歯面間隙間は、上記
両ロータの軸心位置のみならず両ロータの膨張し
た状態の歯形により決定される。 従つて、両ロータの軸間距離のみで膨張量を考
慮した上で、常温時におけるロータ歯形をいくら
理想形状にしても、運転時即ち昇温時においては
理想歯形から変形した歯形となつているので、圧
縮効率が低下せざるを得なかつた。 更に、運転中の両ロータの熱膨張により干渉、
即ち両ロータのメタルタツチによる焼付きは大事
故につながるので絶対に避ける必要がある為、上
記した安全隙間が必ず設けられており、この安全
隙間により圧縮効率がさらに低下する事となる。 そして、この安全隙間による圧縮効率の低下並
びにメタルタツチによる焼付きを防止する技術と
して、ロータ表面に金属層や合成樹脂層を被覆し
て、安全隙間をほぼ零とする技術が提案されてい
る。例えば、実開昭51−62110号、実開昭52−
142218号、特公昭58−17523号、USP−3535057等
が挙げられる。 ところが、これら先行技術におけるロータ基材
のロータ歯形は、いずれも運転中の熱膨張を正確
には考慮していない大雑把な形状、寸法精度であ
り、それを被膜で被覆して互いに噛み合わせて擦
り減り摩耗させ、安全隙間を零とするようにして
いるので、ロータ表面に被覆される被膜が極めて
厚いものと成つてしまう。 このような厚い被膜は、ロータ表面に対する密
着性が不十分であるばかりか、亀裂をも発生し易
く、ロータ表面からの被膜の剥離現象が早期に頻
繁に生じ、トラブルの大きな要因となる。 上記した従来技術の背景から、近年、コーテイ
ング被膜を被覆することなく、運転時の熱膨張を
予測して、それを考慮して運転時において最適微
小隙間となる歯形を常温時の歯形としたものが提
案されてきた。例えば、特開昭57−159989号、特
開昭59−37291号、特開昭59−58189号が挙げられ
る。 上記先行特許の明細書中にも開示されている
が、雌雄ロータの熱膨張は全体的に均等に生ずる
ものではなく、第3図,に示すように、雌雄
ロータF,Mは両者共に、常温時歯形(実線で示
す)と昇温時歯形(一点鎖線で示す膨張歯形)と
は大幅に異なり、概ね各歯形点が軸心に近い程、
該歯形点の膨張量は少ないと言えるが、厳密には
有限要素法等の数学的手法により各歯形点の膨張
量を求めることができる。 ところが、上記した熱膨張を考慮した歯形にお
いては、裸のロータで如何に歯面間隙間を小さく
して、圧縮効率を向上させるかをその技術的課題
としているので、従来技術と同様にメタルタツチ
を防止する為に安全隙間が必須不可欠となる。 従つて、この安全隙間の存在による圧縮効率の
低下は依然として解消されていない。 そこで、本発明者等は熱膨張を考慮した上記先
行特許に開示されたロータ表面に、歯面間隙間を
ゼロにするためにコーテイング被膜を被覆しよう
と試みたところ、コーテイング被膜は一様に一定
の膜厚にしか付けることが出来なかつた。 更に、ロータ表面へのコーテイング被膜の密着
性に関して、その膜厚との関係について鋭意研究
した結果、二硫化モリブデンを主成分とした膜質
のものでは、50μを超えると剥離し易くなり、20
μ以下では被膜の摩滅に至る時間がスクリユー機
械の寿命までの時間より短く、このコーテイング
被膜の寿命が機械寿命を制限してしまうこととな
り、そのコーテイング被膜の最適膜厚としては30
〜50μが好ましいことを知見した。 そこで、上記最適膜厚での被覆を上記先行特許
に開示されたロータ表面に試みたところ、前述し
たように膨張歯形は各歯形点でその膨張量が異な
つており、その膨張歯形を基準にして歯面間隙間
を設定した上記先行特許に開示された歯形を有す
るロータに、均一な上記膜厚のコーテイング被膜
を被覆すると、歯形点によつてはその膜厚が歯面
間隙間以上となつてしまうことを知見した。 このように膜厚が歯面間隙間以上になると、も
はやスクリユー機械のハウジングに対して、ロー
タを組付けることができない。 〔本発明の技術的課題〕 従つて、本発明の解決すべき技術的課題は、無
給油式スクリユー流体機械のスクリユーロータに
おいて、実働時において歯面間隙間がゼロとなる
歯形として、雌雄両ロータの熱膨張による干渉
量、安全隙間、コーテイング被膜の最適膜厚を考
慮して、コーテイング前の常温時の最終歯形を決
定することにより、無給油式スクリユー流体機械
の圧縮効率を向上させることに存する。 〔本発明の要旨〕 本発明は、雌雄各ロータ表面にコーテイング被
膜を被覆してなる無給油式スクリユー流体機械の
スクリユーロータの製造方法に関するものであつ
て、常温においてクリアランスなしに互いに噛み
合う雌雄ロータ歯形を基本歯形とし、運転時に生
ずる熱膨張に起因する上記基本歯形の各歯形点の
干渉量を算出し、該各歯形点の干渉量に、運転時
に最低限与えるべき安全隙間を加味した値を常温
時の両ロータ間における各歯形点間の歯面間隙間
として与えると共に、該歯面間隙間が予め設定さ
れたコーテイング被膜の軸断面総膜厚より小さい
歯形点については、上記歯面間隙間を上記被膜の
軸断面総膜厚と等しい値に修正した歯形としたス
クリユーロータ基材を形成し、該スクリユーロー
タ基材の少なくとも歯形部表面に、ほぼ一定膜厚
のコーテイング被膜を被覆したことを特徴として
いる。 上記構成によれば、常温時のロータ歯形を、基
本的には運転時の熱膨張を考慮して決定し、かつ
その熱膨張に伴う変形による歯面間隙間を、コー
テイング被膜の最適膜厚との開係を考慮して修正
しているので、この修正された歯形にコーテイン
グ被膜を被覆したロータは、ハウジングに対する
組付けの際にも、両ロータのコーテイング被膜を
干渉させることなく組付けられると共に、運転時
にはシールポイントにおいて零隙間となり、理想
的なシールラインを形成することができ、以て圧
縮効率の向上を図ることができるという、従来に
ない格別な作用効果を奏するものである。 更に、上記コーテイング被膜が運転時間の経過
と共に、ついに摩滅してしまつたとしても、そこ
には未だ膜厚に相当する隙間が存在するので、ロ
ータ同志がメタルタツチをすることが一切ないと
いう、格別な作用効果をも奏するものである。 〔実施例〕 以下に、第1,2図に示した本発明の一実施例
について詳細に説明する。 第1図に、無給油式スクリユー圧縮機におけ
るロータの要部軸断面歯形を示している。 該雌雄両ロータF,Mは一般に非対称歯形と呼
ばれている。図中、実線は、常温時(20℃)に雄
ロータMの歯先円Cmと雌ロータFの歯底円Bfと
の間の寸法即ち歯面間間隔が零になるように配置
した各ロータの基本歯形を示し、一方、図中破線
は、圧縮機の運転中に生ずる各ロータの熱膨張に
起因する基本歯形の軸直角断面歯形における各歯
形点の干渉量、及び運転中に雄ロータの外周円と
雌ロータの歯底円との間に最低与えるべき安全隙
間を考慮した上で決定した雌ロータの修正歯形の
概念図を示している。 第1図中実線で示された常温時の各ロータ基本
歯形は次の通りである。 雌ロータ歯形 雌ロータFは、その各歯のピツチ円Pfの外側に
アデンダムAfを有し且つ下記のロータ歯形を有
する。 (前進歯形) ピツチ円(Pf)と、雌雄ロータの各中心点
(Of,Om)を結ぶ線との交点(O1)を中心とする
半径(SR1)の円弧(d2−e2)と、 半径(O1−e2)の延長線上に中心点(O2)を有
する半径(SR2)の円弧(e2−f2)と、 半径(O2−f2)の延長線上に中心点(O3)を有
する半径(SR3)の円弧(f2−g2)と、 歯先円(Cf)上の円弧(g2−a2)と、 を順に接続してなる。 但し、点(d2)は中心点(Of,Om)を結ぶ線
上の点であり、点(f2)はピツチ円(Pf)より内
側に位置している。 (追従側歯形) 雄ロータ(M)の円弧(d1−c1)によつて創成
される創成曲線(d2−c2)と、 点(O5)を中心とする半径(SR5)の円弧(c2
b2)と、 ピツチ円(Pf)の点の(O7)を中心とする半径
(SR7)の円弧(b2−a2)と、 を順に接続してなる。 但し、点(b2)はピツチ円(Pf)上の点であ
る。 雄ロータ歯形 雄ロータMは、その各歯底のピツチ円Pmの内
側にアデンダムAfに対応するデデンダムDmを有
し且つ下記のロータ歯形を有する。 (前進歯形) ピツチ円(Pm)と、雌雄ロータの各中心点
(Of,Om)を結ぶ点との交点(m)を中心とし
かつ上記半径(SR1)に等しい半径の円弧(d1
e1)と、 雌ロータ(F)の上記円弧(e2−f2)によつて創成
される創成曲線(e1−f1)と、 雌ロータ(F)の円弧(f2−g2)によつて創成され
る創成曲線(f1−g1)と、 歯底円(Bm)上の円弧(g1−a1)と、 を順に接続してなる。 但し、点(d1)は中心点(Of,Om)を結ぶ線
上の点で且つ歯底円(Bf)上の点であり、点
(f1)はピツチ円(Pm)より外方に位置してい
る。 (追従側歯形) 中心点(Of,Om)を結び線上の点(O4)を中
心とする半径(SR4)の円弧(d1−c1)と、 雌ロータ(F)の上記円弧(b2−c2)によつて創成
される創成曲線(c1−b1)と、 ピツチ円(Pm)の点(O8)を中心とする半径
(SR8)の円弧(b1−a1)と、 を順に接続してなる。 但し、点(b1)はピツチ円(Pm)上の点であ
る。 雌雄各ロータの常温時における基本歯形は上記
の通りであるが、この基本歯形は一例に過ぎず、
これに限定されるものではないことは勿論であ
る。この実施例においては、更に、両ロータ軸心
間距離は67mm、雄ロータMの歯数は5枚、その歯
先円Cmの径寸法は90mm、そのピツチ円Pmの径
寸法は60.909mm、雌ロータFの歯数は6枚、その
歯先円Cfの寸法は76mm、そのピツチ円Pfの径寸
法は73.091mmに夫々設定している。 さて次に、圧縮機の運転時における各ロータの
熱膨張を考慮して常温時の各ロータ最終歯形を決
定するため、第2図(〜)に示すように、第
1図に示した常温時の基本歯形のロータM,Fが
熱膨張した歯形を算出し、該膨張歯形の仮想ロー
タを回転させて各歯形点の干渉量を算出する。
尚、上記膨張歯形は各ロータが200℃になつた場
合を想定している。 〈第2図〉 第2図は第1図と同一のロータ噛み合い状態
を示しており、今この状態を各ロータ回転角
「O」とする。この回転状態では点d1とd2とが接
触してシールラインの一点を形成するが、両点は
互いに重なつており、点d1〜d2間の干渉量ε′は
160μとなつている。 〈第2図) 第2図は、各ロータ回転角が12゜である場合
のロータの噛み合い状態を示している。この状態
では、点b1とb2とが接触してシールラインの一点
を形成するが、両点は互いに重なつており、点b1
〜b2間の干渉量ε2′は60μとなつている。 〈第2図) 第2図は、各ロータ回転角が24゜である場合
のロータ噛み合い状態を示している。この状態で
は、点a1とa2とがまた点g1とg2とが夫々接触して
シールラインの一点を形成するが、それぞれの両
点は互いに重なつており、点a1〜a2間の干渉量ε
3′および点g1とg2間の干渉量ε4′は夫々160μとな
つている。 〈第2図〉 第2図は、各ロータ回転角が48゜である場合
のロータ噛み合い状態を示している。この状態で
は、点d1とc2とが接触してシールラインの一点を
形成するが、両点は互いに重なつており、点d1
c2間の干渉量ε5′は130μとなつている。 〈第2図) 第2図は、各ロータ回転角が54゜である場合
のロータ噛み合い状態を示している。この状態で
は、点f1とf2とが接触してシールラインの一点を
形成するが、両点は互いに重なつており、点f1
f2間の干渉量ε6′は60μとなつている。 〈第2図) 第2図は、各ロータ回転角が66゜である場合
のロータ噛み合い状態を示している。この状態で
は、点e1とe2とが接触してシールラインの一点を
形成するが、両点は互いに重なつており、点e1
e2間の干渉量ε7′は60μとなつている。 上記の如くして両ロータの歯形間の熱膨張によ
る干渉量ε1′〜ε7′が求まれば、この干渉量ε
1′〜ε7′に基づいて、該干渉量を吸収し得るよう
に第1図中実線で示した常温時の各ロータの基本
歯形を修正すればよい。 この歯形修正は、雌雄ロータの何れか一方のみ
で干渉量を吸収するような修正、両ロータで吸収
するような修正のいずれでもよいが、本実施例で
は、雄ロータMの歯形を基準歯形としてこの修正
は行わず、雌ロータFの歯形のみを修正してい
る。 即ち、本実施例は、雌雄両ロータの熱膨張によ
る干渉を雌ロータの歯形修正により吸収するよう
にしており、雄ロータの最終歯形を常温時の基本
歯形そのものとしている。 一方、雌ロータの最終歯形を決定するに際し
て、まず修正歯形を求める場合、上記した雌雄両
ロータの熱膨張による干渉量を考慮するだけでは
不十分である。即ち、この種無給油式圧縮機にお
いては、同期歯車が両ロータの軸端に設けられて
おり、この同期歯車のバツクラシユやその他機械
要素の製作誤差、組立誤差等を考慮して、運転
時、ロータ歯面間に僅かの安全隙間が保持される
ように歯形設計される必要がある。 この安全隙間は、一般に歯直角断面において20
μ程度であり、本実施例では20μとしている。 更に、この種無給油式圧縮機のロータの歯面に
は、コーテイング被膜が被覆されるが、上記雌ロ
ータ歯形を修正するに当つてはこのコーテイング
被膜の膜厚をも考慮しなければならない。つま
り、雌ロータの最終歯形と雄ロータの最終歯形と
のなす歯面間隙間は、前記膨張干渉量、安全隙
間、コーテイング被膜の膜厚の三者を考慮する必
要がある。 即ち、今、膨張干渉量をε′、安全隙間を20
μ、膜厚を35μとすると、上記膨張干渉量が少な
い歯形点では、その歯形間隙間が ε′+20μ≦35×2=70μ となり、コーテイング被膜を設けた場合には、コ
ーテイング被膜同志が干渉することになる。 従つて、そのようなコーテイング被膜同志が干
渉する歯形点については、その歯形間隙間をコー
テイング被膜の総膜厚(雌雄ロータの膜厚の計、
即ち本実施例では70μ)の寸法に修正する。 以下、これを具体的に表に示す各雌ロータ歯
形点a2〜g2における歯面間隙間εの算出手順に基
づいて説明する。
[Technical Field] The present invention relates to a method for manufacturing a screw rotor for a screw type fluid machine, and more specifically, a method for manufacturing a screw rotor for a screw type fluid machine, and more specifically, a method for manufacturing a screw rotor for a screw type fluid machine. The present invention relates to a method for manufacturing a screw rotor in a screw fluid machine, such as a screw compressor or a screw vacuum pump. [Prior Art] In the above-mentioned type of fluid machine, for example, a compressor, the rotor is more likely to heat up to 20° C. or higher than in an oil-cooled compressor. Therefore, when designing this type of compressor, sufficient consideration must be given to the thermal expansion of both rotors to prevent interference between the two rotors during operation. Therefore, conventionally, as a means to avoid interference due to thermal expansion of both rotors during operation, a sufficient distance between the axes (CD) of both rotors has been set. That is,
Now, with the coefficient of linear expansion of both rotors as β and the set temperature increase as ΔT, the expansion amount ΔL is calculated using the following formula: ΔL=CD×β×ΔT, and the distance between the tip circle of the male rotor and the bottom circle of the female rotor is determined by the following formula: ΔL=CD×β×ΔT The axial center positions of both rotors are determined so that the dimension (gap between tooth surfaces) is the value obtained by adding the above expansion amount to the minimum safety gap required during operation. By the way, in order to increase the compression efficiency, it is important to minimize the gap between the tooth surfaces at the seal point between both rotors to reduce the leakage of compressed gas to the intake side. , is determined not only by the axial center positions of the two rotors but also by the tooth profiles of the two rotors in the expanded state. Therefore, no matter how ideal the rotor tooth profile is at room temperature, considering the amount of expansion based only on the distance between the axes of both rotors, the tooth profile will be deformed from the ideal tooth profile during operation, that is, when the temperature rises. Therefore, the compression efficiency had to be lowered. Furthermore, interference occurs due to thermal expansion of both rotors during operation.
In other words, seizure due to the metal touch of both rotors will lead to a serious accident and must be avoided at all costs, so the above-mentioned safety gap is always provided, and this safety gap will further reduce the compression efficiency. As a technique for preventing a decrease in compression efficiency due to this safety gap and seizure due to metal touch, a technique has been proposed in which the rotor surface is coated with a metal layer or a synthetic resin layer to reduce the safety gap to almost zero. For example, Utility Model Application No. 51-62110, Utility Model Application No. 52-
142218, Special Publication No. 58-17523, USP-3535057, etc. However, the rotor tooth profile of the rotor base material in these prior art has a rough shape and dimensional accuracy that do not accurately take into account thermal expansion during operation, and it is difficult to cover them with a film and mesh them with each other to rub them. Since the safety gap is reduced to zero by wear and tear, the coating coated on the rotor surface becomes extremely thick. Such a thick coating not only has insufficient adhesion to the rotor surface, but is also prone to cracking, and peeling of the coating from the rotor surface occurs early and frequently, which is a major cause of trouble. Based on the background of the above-mentioned conventional technology, in recent years, without applying a coating film, the thermal expansion during operation is predicted, and the tooth profile that provides the optimum minute gap during operation is determined by taking that into account at room temperature. has been proposed. Examples include JP-A-57-159989, JP-A-59-37291, and JP-A-59-58189. As disclosed in the specification of the above-mentioned prior patent, the thermal expansion of the male and female rotors does not occur equally throughout the entire body, and as shown in FIG. The tooth profile during heating (indicated by the solid line) and the tooth profile at temperature rise (the expansion tooth profile indicated by the dashed line) are significantly different, and in general, the closer each tooth profile point is to the axis, the more
Although it can be said that the amount of expansion of the tooth profile points is small, strictly speaking, the amount of expansion of each tooth profile point can be determined by a mathematical method such as the finite element method. However, in the case of tooth profiles that take thermal expansion into account, the technical challenge is how to reduce the gap between tooth surfaces in a bare rotor and improve compression efficiency, so metal touch is used as in the conventional technology. To prevent this, a safety gap is essential. Therefore, the reduction in compression efficiency due to the presence of this safety gap remains unresolved. Therefore, the present inventors attempted to apply a coating film to the rotor surface disclosed in the above-mentioned prior patent in consideration of thermal expansion in order to reduce the gap between the tooth surfaces to zero, and found that the coating film was uniformly fixed. It could only be applied to a film thickness of . Furthermore, as a result of intensive research into the relationship between the adhesion of the coating film to the rotor surface and its film thickness, we found that films whose main component is molybdenum disulfide tend to peel off when the thickness exceeds 50μ.
Below μ, the time it takes for the coating to wear out is shorter than the life span of the screw machine, and the life of this coating film limits the machine life, so the optimal thickness of the coating film is 30
We have found that ~50μ is preferable. Therefore, when we attempted to coat the rotor surface disclosed in the prior patent with the above-mentioned optimum film thickness, we found that, as mentioned above, the expansion tooth profile has a different amount of expansion at each tooth profile point, and the amount of expansion differs at each tooth profile point. When a rotor having a tooth profile disclosed in the above-mentioned prior patent in which a gap between tooth surfaces is set is coated with a coating film having a uniform thickness as described above, depending on the tooth profile points, the film thickness becomes greater than the gap between tooth surfaces. I learned that it can be put away. When the film thickness exceeds the gap between the tooth surfaces, it is no longer possible to assemble the rotor to the housing of the screw machine. [Technical problem of the present invention] Therefore, the technical problem to be solved by the present invention is to provide a screw rotor for an oil-free screw fluid machine with a tooth profile that has zero clearance between tooth surfaces during actual operation. By determining the final tooth profile at room temperature before coating, taking into account the amount of interference caused by thermal expansion of the rotor, the safety gap, and the optimal thickness of the coating film, the compression efficiency of oil-free screw fluid machines can be improved. Exists. [Summary of the Invention] The present invention relates to a method for manufacturing a screw rotor for an oil-free screw fluid machine, in which the male and female rotors are coated with a coating film, and the male and female rotors mesh with each other without clearance at room temperature. The tooth profile is taken as a basic tooth profile, and the amount of interference at each tooth profile point of the basic tooth profile due to thermal expansion that occurs during operation is calculated, and the amount of interference at each tooth profile point is calculated by adding the minimum safety gap that should be provided during operation. It is given as the gap between tooth flanks between each tooth profile point between both rotors at room temperature, and for tooth profile points where the gap between tooth flanks is smaller than the preset axial cross-sectional total film thickness of the coating film, the above-mentioned gap between tooth flanks is given. A screw rotor base material having a tooth profile corrected to a value equal to the total axial cross-sectional thickness of the coating was formed, and at least the surface of the tooth profile portion of the screw rotor base material was coated with a coating film having a substantially constant thickness. It is characterized by According to the above configuration, the rotor tooth profile at room temperature is basically determined by taking thermal expansion during operation into consideration, and the gap between the tooth surfaces due to deformation due to the thermal expansion is determined as the optimum film thickness of the coating film. Since the modification has been made taking into account the opening relationship between the two rotors, the rotor with the modified tooth profile coated with the coating film can be assembled into the housing without interfering with the coating films of both rotors. During operation, there is zero clearance at the sealing point, making it possible to form an ideal sealing line and thereby improving compression efficiency, which is an unprecedented and exceptional effect. Furthermore, even if the above-mentioned coating film eventually wears away over time, there is still a gap equivalent to the thickness of the film, so there is no chance of the rotors touching each other, which is a special feature. It also has effects. [Embodiment] An embodiment of the present invention shown in FIGS. 1 and 2 will be described in detail below. FIG. 1 shows the axial cross-sectional tooth profile of the main part of the rotor in an oil-free screw compressor. The male and female rotors F, M are generally referred to as having asymmetric tooth profiles. In the figure, the solid line indicates each rotor arranged so that the dimension between the tip circle Cm of the male rotor M and the root circle Bf of the female rotor F, that is, the gap between the tooth surfaces, becomes zero at room temperature (20°C). On the other hand, the broken lines in the figure indicate the amount of interference of each tooth profile point in the axis-perpendicular cross-sectional tooth profile of the basic tooth profile due to thermal expansion of each rotor that occurs during operation of the compressor, and the amount of interference of each tooth profile point of the male rotor during operation. A conceptual diagram of the corrected tooth profile of the female rotor is shown, which is determined by taking into consideration the minimum safety gap that should be provided between the outer circumferential circle and the root circle of the female rotor. The basic tooth profile of each rotor at room temperature, indicated by the solid line in FIG. 1, is as follows. Female rotor tooth profile The female rotor F has an addendum Af on the outside of the pitch circle Pf of each tooth, and has the following rotor tooth profile. (Forward tooth profile) An arc (d 2 −e 2 ) with radius (SR 1 ) centered on the intersection (O 1 ) of the pitch circle (Pf) and the line connecting the center points (Of, Om) of the male and female rotors and an arc (e 2 − f 2 ) of radius (SR 2 ) with the center point (O 2 ) on the extension of radius (O 1 − e 2 ), and on the extension of radius (O 2 − f 2 ) It is formed by sequentially connecting an arc (f 2 - g 2 ) of radius (SR 3 ) having a center point (O 3 ), an arc (g 2 - a 2 ) on the tip circle (Cf), and However, the point (d 2 ) is on the line connecting the center points (Of, Om), and the point (f 2 ) is located inside the pitch circle (Pf). (Following side tooth profile) Generating curve (d 2 - c 2 ) created by the circular arc (d 1 - c 1 ) of the male rotor (M) and radius (SR 5 ) centered on point (O 5 ) arc (c 2
b 2 ), an arc (b 2 −a 2 ) of radius (SR 7 ) centered on point (O 7 ) of the pitch circle (Pf), and . However, the point (b 2 ) is a point on the pitch circle (Pf). Male rotor tooth profile The male rotor M has a dedendum Dm corresponding to the addendum Af on the inside of the pitch circle Pm at the bottom of each tooth, and has the following rotor tooth profile. (Progressive tooth profile) An arc (d 1 -
e 1 ), the generation curve (e 1 − f 1 ) created by the above arc (e 2 − f 2 ) of the female rotor (F), and the arc (f 2g 2 ) of the female rotor (F). ), the arc (g 1 a 1 ) on the root circle (Bm), and are connected in order. However, the point (d 1 ) is on the line connecting the center points (Of, Om) and on the root circle (Bf), and the point (f 1 ) is located outside the pitch circle (Pm). are doing. (Following side tooth profile) An arc (d 1 − c 1 ) of radius (SR 4 ) centered on the point (O 4 ) on the line connecting the center points (Of, Om) and the above arc of the female rotor (F) ( b 2 c 2 ), and a circular arc ( b 1 a 1 ) and are connected in order. However, the point (b 1 ) is a point on the pitch circle (Pm). The basic tooth profile of male and female rotors at room temperature is as shown above, but this basic tooth profile is only an example.
Of course, it is not limited to this. In this embodiment, the distance between the axes of both rotors is 67 mm, the number of teeth on the male rotor M is 5, the diameter of the tip circle Cm is 90 mm, the diameter of the pitch circle Pm is 60.909 mm, and the diameter of the male rotor M is 90 mm. The number of teeth of the rotor F is six, the dimension of the tooth tip circle Cf is set to 76 mm, and the diameter dimension of the pitch circle Pf is set to 73.091 mm. Next, in order to determine the final tooth profile of each rotor at normal temperature in consideration of the thermal expansion of each rotor during operation of the compressor, as shown in Fig. 2 (~), The tooth profile obtained by thermal expansion of the rotors M and F with the basic tooth profile is calculated, and the amount of interference at each tooth profile point is calculated by rotating the virtual rotor with the expanded tooth profile.
Note that the expansion tooth profile described above assumes that each rotor reaches a temperature of 200°C. <FIG. 2> FIG. 2 shows the same rotor meshing state as FIG. 1, and this state is now referred to as each rotor rotation angle "O". In this rotating state, points d 1 and d 2 come into contact and form one point on the seal line, but both points overlap each other, and the amount of interference between points d 1 and d 2 is
It is 160μ. (Fig. 2) Fig. 2 shows the meshing state of the rotors when each rotor rotation angle is 12 degrees. In this state, points b 1 and b 2 touch to form one point on the seal line, but both points overlap each other, and point b 1
The amount of interference ε 2 ′ between ~b 2 is 60μ. (Fig. 2) Fig. 2 shows the rotor meshing state when each rotor rotation angle is 24 degrees. In this state, points a 1 and a 2 and points g 1 and g 2 are in contact with each other to form one point of the seal line, but both of the points overlap each other, and points a 1 to a The amount of interference between the two ε
3 ′ and the amount of interference ε 4 ′ between points g 1 and g 2 are each 160 μ. <Fig. 2> Fig. 2 shows the rotor meshing state when each rotor rotation angle is 48 degrees. In this state, points d 1 and c 2 touch to form one point on the seal line, but both points overlap each other, and points d 1 to c 2
The amount of interference ε 5 ′ between c 2 is 130μ. (Fig. 2) Fig. 2 shows the rotor meshing state when each rotor rotation angle is 54 degrees. In this state, points f 1 and f 2 touch to form one point on the seal line, but both points overlap each other, and points f 1 to
The amount of interference ε 6 ′ between f 2 is 60μ. (Fig. 2) Fig. 2 shows the rotor meshing state when each rotor rotation angle is 66 degrees. In this state, points e 1 and e 2 touch to form one point on the seal line, but both points overlap each other, and points e 1 to
The amount of interference ε 7 ′ between e 2 is 60μ. If the amount of interference ε 1 ′ to ε 7 ′ due to thermal expansion between the tooth profiles of both rotors is determined as described above, this amount of interference ε
1 ' to ε7 ', the basic tooth profile of each rotor at normal temperature, shown by the solid line in FIG. 1, may be modified to absorb the amount of interference. This tooth profile correction may be made to absorb the amount of interference by only one of the male and female rotors, or by both rotors, but in this example, the tooth profile of the male rotor M is used as the reference tooth profile. This modification is not performed, and only the tooth profile of the female rotor F is modified. That is, in this embodiment, interference caused by thermal expansion between the male and female rotors is absorbed by modifying the tooth profile of the female rotor, and the final tooth profile of the male rotor is made to be the same as the basic tooth profile at room temperature. On the other hand, when determining the final tooth profile of the female rotor and first obtaining a corrected tooth profile, it is not sufficient to simply consider the amount of interference due to thermal expansion of the male and female rotors described above. In other words, in this type of oil-free compressor, synchronous gears are provided at the shaft ends of both rotors, and during operation, taking into account bumps in the synchronous gears and manufacturing errors and assembly errors of other mechanical elements, The tooth profile must be designed so that a small safety gap is maintained between the rotor tooth surfaces. This safety clearance is generally 20
It is approximately μ, and in this embodiment, it is set to 20μ. Furthermore, the tooth surfaces of the rotor of this type of oil-free compressor are coated with a coating film, and when modifying the female rotor tooth profile, the thickness of this coating film must also be taken into consideration. In other words, the gap between the tooth surfaces formed between the final tooth profile of the female rotor and the final tooth profile of the male rotor needs to take into account the above-mentioned expansion interference amount, safety gap, and coating film thickness. That is, now the expansion interference amount is ε′, and the safety gap is 20
μ, and the film thickness is 35 μ, at the tooth profile point where the amount of expansion interference is small, the gap between the tooth profiles is ε′ + 20 μ ≦ 35 × 2 = 70 μ, and if a coating film is provided, the coating films will interfere with each other. It turns out. Therefore, for the tooth profile points where such coating films interfere with each other, the gap between the tooth profiles can be calculated as the total film thickness of the coating film (total film thickness of male and female rotors,
That is, in this embodiment, the size is corrected to 70μ). This will be specifically explained below based on the procedure for calculating the inter-tooth surface gap ε at each of the female rotor tooth profile points a 2 to g 2 shown in the table.

【表】 表1において、No.1は、各雌ロータ歯形点a2
g2について、軸直角断面における前記熱膨張干渉
量ε′を示している。 No.2は、各雌ロータ歯形点a2〜g2について、No.
1に示した各熱膨張干渉量ε′を歯直角断面にお
ける熱膨張干渉量に換算した値を示している。 No.3は、歯直角断面における安全隙間20μをNo.
2における各熱膨張干渉量に加算した値を示して
いる。尚、この安全隙間については加算のみなら
ず、一定の係数を積算したものとしても良いこと
は勿論である。 No.4では、歯直角断面におけるコーテイング膜
厚35μ(雌雄両ロータの総膜厚は35×2)を考慮
して、No.3における各値が70μ(35μ×2)以下
である場合(雌ロータ歯形点b2,e2,f2)につ
き、該値を70μに修正している。 No.5は、No.4における各値を換算した軸直角断
面における値、つまり求めるべき歯面間隙間寸法
ε(ε〜ε)を示している。 尚、歯面間隙間ε〜εは第1図に表示し
ている。 さて、第1図において概念図として破線で示
された歯形、つまり、本実施例において求めるべ
き雌ロータの常温時での最終歯形は、実線で示さ
れる常温時での基本歯形に対して次のように表さ
れる。 尚、最終歯形におけるa2′〜g2′は、基本歯形の
各点a2〜g2に対応する点を示す。 ・ 点a2′〜b2′間は、点a2′で示す歯面間隙間ε
を、また点b2′で歯面間隙間εを有する円弧
である。 ・ 点b2′〜c2′間は、点b2′で歯面間隙間εを、
また点c2′で歯面間隙間εを有する円弧であ
る。 ・ 点c2′〜d2′間は、点c2′で歯面間隙間εを、
また点d2′で歯面間隙間εを有する修正創成
曲線である。 ・ 点d2′〜c2′間は、点d2′で歯面間隙間εを、
また点e2′で歯面間隙間εを有する円弧であ
る。 ・ 点e2′〜f2′間は、点e2′で歯面間隙間εを、
また点f2′で歯面間隙間εを有する円弧であ
る。 ・ 点f2′〜g2′間は、点f2′で歯面間隙間εを、
また点g2′で歯面間隙間εを有する円弧であ
る。 以上詳述したように、本発明によれば、上記歯
形(破線で示す最終歯形)の雌ロータ及び基本歯
形を最終歯形とする雄ロータの各ロータ歯面に、
膜厚35μのコーテイングを行つた上で、これらの
ロータを圧縮機ハウジングに組み込む場合、各ロ
ータのコーテイング被膜の表面間隙間は、理論
上、点b1〜b2′間、点e1〜e2′間及び点f1〜f2′間に
おいてゼロになり、その他の点におけるコーテイ
ング被膜の表面間隙間はゼロ以上の適当な寸法と
なる。 従つて、ロータ組付時においても、ロータのコ
ーテイング被膜間の干渉は生ぜず、ロータ組付作
業に何ら支障がない。そして、このようにしてロ
ータの組付を終えた圧縮機を運転し、ロータ温度
が初期設定温度200℃になると、両ロータが膨張
変形して、歯面間隙間が零となる。更に、仮に運
転中に歯面間隙間を超えるような異常が生じたと
しても、コーテイング被膜が互いに擦り摩耗する
だけで、メタルタツチをすることがないので、大
きな事故には至らない。 従つて、各シールポイントにおける各歯面間隙
間は、実質的にゼロとなり、以て圧縮効率は極め
て向上する。また、上記両ロータが運転時間の経
過と共に、その表面に被覆されたコーテイング被
膜が摩滅してしまつたとしても、その膜厚に相当
する歯面間隙間が存在するので、両ロータが直接
メタルタツチをすることがなく、安全性も確保さ
れている。
[Table] In Table 1, No. 1 indicates each female rotor tooth profile point a 2 ~
For g 2 , the thermal expansion interference amount ε′ in the axis-perpendicular cross section is shown. No. 2 is No. 2 for each female rotor tooth profile point a 2 to g 2 .
The figures show values obtained by converting each thermal expansion interference amount ε′ shown in 1 to the thermal expansion interference amount in the perpendicular cross section. No. 3 has a safety gap of 20μ in the normal cross section.
The value added to each thermal expansion interference amount in 2 is shown. It goes without saying that this safety gap may be calculated not only by addition but also by integrating a certain coefficient. In No. 4, considering the coating film thickness of 35 μ in the cross section perpendicular to the teeth (total film thickness of both male and female rotors is 35 × 2), if each value in No. 3 is 70 μ (35 μ × 2) or less (female For rotor tooth profile points b 2 , e 2 , f 2 ), the value is corrected to 70μ. No. 5 indicates the value in the axis-perpendicular cross section obtained by converting each value in No. 4, that is, the inter-tooth surface gap dimension ε (ε 1 to ε 7 ) to be determined. Incidentally, the inter-tooth surface gaps ε 1 to ε 7 are shown in FIG. Now, the tooth profile shown by the broken line as a conceptual diagram in FIG. 1, that is, the final tooth profile at normal temperature of the female rotor that should be determined in this example, is as follows with respect to the basic tooth profile at room temperature shown by the solid line. It is expressed as follows. Note that a 2 ′ to g 2 ′ in the final tooth profile indicate points corresponding to each point a 2 to g 2 of the basic tooth profile.・ Between points a 2 ′ and b 2 ′, the gap between tooth surfaces ε 3 is indicated by point a 2 ′.
is also a circular arc having an inter-tooth surface gap ε 2 at point b 2 ′.・ Between points b 2 ′ and c 2 ′, the gap between tooth surfaces ε 2 at point b 2 ′ is
Moreover, it is a circular arc having an inter-tooth surface gap ε 1 at point c 2 ′.・ Between points c 2 ′ and d 2 ′, the gap between tooth surfaces ε 5 is set at point c 2 ′,
It is also a modified generation curve having a gap between tooth surfaces ε 1 at point d 2 '.・ Between points d 2 ′ and c 2 ′, the gap between tooth surfaces ε 1 is set at point d 2 ′,
Moreover, it is a circular arc having a gap ε 7 between the tooth surfaces at the point e 2 '.・ Between points e 2 ′ and f 2 ′, the gap between tooth surfaces ε 1 is set at point e 2 ′,
Moreover, it is a circular arc having a gap ε 6 between the tooth surfaces at the point f 2 ′.・ Between points f 2 ′ and g 2 ′, the gap between tooth surfaces ε 6 is set at point f 2 ′,
Furthermore, it is a circular arc having an inter-tooth surface gap ε 4 at point g 2 ′. As detailed above, according to the present invention, on each rotor tooth surface of the female rotor having the above tooth profile (the final tooth profile indicated by the broken line) and the male rotor having the basic tooth profile as the final tooth profile,
When these rotors are assembled into a compressor housing after being coated with a film thickness of 35μ, the gap between the surfaces of the coating film on each rotor is theoretically between points b 1 and b 2 ′ and between points e 1 and e 2 ' and between points f 1 and f 2 ', and the inter-surface gap of the coating film at other points has an appropriate dimension of zero or more. Therefore, even when assembling the rotor, there is no interference between the coatings of the rotor, and there is no problem in the rotor assembling work. Then, when the compressor with the rotor assembled in this manner is operated and the rotor temperature reaches the initial setting temperature of 200° C., both rotors expand and deform, and the gap between the tooth surfaces becomes zero. Furthermore, even if an abnormality such as exceeding the gap between the tooth surfaces occurs during operation, the coating films will simply rub against each other and wear, and there will be no metal contact, so a major accident will not occur. Therefore, the gap between each tooth surface at each seal point becomes substantially zero, and the compression efficiency is greatly improved. In addition, even if the coating film on the surface of both rotors wears away over time, there is a gap between the tooth surfaces corresponding to the thickness of the coating, so both rotors can directly touch the metal. There is nothing to do, and safety is ensured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は雌雄ロータの常温時で歯面間隙間ゼ
ロの基本歯形(実線歯形)と、雌ロータの求めら
れるべき最終歯形(破線歯形)を示す要部軸直角
断面説明図、第1図は雌ロータの基本歯形と最
終歯形(破線歯形)との関係を示す要部軸直角断
面説明図、第2図〜は両ロータの膨張時にお
ける各回転角での歯形干渉を示すための説明図、
第3図,は雄ロータ及び雌ロータの熱膨張量
を一般的に示す説明図である。 M……雄ロータ、F……雌ロータ、Om,Of…
…軸心、ε〜ε……歯面間隙間。
Figure 1 is an explanatory cross-sectional view perpendicular to the axis of the main part showing the basic tooth profile (solid line tooth profile) with zero gap between tooth surfaces at room temperature of male and female rotors, and the desired final tooth profile (dashed line tooth profile) of the female rotor. An explanatory diagram showing the relationship between the basic tooth profile and the final tooth profile (dashed line tooth profile) of the female rotor, an explanatory cross-sectional view perpendicular to the axis of the main part, FIGS.
FIG. 3 is an explanatory diagram generally showing the amount of thermal expansion of the male rotor and the female rotor. M...male rotor, F...female rotor, Om, Of...
...Axis center, ε 1 to ε 7 ... Gap between tooth surfaces.

Claims (1)

【特許請求の範囲】[Claims] 1 雌雄各ロータ表面にコーテイング被膜を被覆
してなるスクリユー式流体機械のスクリユーロー
タの製造方法であつて、常温においてクリアラン
スなしに互いに噛み合う雌雄ロータ歯形を基本歯
形とし、運転時に生ずる熱膨張に起因する上記基
本歯形の各歯形点の干渉量を算出し、該各歯形点
の干渉量に、運転時に最低限与えるべき安全隙間
を加味した値を常温時の両ロータ間における各歯
形点間の歯面間隙間として与えると共に、該歯面
間隙間が予め設定されたコーテイング被膜の軸断
面総膜厚より小さい歯形点については、上記歯面
間隙間を上記被膜の軸断面総膜厚と等しい値に修
正した歯形としたスクリユーロータ基材を形成
し、該スクリユーロータ基材の少くとも歯形部表
面に、ほぼ一定膜厚のコーテイング被膜を被覆し
たことを特徴とするスクリユー式流体機械のスク
リユーロータの製造方法。
1. A method for manufacturing a screw rotor for a screw type fluid machine in which the male and female rotor surfaces are coated with a coating film, in which the basic tooth profile is the male and female rotor teeth that mesh with each other without clearance at room temperature, and Calculate the amount of interference between each tooth profile point of the above basic tooth profile, and calculate the amount of interference between each tooth profile point between the two rotors at room temperature by adding a value that takes into account the minimum safety gap that should be provided during operation to the amount of interference at each tooth profile point. For tooth profile points where the gap between tooth surfaces is smaller than the preset axial section total film thickness of the coating film, the inter-surface gap is set to a value equal to the axial section total film thickness of the coating. A screw for a screw-type fluid machine, characterized in that a screw rotor base material having a modified tooth profile is formed, and at least the surface of the tooth profile portion of the screw rotor base material is coated with a coating film having a substantially constant thickness. Rotor manufacturing method.
JP3082185A 1985-02-18 1985-02-18 Screw rotor of screw compressor Granted JPS61190184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3082185A JPS61190184A (en) 1985-02-18 1985-02-18 Screw rotor of screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3082185A JPS61190184A (en) 1985-02-18 1985-02-18 Screw rotor of screw compressor

Publications (2)

Publication Number Publication Date
JPS61190184A JPS61190184A (en) 1986-08-23
JPS6254998B2 true JPS6254998B2 (en) 1987-11-17

Family

ID=12314366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3082185A Granted JPS61190184A (en) 1985-02-18 1985-02-18 Screw rotor of screw compressor

Country Status (1)

Country Link
JP (1) JPS61190184A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2651253B2 (en) * 1989-12-18 1997-09-10 株式会社日立製作所 Oil-free screw machine
US5401149A (en) * 1992-09-11 1995-03-28 Hitachi, Ltd. Package-type screw compressor having coated rotors
US6506037B1 (en) 1999-11-17 2003-01-14 Carrier Corporation Screw machine
DE102016011436A1 (en) * 2016-09-21 2018-03-22 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Arrangement of screws for a screw compressor for a utility vehicle

Also Published As

Publication number Publication date
JPS61190184A (en) 1986-08-23

Similar Documents

Publication Publication Date Title
KR101029624B1 (en) Internal gear pump and inner rotor of the pump
JP5733528B2 (en) Tooth profile for rotor of positive displacement type external gear pump
US7153111B2 (en) Screw machine
CN110263367B (en) Three-dimensional tooth profile design method of harmonic reducer without interference meshing
US4695233A (en) Screw rotor mechanism
AU2002237937B2 (en) Method to rough size coated components for easy assembly
JPS6254998B2 (en)
AU2002237937A1 (en) Method to rough size coated components for easy assembly
JP2007518022A (en) Scroll compressor with lap wall with abradable coating and load bearing surface at radially outer part
CN110848137B (en) Zero-clearance screw rotor and preparation method thereof
KR101994421B1 (en) Reduced Noise Screw Machines
JPH0733828B2 (en) Scroll type vacuum pump
JPH0639109Y2 (en) Internal gear rotor
US4492546A (en) Rotor tooth form for a screw rotor machine
US6893239B2 (en) Internal geared wheel pump having asymmetric tooth tips
US20030126733A1 (en) Method to rough size coated components for easy assembly
US6079963A (en) Displacement type compressor and method of forming coating film
EP0104265B1 (en) Method for producing a pair of screw rotors of a screw compressor
JPS61197788A (en) Unlubricated screw compressor
JPS6147992B2 (en)
JP6109516B2 (en) Screw type fluid machine
JP2018003646A (en) Gas transfer body for vacuum pump, and vacuum pump using the same
JP2913111B2 (en) Screw rotor
JPH0232480B2 (en)
JP4118606B2 (en) Design method of inner rotor for oil pump and inner rotor for oil pump

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees