JPS6254977A - Light emitting element - Google Patents

Light emitting element

Info

Publication number
JPS6254977A
JPS6254977A JP60196192A JP19619285A JPS6254977A JP S6254977 A JPS6254977 A JP S6254977A JP 60196192 A JP60196192 A JP 60196192A JP 19619285 A JP19619285 A JP 19619285A JP S6254977 A JPS6254977 A JP S6254977A
Authority
JP
Japan
Prior art keywords
layer
light emitting
light
region
layer region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60196192A
Other languages
Japanese (ja)
Inventor
Katsuji Takasu
高須 克二
Masafumi Sano
政史 佐野
Hisanori Tsuda
津田 尚徳
Yutaka Hirai
裕 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60196192A priority Critical patent/JPS6254977A/en
Publication of JPS6254977A publication Critical patent/JPS6254977A/en
Priority to US07/406,815 priority patent/US4987460A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions
    • H01L33/0012Devices characterised by their operation having p-n or hi-lo junctions p-i-n devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0054Processes for devices with an active region comprising only group IV elements
    • H01L33/0058Processes for devices with an active region comprising only group IV elements comprising amorphous semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • H05B33/145Arrangements of the electroluminescent material

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To improve light emitting efficiency and reproducibility by forming a multilayer structure that the first layer region made of a non-single crystal material which contains silicon atoms, carbon atoms and fluorine atoms, and the second layer region having different optical band gas from the first region as one unit are periodically laminated to form a multilayer structure in a light emitting layer. CONSTITUTION:A light emitting element is composed of a light emitting layer made of a lower electrically insulating layer 103, a light emitting layer 104, an upper electrically insulating layer 105 and an upper electrode 106 formed on the layer 105 on a lower electrode 102 formed on a substrate 101. The light emitting layer has a multilayer structure that the first layer region I formed of a nonsingle crystal material which contains silicon atoms, carbon atoms, fluorine atoms, and as required, hydrogen atoms and the second layer region II having different optical band gap Egopt from the region I are periodically laminated as one unit, and to raise the effect, the first and second layers I, II laminated in a periodic structure are laminated in thickness for producing quantum mechanical sizing effect by alternately laminating by selecting the thickness to form a superlattice structure. Thus, sufficient light emitting amount is obtained to enhance the light emitting efficiency and the reproducibility.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、0.A機器等に使用される光源或いは表示に
使用される発光素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention provides 0. A: It relates to a light source used in equipment or a light emitting element used for display.

〔従来の技術〕[Conventional technology]

従来1発光素子の発光層を構成する材料としては、種々
のものが報告されているが、その中でも例えばAppl
、Phys、Lett 。
Various materials have been reported as materials constituting the light-emitting layer of one light-emitting device, among which, for example, Appl.
, Phys., Lett.

29 (1976)、PP620−622.J 。29 (1976), PP620-622. J.

1、Pankou、I)、E、CarlSon。1, Pankou, I), E. Carl Son.

やJpn、J、Appl、Phys、21(1982)
PP473−475.に、Takahashi他、に記
載されている水素原子を含む非単結晶シリコン(以後、
rnon−Si:HJ と記す)は、単結晶シリコンと
同様の半導体工学の適用が可能であること、および潜在
的特性に優れたものがある可能性があること等のために
注目されている材料の1つである。
Jpn, J., Appl, Phys, 21 (1982)
PP473-475. Non-single crystal silicon containing hydrogen atoms (hereinafter referred to as
rnon-Si (abbreviated as HJ) is a material that is attracting attention because it can be applied to semiconductor engineering similar to single crystal silicon and may have excellent latent properties. It is one of the

ト記引用文献に詰碁されたnon−3i:Hを発光材料
に用いた発光素子の構成は、P型不純物を含有するP型
体導層(2層)と、P型およびN型のいずれの不純物も
含有しない層(ノンドープ層)と、N型不純物を含有す
るN型伝導層(N層)とを積層したホモ接合を有する。
The structure of a light-emitting device using non-3i:H as a light-emitting material, as described in the cited document, is a P-type conductive layer (two layers) containing a P-type impurity, and either a P-type or an N-type conductive layer. It has a homojunction in which a layer containing no impurities (non-doped layer) and an N-type conductive layer (N layer) containing N-type impurities are laminated.

〔解決しようとする問題点〕[Problem to be solved]

しかしながら、この様な構成の従来報告されている発光
素子では、十分な発光量の可視光領域の発光が得られて
おらず、加えて発光強度が弱く、寿命も短い、発光特性
の安定性に欠けると実用的には改良すべき点の多くを残
している。
However, conventionally reported light-emitting devices with such configurations do not emit a sufficient amount of light in the visible light range, and in addition, have low emission intensity, short lifespan, and poor stability of light-emitting characteristics. There are many points that need to be improved in practical terms.

」二記改良案の1つとして、non−5i:Hに炭素原
子を加えて、光学的バンドギャップを拡大し、可視波長
領域の発光を得る試みもなされているが、実用的には未
だ問題を残しており、0、A機器等に使用される光源素
子や表示素子としては、未だ工業化されるには至ってい
ない。
” As one of the improvement proposals mentioned above, attempts have been made to add carbon atoms to non-5i:H to widen the optical band gap and obtain light emission in the visible wavelength region, but there are still problems in practical use. However, it has not yet been industrialized as a light source element or display element used in 0, A equipment, etc.

〔目 的〕〔the purpose〕

本発明は、上記従来の欠点を改良した発光素子を提供す
ることを主たる目的とする。
The main object of the present invention is to provide a light emitting device that improves the above-mentioned conventional drawbacks.

本発明の別の目的は、可視波長領域に充分な発光量を有
し、発光効率と再現性の向上を計った発光素子を提供す
ることである。
Another object of the present invention is to provide a light emitting element that has a sufficient amount of light emitted in the visible wavelength region and is designed to improve luminous efficiency and reproducibility.

本発明のもう1つの目的は、発光特性の安定性と寿命を
飛躍的に向上させた発光素子を提供することである。
Another object of the present invention is to provide a light emitting element with dramatically improved stability of light emitting characteristics and lifetime.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の発光素子は発光層と該発光層を挾持する一対の
電気的絶縁層と、これ等の発光層と絶縁層とを挾持し電
気的に接続された少なくとも一対の電極とを有し、前記
発光層が、シリコン原子と炭素原子と弗素原子を含む非
単結晶材料から成る第1の層領域と、該層領域と光学的
バンドギャップが異なる第2の層領域とが、これ等を一
単位として周期的に積層された多層構造を有する事を特
徴とする。
The light emitting device of the present invention has a light emitting layer, a pair of electrically insulating layers sandwiching the light emitting layer, and at least one pair of electrodes sandwiching the light emitting layer and the insulating layer and electrically connected to each other, The light-emitting layer includes a first layer region made of a non-single crystal material containing silicon atoms, carbon atoms, and fluorine atoms, and a second layer region having a different optical band gap from the layer region. It is characterized by having a multilayer structure in which layers are stacked periodically as a unit.

〔作 用〕[For production]

本発明の発光素子は、上記の構成とすることによって、
可視波長領域に発光ピークを有すると共に充分な発光量
を得、発光効率と再現性を高めることが出来、発光特性
の安定性と寿命を飛躍的に向上させることが出来る。
By having the above structure, the light emitting element of the present invention has the following features:
It has a luminescence peak in the visible wavelength region, obtains a sufficient amount of luminescence, improves luminous efficiency and reproducibility, and dramatically improves the stability of luminescent characteristics and lifespan.

以下、本発明を図面に従って具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to the drawings.

第1図は1本発明の発光素子の好適な実施態様例の層構
成を示す模式的層構成図である。
FIG. 1 is a schematic layer structure diagram showing the layer structure of a preferred embodiment of the light emitting device of the present invention.

第1図に示される発光素子は、基体101上に設けられ
た下部電極102上に、下部電気的絶縁層1031発光
層104及び上部電気的絶縁層105、該絶縁層105
上に設けられた上部電極106とで構成されている。
The light emitting device shown in FIG.
and an upper electrode 106 provided above.

第1図に示す発光素子を面状発光素子として使用する場
合には、電極102又は/及び電極106は発光色の色
までも利用するのであれば、透明であることが必要であ
り、発光量を利用するのであれば、発光する光に対して
透光性であるのが望ましい、電極102側より発光々を
取り出す場合には、基板101は電極102と同様透明
であるか若しくは発光する光に対して透光性であること
が望ましい。
When the light emitting device shown in FIG. 1 is used as a planar light emitting device, the electrode 102 and/or the electrode 106 must be transparent if the color of the emitted light is to be utilized, and the amount of light emitted is If the substrate 101 is to be used, it is desirable that the substrate 101 be transparent to the emitted light.If the emitted light is extracted from the electrode 102 side, the substrate 101 should be transparent like the electrode 102, or be transparent to the emitted light. On the other hand, it is desirable that the material be translucent.

本発明の発光素子は、前記の様に発光層がシリコン原子
(St)と炭素原子(C)と弗素原子(F)を含み、必
要に応じて水素原子(H)も含む非晶質材料(以後、r
non−3iC:F (H)と略記する)で構成される
第1の層領域(I)と、該層領域(I)とは光学的バン
ドギャップEgoptが異なる第2の層領域(II )
とが、これ等を一単位として周期的に積層された多層構
造を有する。そして、本発明の効果をより一層効果的に
達成する為には、周期構造的に積層される第1の層領域
(I)と第2の層領域(II )とは、量子力学的サイ
ズ効果が生ずる層厚に、夫々の層厚が選択されて交互に
積層され、所謂超格子構造が構築される。
As described above, the light-emitting element of the present invention has a light-emitting layer made of an amorphous material containing silicon atoms (St), carbon atoms (C), and fluorine atoms (F), and optionally also containing hydrogen atoms (H). From now on, r
a first layer region (I) composed of non-3iC:F (abbreviated as H); and a second layer region (II) having a different optical bandgap Egopt from the layer region (I).
It has a multilayer structure in which these are periodically stacked as one unit. In order to achieve the effects of the present invention even more effectively, the first layer region (I) and the second layer region (II) which are laminated in a periodic structure must have a quantum mechanical size effect. The respective layer thicknesses are selected so as to produce a layer thickness, and the layers are laminated alternately to construct a so-called superlattice structure.

第2の層領域(II )の光学的バンドギャップEgo
pt(II)は、好ましくは第1の層領M (I)の光
学的バンドギャップEgopt(I)よりも大きくなる
様に即ち、第2の層領域(II )がポテンシャルバリ
ア層の役目を担う様に材料の選択が成されて層形成され
る。
Optical bandgap Ego of the second layer region (II)
pt(II) is preferably larger than the optical bandgap Egopt(I) of the first layer region M(I), that is, the second layer region (II) plays the role of a potential barrier layer. The material selection is made and the layers are formed in a similar manner.

本発明の発光素子に於いては、半導体性中間層104は
、真性半導体特性を示す丁型伝導層若しくは、僅かにN
型又はP型伝導層として形成される。そして、non−
SiC: F (H)で構成される層は、その一般的傾
向より所謂P型及びN型のいずれの不純物も含有しない
場合には、僅かにN型傾向を示すので、丁型伝導層とす
るには、僅かにP型不純物を含有させる。
In the light emitting device of the present invention, the semiconducting intermediate layer 104 is a D-shaped conductive layer exhibiting intrinsic semiconductor characteristics or a slightly N-conducting layer.
It is formed as a type or P-type conductive layer. And non-
According to its general tendency, a layer composed of SiC: F (H) shows a slight N-type tendency when it does not contain any so-called P-type or N-type impurities, so it is treated as a D-type conductive layer. contains a slight P-type impurity.

第2図には、前記第1の層領域(I)201と前記第2
の層領域(II)202とが夫々適宜所望される層厚で
n周期交互に積層された層構造の例が示される。
FIG. 2 shows the first layer region (I) 201 and the second layer region (I) 201.
An example of a layer structure in which layer regions (II) 202 are alternately laminated in n periods with a suitably desired layer thickness is shown.

第2の層領域(II)202は、第1の層領域(I)2
01よりも、より大きな光学的バンドギャップEgop
tを有し、第1の層領域CI)201と第2の層領域(
11)202との接合部には、ペテロ接合が形成される
。第2の層領域(II)202を構成する材料としては
、non−S ic : F (H)よりも光学的/ヘ
ンドギャップEgoptがより大きい非単結晶性の半導
体材料又は非単結晶性の電気的絶縁材料が挙げられる。
The second layer region (II) 202 is the first layer region (I) 2
01, the larger optical bandgap Egop
t, the first layer region CI) 201 and the second layer region (
11) A Peter junction is formed at the junction with 202. The material constituting the second layer region (II) 202 may be a non-single crystal semiconductor material or a non-single crystal electric material having a larger optical/hand gap Egopt than non-Sic: F (H). Examples include standard insulating materials.

これ等の第2の層領域(II )202を構成する材料
は、第1の層望′域(I)201を構成する材料と化学
組成要素が異なるか或いは化学的組成比が異なるもので
あるが、その母体となる構成要素は、共通である方が発
光特性の改善をより効果的に計ることが出来る。
The materials constituting these second layer regions (II) 202 have different chemical composition elements or chemical composition ratios from the materials constituting the first layer desired regions (I) 201. However, if the base components are common, it is possible to improve the light emission characteristics more effectively.

本発明に於いて、超格子構造を導入する為の第1の層領
域(I)201及び第2の層領域(TI)202の夫々
の層厚は、夫々の層領域を構成する材料及び要求される
素子特性に応じて、適宜所望に従って決定されるが、量
子サイズ効果が顕著になる様に決められるのが望ましい
In the present invention, the respective layer thicknesses of the first layer region (I) 201 and the second layer region (TI) 202 for introducing a superlattice structure depend on the materials constituting each layer region and requirements. It is determined as desired depending on the device characteristics to be used, but it is desirable that it be determined so that the quantum size effect becomes significant.

第1及び第2の層領域の層厚としては、好ましくは、5
人〜100人、より好適には8人〜80人、最適には1
0人〜70人とされるのが望ましい。殊に、キャリアの
ドブロイ波長程度、あるいはキャリアの平均自由行程の
程度とされるのが望ましい。半導体性中間層104に上
記の超格子構造を導入する場合には、具体的には、例え
ば第1の層領域(1)201として、P型及びN型のい
ずれの不純物も含有してない所謂ノンドープのnon−
SiC:F (H)層。
The layer thickness of the first and second layer regions is preferably 5
~100 people, more preferably 8~80 people, optimally 1 person
It is desirable that the number be 0 to 70 people. In particular, it is desirable that the distance be approximately the de Broglie wavelength of the carrier or approximately the mean free path of the carrier. When introducing the above-mentioned superlattice structure into the semiconductor intermediate layer 104, specifically, for example, as the first layer region (1) 201, a so-called layer containing neither P-type nor N-type impurities is used. Non-doped non-
SiC:F(H) layer.

またはP型不純物を僅か含有されて真性半導体とされた
1型のnon−3iC:F(H)層、第2の層領域(I
I)202としては、必要に応じて水素原子(H)又は
弗素原子CF)を含み。
Alternatively, a 1-type non-3iC:F(H) layer containing a small amount of P-type impurity and made into an intrinsic semiconductor, a second layer region (I
I) 202 contains a hydrogen atom (H) or a fluorine atom (CF) as necessary.

シリコン原子(Si)と窒素原子(N)とを含む半導体
性のまたは電気的絶縁性の非単結晶材料(以後、rno
n−5iN (H,F)Jと略記する)、または、必要
に応じて水素原子(H)又は弗素原子(F)を含み、シ
リコン原子(S i)と酸素原子(0)とを含む半導体
性のまたは電気的絶縁性の非単結晶材料(以後、rno
n−3iO(H,F)J と略記する)或いはnon−
5i:Hで失々構成される。
A semiconducting or electrically insulating non-single crystal material containing silicon atoms (Si) and nitrogen atoms (N) (hereinafter referred to as rno
n-5iN (abbreviated as (H,F)J), or a semiconductor containing a hydrogen atom (H) or a fluorine atom (F) as necessary, and a silicon atom (Si) and an oxygen atom (0) electrically or electrically insulating non-single-crystalline materials (hereinafter referred to as rno
n-3iO(H,F)J) or non-
It is composed of 5i:H.

これ等の材料から成る第1の層領域CI)201及び第
2の層領域(II)202は、夫々の層厚を以って、好
ましくは、十数周期乃至数十周期交互に積層される。
The first layer region CI) 201 and the second layer region (II) 202 made of these materials are preferably laminated alternately in ten to several dozen cycles with respective layer thicknesses. .

第1の層領域(I)中に含有される弗素原子(F)は、
シリコン原子と炭素原子の自由ダングリングボンドを補
償し、その含有量は形成される層の半導体特性、光学的
特性、構造的安定性、#熱性及び素子の発光特性とその
安定性を左右する重要因子であって1本発明においては
、弗素原子CF)の含有量は好適にはシリコン原子と炭
素原子の和に対して5原子PPM〜25原子%、より好
適にはlO原子PPM〜20原子%、最適には50原子
PPM〜15原子%である。
The fluorine atoms (F) contained in the first layer region (I) are
It compensates for free dangling bonds between silicon atoms and carbon atoms, and its content is important because it affects the semiconductor properties, optical properties, structural stability, thermal properties, and light emitting properties of the device and its stability. In the present invention, the content of the fluorine atom (CF) is preferably 5 atoms PPM to 25 atom %, more preferably 1O atom PPM to 20 atom % based on the sum of silicon atoms and carbon atoms. , optimally from 50 atomic PPM to 15 atomic %.

必要に応じて含有される水素原子(H)の含有量は、弗
素原子CF)の含有量との関係及び素子に要求される素
子特性に応じて適宜所望に従って決定されるが、シリコ
ン原子と炭素原子との和に対して好適には0.O1〜3
5原子%、より好適には0.1〜30原子%、最適には
1〜30原子%とされる。又、弗素原子CF)と水素原
子(H)の総和量は、最大40原子%を越えない様に夫
々の原子が層中に含有されるのが望ましい。 本発明に
おいては、光CVD法(光エネルギーを反応に利用した
化学的気相法による堆積膜形成法)の採用により前述の
構成を与えることが出来るものであり、発光層を形成す
る為の原料物質も光CVD法に適合するものを選択して
使用するのが望ましい。
The content of hydrogen atoms (H) contained as necessary is determined as desired depending on the relationship with the content of fluorine atoms (CF) and the device characteristics required for the device. The sum with atoms is preferably 0. O1~3
The content is preferably 5 atomic %, more preferably 0.1 to 30 atomic %, and most preferably 1 to 30 atomic %. Further, it is desirable that the total amount of fluorine atoms (CF) and hydrogen atoms (H) is contained in the layer so that the total amount does not exceed 40 at %. In the present invention, the above-mentioned structure can be provided by employing the photoCVD method (deposited film formation method by chemical vapor phase method using light energy for reaction), and the raw materials for forming the light emitting layer can be provided. It is also desirable to select and use materials that are compatible with the photo-CVD method.

第1の層領域(I)201は、non−3tC: F 
(H)で構成されるものであるが、好ましくは所謂真性
(I型)の半導体特性を示す層として作成されるのが望
ましい。non−SiC: F (H)で構成される層
は、その一般的傾向より所謂P型又はN型の不純物を含
有しない場合には僅かにN型傾向を示すので、第1の層
領域(I)201をI型伝導特性とするには、僅かにP
型不純物を含有させる。
The first layer region (I) 201 is non-3tC:F
(H), preferably formed as a layer exhibiting so-called intrinsic (I-type) semiconductor characteristics. Non-SiC: A layer composed of F (H) shows a slight N-type tendency when it does not contain so-called P-type or N-type impurities, according to its general tendency. )201 to have type I conduction characteristics, a slight amount of P is required.
Contain type impurities.

第1の層領域(I)201は、発光特性は僅かに低下は
するが、P型又はN型の不純物を含有しない所謂ノンド
ープ層とすることも出来る。
The first layer region (I) 201 may be a so-called non-doped layer that does not contain P-type or N-type impurities, although the light-emitting characteristics are slightly degraded.

第1の層領域(I)201をI型伝導特性とするには、
層形成する際にP型伝導特性を与えるP型不純物を含有
させるか或いは既にnon−3iC:F(H)で構成さ
れた層中に、P型の不純物をイオンインプランテーショ
ン法等の手段で注入してやれば良い。
To make the first layer region (I) 201 have I-type conductivity,
When forming a layer, include a P-type impurity that gives P-type conductivity, or implant a P-type impurity into a layer already composed of non-3iC:F(H) by means such as ion implantation. Just do it.

P型不純物としては、所謂周期律表第■族に属する原子
(第■族原子)、即ちB(硼素)。
The P-type impurity is an atom belonging to the so-called group Ⅰ of the periodic table (group Ⅰ atom), that is, B (boron).

AM(アルミニウム)、Ga(ガリウム)。AM (aluminum), Ga (gallium).

In(インジウム)、Te(タリウム)等があり、殊に
好適に用いられるのは、B、Gaである。
Examples include In (indium) and Te (thallium), among which B and Ga are particularly preferably used.

電気的絶縁層103,105を構成する材料としては、
電気的に良好な絶縁特性を有し、発光層104での発光
々を効率良く外部に取り出すのに悪影響を与えないもの
で、成膜が容易なものであれば大概のものを採用するこ
とが出来る。
The materials constituting the electrically insulating layers 103 and 105 include:
Almost any material can be used as long as it has good electrical insulation properties, does not have a negative effect on efficiently extracting the light emitted from the light emitting layer 104 to the outside, and is easy to form. I can do it.

絶縁層103,105のいずれか一方は、発光々を外部
に取り出す為に、発光々に対して透明性である必要があ
る。絶縁層103゜105を構成する材料として、本発
明において、好適に使用されるのは具体的にはy2o3
゜5i02.非晶質の酸化シリコン(a−3iXOt−
X但し、0<x<1)、HfO2、S i 3N4.非
晶質の窒化シリ=+ン(a−3iyNt−y但し、Oく
yくl)、A交2o3.pbTi03 、非晶質のBa
TiO3、Ta205等を挙げることが出来る。
Either one of the insulating layers 103 and 105 needs to be transparent to the emitted light in order to extract the emitted light to the outside. In the present invention, specifically, y2o3 is preferably used as the material constituting the insulating layers 103 and 105.
゜5i02. Amorphous silicon oxide (a-3iXOt-
X However, 0<x<1), HfO2, S i 3N4. Amorphous silicon nitride (a-3iyNt-y, however, Oxycl), Across2o3. pbTi03, amorphous Ba
Examples include TiO3 and Ta205.

第3図には、本発明の発光素子の別の好適な実施態様例
が示される。
FIG. 3 shows another preferred embodiment of the light emitting device of the present invention.

第3図に示す発光素子は、その構造は基本的には第1図
に示す発光素子と同様である。
The structure of the light emitting device shown in FIG. 3 is basically the same as that of the light emitting device shown in FIG.

第3図に示す発光素子は、ガラス等の透明な基体301
上に、順に透明電極302.下部絶縁層3039発光層
304.上部絶縁層305゜極302及び金属電極30
6には夫々パルス状の又は鋸歯状の高周波高電界を印加
する為の電源307の接続端子が電気的に接続されてい
る。
The light emitting element shown in FIG. 3 has a transparent base 301 made of glass or the like.
Above, transparent electrodes 302 . lower insulating layer 3039 light emitting layer 304. Upper insulating layer 305° pole 302 and metal electrode 30
6 are electrically connected to connection terminals of a power source 307 for applying a pulse-like or sawtooth-like high frequency high electric field, respectively.

第3図に示す発光素子の場合、高周波電源307によっ
て高周波電界が印加されると、発光層304より発光が
起こり、発光した光は絶縁層303、透明電極302、
基体301を透過して外部へ放出される。
In the case of the light emitting element shown in FIG. 3, when a high frequency electric field is applied by a high frequency power source 307, light is emitted from the light emitting layer 304, and the emitted light is transmitted to the insulating layer 303, the transparent electrode 302,
It passes through the base 301 and is emitted to the outside.

本発明の発光素子は、可視域の発光波長を得る為に、第
1の層領域(I)の光学的バンドギャップEgoptは
、2.0eV以上とされるのが望ましい。
In the light emitting element of the present invention, in order to obtain an emission wavelength in the visible range, it is desirable that the optical bandgap Egopt of the first layer region (I) is 2.0 eV or more.

又、第1の層領域(I)の光学的バンドギャップの中心
(ミツドギャップ)での局在準位密度は、好適には5 
X 1016cm−3・e V−1以下、より好適には
I X 1016cm−3・e V−すされるのが望ま
しい。
Further, the localized level density at the center of the optical band gap (mid gap) of the first layer region (I) is preferably 5.
X 1016 cm-3·e V-1 or less, more preferably I X 1016 cm-3·e V-1.

この様に、第1の層領域(I)の物性値を制向上させる
ことが出来、従って発光効率の向上を計ることが出来る
In this way, the physical property values of the first layer region (I) can be controlled and improved, and therefore the luminous efficiency can be improved.

また、第1の層領域(I)の外部量子効率を10−4%
以上になる峰に再結合の準位の分布を制御することによ
って、高い強度の発光を示す発光素子を得ることが出来
る。
In addition, the external quantum efficiency of the first layer region (I) is 10-4%.
By controlling the distribution of recombination levels to the above peak, a light emitting element that emits light with high intensity can be obtained.

上述した様な特性を有する発光素子は、前記した様に光
CVD法によって後述の条件で作成されるのが望ましい
。本発明の発光素子の作成法は、本発明の目的が達成さ
れるのであれば、光CVD法に限定されるものではなく
、適宜所望の条件に設定して、例えばHOMOCVD法
、プラズマCVD法等によって成されても良い。
It is desirable that the light emitting element having the above-mentioned characteristics be produced by the photo-CVD method under the conditions described below. The method for producing the light-emitting element of the present invention is not limited to the photo-CVD method, but may be performed using the HOMOCVD method, the plasma CVD method, etc., by appropriately setting the desired conditions, as long as the object of the present invention is achieved. It may also be done by

本発明の発光素子を構成する基体を構成する材料として
は、通常発光素子分野において使用さ−れている材料の
殆んどを挙げることが出来る。
As the material constituting the substrate constituting the light emitting device of the present invention, most of the materials commonly used in the field of light emitting devices can be mentioned.

基体としては、導電性でも電気絶縁性であっても良いが
、比較的耐熱性に優れているのが望ましい。
The substrate may be electrically conductive or electrically insulating, but preferably has relatively good heat resistance.

導電性基体の場合には、基体と発光層との間に設けられ
る電極は、必ずしも設ける必要はない。
In the case of a conductive substrate, it is not necessary to provide an electrode between the substrate and the light emitting layer.

導電性基体としては、NiCr 、ステンレス、AM、
Cr、Mo、Au、Nb、Ta。
As the conductive substrate, NiCr, stainless steel, AM,
Cr, Mo, Au, Nb, Ta.

V、Ti等を挙げることが出来る。V, Ti, etc. can be mentioned.

電気絶縁性基体としては、ポリエステル、ポリエチレン
、ポリカーボネイト、ポリアミド。
Electrically insulating substrates include polyester, polyethylene, polycarbonate, and polyamide.

等々の合成樹脂のフィルム、又はシート、或いはガラス
、セラミックス、等々を挙げることが出来る。
Examples include films or sheets of synthetic resins, glass, ceramics, and the like.

基体として電気絶縁性のものを採用する場合には、発光
層との間の電極として、その表面が導電処理される。
When an electrically insulating substrate is used as the substrate, its surface is subjected to conductive treatment to serve as an electrode between the substrate and the light emitting layer.

例えば、ガラスであれば、その表面に、NiCr、A1
.Cr、Mo、Au、Ir、Nb。
For example, if it is glass, NiCr, A1
.. Cr, Mo, Au, Ir, Nb.

Ta、V、Ti、PL、Pd、In2O3゜S no2
. ITO(I n203+s na2)等から成る薄
膜を設ける事によって導電性が付与され、或いはポリエ
ステルフィルム等の合成樹脂フィルムであれば、NiC
r、AfL、Ag。
Ta, V, Ti, PL, Pd, In2O3°S no2
.. Conductivity can be imparted by providing a thin film made of ITO (I n203 + s na2), etc., or if it is a synthetic resin film such as a polyester film, NiC
r, AfL, Ag.

Pb、Zn、Ni、Au、Cr、Mo、Ir。Pb, Zn, Ni, Au, Cr, Mo, Ir.

Nb、Ta、V、Ti、Pt等の金属の薄膜を真空蒸着
、電子ビーム蒸着、スパッタリング等でその表面に設け
、又は前記金属でその表面をラミネート処理して、その
表面に導電性が付与される。
A thin film of a metal such as Nb, Ta, V, Ti, Pt, etc. is provided on the surface by vacuum evaporation, electron beam evaporation, sputtering, etc., or the surface is laminated with the above metal to impart conductivity to the surface. Ru.

本発明の発光素子の作成方法の具体例を第4図に示す光
CVD装置を用いて以下に説明する。以下に説明される
作成手段及び作成条件は、好適な例を示すもので、本発
明を限定するものでないことは云うまでもない。
A specific example of the method for producing a light emitting element of the present invention will be described below using a photo-CVD apparatus shown in FIG. It goes without saying that the production means and production conditions described below are only preferred examples and do not limit the present invention.

第3図中、1は堆積室であり、内部の基体支持台2上に
所望の基体3が載置される。
In FIG. 3, 1 is a deposition chamber, and a desired substrate 3 is placed on a substrate support 2 inside.

4は基体加熱用のヒータであり、導線5を介して給電さ
れ、発熱する。基体温度は特に制限されないが、一般に
発光層の光学的バンド・ギャップを大きくして可視の発
光を得るためには、350″C以下であることが望まし
い。
Reference numeral 4 denotes a heater for heating the substrate, which is supplied with electricity via a conductive wire 5 and generates heat. Although the substrate temperature is not particularly limited, it is generally desirable to be 350''C or less in order to increase the optical band gap of the light emitting layer and obtain visible light emission.

らw Q ++ ゼフtX込:iNづ弘L1  五台仲
使づ線状の原料物質を使用する場合には、適宜の気化装
置を具備させる。気化装置には、加熱沸騰を利用するタ
イプ、液体原料中にキャリアガスを通過させるタイプ等
があり、いずれでもよい。
When using a linear raw material, an appropriate vaporization device is provided. The vaporizer may be of a type that utilizes heating boiling or a type that allows a carrier gas to pass through the liquid raw material, and any of them may be used.

ガス供給源の個数は4個に限定されず、使用する原料物
質の種類の数、希釈ガス等を使用する場合においては、
該希釈ガスと原料ガスとの予備混合の有無等に応じて適
宜選択される0図中、ガス供給源6〜9の符号に、aを
付したのは分岐管、bを付したのは流量計、Cを付した
のは客流量計の高圧側の圧力を計測する圧力計、d又は
eを付したのは各気体流の開閉及び流量の調整をするた
めのバルブである。
The number of gas supply sources is not limited to four, but depending on the number of types of raw materials used, dilution gas, etc.
The gas supply sources 6 to 9 are appropriately selected depending on the presence or absence of premixing of the diluent gas and raw material gas.In the figure, a is attached to the gas supply sources 6 to 9, and the symbol a indicates the branch pipe, and the symbol b indicates the flow rate. The pressure gauge marked C is a pressure gauge that measures the pressure on the high pressure side of the customer flow meter, and the valves marked d or e are used to open and close each gas flow and adjust the flow rate.

各ガス供給源か、ら供給されるガス状の原料物質等は、
ガス導入管10の途中で混合され1図示しない換気装置
に付勢されて、室1内に導入される。又は、各ガス供給
源から交互に室l内に導入される。11は、室1内に導
入されるガスの圧力を計測するための圧力計である。ま
た、12はガス排気管であり、堆積室1内を減圧したり
、導入ガスを強制排気するための図示しない排気装置と
接続されている。
Gaseous raw materials etc. supplied from each gas supply source are as follows:
The gases are mixed in the middle of the gas introduction pipe 10, energized by a ventilation device (not shown), and introduced into the room 1. Alternatively, the gases are introduced into the chamber 1 alternately from each gas supply source. 11 is a pressure gauge for measuring the pressure of gas introduced into the chamber 1. Further, 12 is a gas exhaust pipe, which is connected to an exhaust device (not shown) for reducing the pressure inside the deposition chamber 1 and forcibly exhausting introduced gas.

13はレギュレータ・バルブである。原料ガス等を導入
する前に、室1内を排気し、減圧状態とする場合、室内
の圧力は、好ましくは5×1O−5Torr以下、より
好ましく゛はl×1(16Torr以下とされるのが望
ましい。
13 is a regulator valve. When the inside of the chamber 1 is evacuated and brought into a reduced pressure state before introducing raw material gas etc., the pressure inside the chamber is preferably 5 x 1 O-5 Torr or less, more preferably 1 x 1 (16 Torr or less). is desirable.

また、原料物質のガス等を導入した状態において、室l
内の圧力は、好ましくはlXl0−2〜100Torr
、より好ましくは5X10−2〜10Torrとされる
のが望ましい。
In addition, in the state where the raw material gas, etc. is introduced, the chamber l
The pressure inside is preferably 1X10-2 to 100 Torr.
, more preferably 5×10 −2 to 10 Torr.

本発明で使用する励起エネルギー供給源の一例として、
14は光エネルギー発生装置であって、例えば水銀ラン
プ、キセノンランプ、炭酸ガスレーザ、アルゴンイオン
レーザ、エキシマレーザ等が用いられる。なお、本発明
で用いる光エネルギーは紫外線エネルギーに限定されず
、原料ガスに化学反応を起こさせ堆積膜を形成すること
ができるものであれば、波長域を問うものではないi 光エネルギー発生装置14から適宜の光学系を用いて基
体全体或いは基体の所望部分に向けられた光15は、゛
矢印16の向きに流れている原料物質のガス等に照射さ
れる。
As an example of the excitation energy supply source used in the present invention,
Reference numeral 14 denotes a light energy generating device, such as a mercury lamp, a xenon lamp, a carbon dioxide laser, an argon ion laser, an excimer laser, or the like. Note that the light energy used in the present invention is not limited to ultraviolet energy, and the wavelength range does not matter as long as it can cause a chemical reaction in the raw material gas and form a deposited film.i Light energy generation device 14 The light 15 is directed to the entire substrate or a desired portion of the substrate using an appropriate optical system, and is irradiated onto the raw material gas, etc., which is flowing in the direction of the arrow 16.

発光素子の作成例として具体的には、まず、基体として
、ガラス基体(C#7059)を用いて、その上に導電
性層として600人厚のITO層をスパッタリングによ
り形成する。膜の抵抗値としては約・50Ω/口とする
0次に上記導電性基体3を、第4図に示す様な光CVD
装置の基体ホルダー2に設置し、まずポンプ12で真空
に排気する。真空度が約I X I O−6以下になっ
たところで、基体ホルダー2の温度を上げ、基体温度を
所望に従って設定する。
Specifically, as an example of producing a light emitting device, first, a glass substrate (C#7059) is used as a substrate, and an ITO layer with a thickness of 600 layers is formed thereon as a conductive layer by sputtering. The above conductive substrate 3 having a film resistance of approximately 50 Ω/hole was subjected to photo-CVD as shown in FIG.
It is installed in the substrate holder 2 of the apparatus, and first evacuated to a vacuum using the pump 12. When the degree of vacuum becomes about IXIO-6 or less, the temperature of the substrate holder 2 is raised and the substrate temperature is set as desired.

本発明においては、基体温度としては、好適には一20
℃〜350℃、より好適にはθ℃〜300℃とされるの
が望ましい。
In the present invention, the substrate temperature is preferably -20
It is desirable that the temperature is between .degree. C. and 350.degree. C., more preferably between .theta..degree. C. and 300.degree.

次に、CHa 、C2H6、C3H8、C4H10,C
2H4,C3H6,C4H8,C2H2,CH3C1H
,(CH3)2SiH2゜(CH3)3S tH等の炭
素化合物のガス。
Next, CHa, C2H6, C3H8, C4H10, C
2H4, C3H6, C4H8, C2H2, CH3C1H
, (CH3)2SiH2°(CH3)3S tH and other carbon compound gases.

S i 2FB 、S 1H2F2 、S iF4等の
弗素化シランガス及び必要に応じてS iH4*Si2
H6,5f3HB等のシラン系ガス、N2 、NH3、
H2NNH2、HN3 、NHaN3等の窒素系のガス
、及び必要に応じて不純物導入用のガス(B2H6、B
F3 、PH3。
Fluorinated silane gas such as S i 2FB , S 1H2F2 , S iF4 and, if necessary, S iH4*Si2
Silane gas such as H6, 5f3HB, N2, NH3,
Nitrogen gas such as H2NNH2, HN3, NHaN3, and impurity introduction gas (B2H6, B
F3, PH3.

P2H4,PF3等)を6.7.8.9のボンベ、6b
〜9bのフローメーターを用いて堆積室lに流入する。
P2H4, PF3, etc.) in 6.7.8.9 cylinder, 6b
~9b into the deposition chamber l using a flow meter.

この際H2+ A r 、 Heなどのガスを同時に流
入してもよい。
At this time, gases such as H2+ Ar and He may be simultaneously introduced.

次に、堆積室1上部より低圧水銀灯を用いて185nm
の光を基体上で約5〜50mW/Cm2の強度で照射し
、層を堆積する。
Next, a low-pressure mercury lamp was used to illuminate the film at 185 nm from the top of the deposition chamber 1.
of light is irradiated onto the substrate with an intensity of about 5-50 mW/Cm2 to deposit the layer.

P型、N型の伝導性の第1の層領域を形成するためには
、前記弗素化シラン系のガスと及び炭素系のガスと同時
にP型の場合にはB2H6等のガスをH2,Arなどの
ガスと混合して濃度を調整して反応槽に流入する。又、
N型の場合にはPH3,ASH3等のガスをH2,Ar
のガスと混合して堆積室lに流入する。ガスの流入の後
、圧力を調整し、ガスに光を照射して分解し層を堆積す
る。
In order to form the first layer region of P-type and N-type conductivity, a gas such as B2H6 in the case of P-type is mixed with H2, Ar, etc. at the same time as the fluorinated silane gas and the carbon gas. The mixture is mixed with other gases to adjust the concentration and then flows into the reaction tank. or,
In the case of N type, gas such as PH3, ASH3 is replaced with H2, Ar
The mixed gas flows into the deposition chamber l. After the gas flows in, the pressure is adjusted and the gas is irradiated with light to decompose and deposit a layer.

超格子構造を形成する為に、実際に極薄層を交互に積層
するには、各薄層を形成する為の原料ガスを、その都度
変える必要がある。即ち、異なる薄層の形成の度毎に原
料ガスの堆積室lへの導入を止め、排気装置により適当
な真空度まで排気して、オートドーピングを防ぐ様にす
る。又、各層の層厚を所望部りに制御する為にシャッタ
ー17を開閉動作させることにより励起光の照射を断続
的に行う。
In order to actually stack ultra-thin layers alternately to form a superlattice structure, it is necessary to change the raw material gas for forming each thin layer each time. That is, each time a different thin layer is formed, the introduction of the raw material gas into the deposition chamber 1 is stopped, and the vacuum is evacuated to an appropriate degree by an exhaust device to prevent autodoping. Furthermore, in order to control the thickness of each layer to a desired level, the excitation light is irradiated intermittently by opening and closing the shutter 17.

前記の発光素子の発光層を構成する各層の光学的バンド
ギャップは吸収係数αを測定し、J1]]とhνの関係
より、局在準位密度はFE法より、また量子効率はダイ
オードの発光特性(温度依存性力)より求めることが出
来る。
The optical bandgap of each layer constituting the light-emitting layer of the light-emitting element is determined by measuring the absorption coefficient α, and from the relationship between J1] and hν, the local level density can be determined by the FE method, and the quantum efficiency can be determined by the light emission of the diode. It can be determined from the characteristics (temperature dependent force).

発光層の厚さは500人〜3000久程度とすることが
望ましい。
The thickness of the light-emitting layer is preferably about 500 to 3,000 years.

この後に、発光層の上から前記材料と同様な絶縁層を重
ねる。そして最後にアルミニウム。
After this, an insulating layer similar to the above-mentioned material is layered on top of the light emitting layer. And finally aluminum.

金などの金属電極を蒸着する。Deposit metal electrodes such as gold.

その他の作成方法としては、反応管中に流す反応ガスを
外部の電気炉で加熱分解し、ガス温度よりも低い温度に
保たれた基体上に堆積させるHOMOCvDという方法
がある(B、A。
Another production method is HOMOCvD, in which a reaction gas flowing into a reaction tube is thermally decomposed in an external electric furnace and deposited on a substrate kept at a temperature lower than the gas temperature (B, A).

5cott 、R,M、Plecenick。5cott, R,M, Plecenick.

and  E、E、Simonyi、Appl。and E. E. Simonyi, Appl.

Phys、Lett、、vol、39(1981)p、
73)。
Phys, Lett, vol. 39 (1981) p.
73).

本発明の第1の層領域CI)として用いるnon−3f
C:F(H)を堆積させる際にこの方法を用いても、光
学的バンド・ギャップが大きく、局在準位密度の低い膜
を作ることができる。
non-3f used as the first layer region CI) of the present invention
Even when this method is used when depositing C:F(H), a film with a large optical band gap and a low localized level density can be produced.

〔実施例1〕 上記した第4図に示す光CVD装置を用い、上記の手順
と条件によって、以下の様にして第3図に示す構造の発
光素子を作成し、電源307によりパルス状の高周波高
電界を印加して、特性試験を行った。
[Example 1] A light-emitting device having the structure shown in FIG. 3 was produced as follows using the photo-CVD apparatus shown in FIG. Characteristic tests were conducted by applying a high electric field.

絶縁層303.305としては3000久厚のY2O3
薄膜を用い、発光層は、第1の層領域(I)をC3H8
/ S i 2 H6= 1 / 10 。
The insulating layers 303 and 305 are Y2O3 with a thickness of 3000 mm.
Using a thin film, the light emitting layer has a first layer region (I) of C3H8.
/ S i 2 H6 = 1 / 10.

S i 2Fs/S i 2H6=1/1の流量比で、
総流量1203CCMとして、基体温度50℃で成膜を
行い、第2の層領域(II )を、NH3/ S i 
2 H6= l / lの流量比で、総流量905CC
Mで基体温度50℃で成膜を行った。
At a flow rate ratio of S i 2Fs/S i 2H6 = 1/1,
Film formation was carried out at a substrate temperature of 50° C. with a total flow rate of 1203 CCM, and the second layer region (II) was formed using NH3/Si
2 H6= flow ratio of l/l, total flow rate 905CC
Film formation was performed using M at a substrate temperature of 50°C.

この動作を25回連続的に行って25周期のnon−5
iC:F:H/non−SiN:Hから成る超格子構造
を有する発光層を作成した。この際、第1の層領域(I
)と第2の層領域(rl)の夫々の層厚は40人とした
。電極302としては、ITO透明電極、電極306と
してはAfL電極を用いた。この様にして作成した発光
素子に100VIKH2のパルス状高周波高電界を印加
したところ、75f t−Lの可視光域に発光ピークが
ある発光が得られた。
Perform this operation 25 times continuously to obtain 25 cycles of non-5.
A light emitting layer having a superlattice structure composed of iC:F:H/non-SiN:H was created. At this time, the first layer region (I
) and the second layer region (rl) each had a layer thickness of 40 people. As the electrode 302, an ITO transparent electrode was used, and as the electrode 306, an AfL electrode was used. When a pulsed high frequency high electric field of 100 VIKH2 was applied to the light emitting device thus prepared, light emission having an emission peak in the visible light region of 75 f t-L was obtained.

これは、これまでに実現された非単結晶シリコンを用い
た発光素子の発光に比べて16桁以上大きい値であり、
発光効率の改善がなされていることが判った。更に、上
記の高周波電界を連続して長時間印加し、発光特性の安
定性と耐久性を試験したところ、上記の従来例に較べて
安定性において約5倍、耐久性において1.5桁擾れて
いることが結果として得られた。
This is a value that is more than 16 orders of magnitude larger than the light emitted by light emitting devices using non-single crystal silicon that have been realized to date.
It was found that the luminous efficiency was improved. Furthermore, when we tested the stability and durability of the light emitting characteristics by continuously applying the above high-frequency electric field for a long time, we found that the stability was approximately 5 times that of the conventional example, and the durability was 1.5 orders of magnitude better. The result was that

〔実施例2〕 実施例1に於いて、第2の層領域(II )の形成の際
にはNH3/ (Si2F6+S 12H6)=1/1
.5i2Fs/5i2He=1/2の流量比で、総流量
11005ecとし、第1の層領域(I)と第2の層領
域(H)の周期的積層を30周期とした以外は、実施例
1と同様の手順と条件で作成した試料に就いて実施例1
と同様の特性評価を行ったところ、80ft−Lの発色
発光を得た。
[Example 2] In Example 1, when forming the second layer region (II), NH3/(Si2F6+S12H6)=1/1
.. Example 1 except that the flow rate ratio was 5i2Fs/5i2He = 1/2, the total flow rate was 11005ec, and the periodic stacking of the first layer region (I) and the second layer region (H) was 30 cycles. Example 1 for samples prepared using similar procedures and conditions
When the characteristics were evaluated in the same manner as above, a colored luminescence of 80 ft-L was obtained.

この試料に別に長時間連続繰返し使用のテストを行った
ところ極めて安定した発光特性を示した。
When this sample was subjected to a separate long-term continuous use test, it showed extremely stable luminescent characteristics.

〔効 果〕〔effect〕

上述した様に1本発明の発光素子は、可視波長債域に発
光ピークを有すると共に、充分な発光量を得1発光効率
と再現性を高めることが出来1発光特性の安定性と寿命
を飛翔的に高めることが出来る。
As mentioned above, the light-emitting element of the present invention has a luminescence peak in the visible wavelength range, obtains a sufficient amount of luminescence, can improve luminous efficiency and reproducibility, and can improve the stability of luminescent characteristics and the lifetime. can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は夫々、本発明の発光素子の好適な実
施態様例の層構成を示す模式図、第4図は本発明の発光
素子を作成する為の装置の一例を示す模式図である。 101−−−一基体、  102,106−−−−電極
。 103.105−−−一電気絶縁層、 104−−−一発光層、  301−−−−ガラス基板
。 302−−−一透明電極、 303.305−−m−絶縁層、 304−−−一発光層、 306−−−−金属電極。
1 to 3 are schematic diagrams showing the layer structure of preferred embodiments of the light emitting device of the present invention, and FIG. 4 is a schematic diagram showing an example of an apparatus for producing the light emitting device of the present invention. It is. 101---one substrate, 102,106---electrode. 103.105----one electric insulating layer, 104---one light-emitting layer, 301----glass substrate. 302---one transparent electrode, 303.305---m-insulating layer, 304---one light emitting layer, 306---metal electrode.

Claims (3)

【特許請求の範囲】[Claims] (1)発光層を挾持する一対の電気的絶縁層と、これ等
の発光層と絶縁層とを挾持し電気的に接続された少なく
とも一対の電極とを有し、前記発光層が、シリコン原子
と炭素原子と弗素原子を含む非単結晶材料から成る第1
の層領域と、該層領域と光学的バンドギャップが異なる
第2の層領域とが、これ等を一単位として周期的に積層
された多層構造を有する事を特徴とする発光素子。
(1) A pair of electrically insulating layers sandwiching a light-emitting layer, and at least one pair of electrodes sandwiching the light-emitting layer and the insulating layer and electrically connected to each other, the light-emitting layer having silicon atoms and a non-single crystal material containing carbon atoms and fluorine atoms.
A light emitting device having a multilayer structure in which a layer region and a second layer region having a different optical band gap from the layer region are periodically laminated as one unit.
(2)前記第1の層領域の光学的バンドギャップが2.
0eV以上である特許請求の範囲第1項に記載の発光素
子。
(2) The optical band gap of the first layer region is 2.
The light emitting device according to claim 1, which has a voltage of 0 eV or more.
(3)前記第1の層領域の局在準位密度がミッドギャッ
プで5×10^1^6cm^−^3、eV^−^1以下
である特許請求の範囲第1項に記載の発光素子。
(3) The light emission according to claim 1, wherein the localized level density of the first layer region is 5×10^1^6 cm^-^3, eV^-^1 or less at the midgap. element.
JP60196192A 1985-08-29 1985-09-04 Light emitting element Pending JPS6254977A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60196192A JPS6254977A (en) 1985-09-04 1985-09-04 Light emitting element
US07/406,815 US4987460A (en) 1985-08-29 1989-09-13 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60196192A JPS6254977A (en) 1985-09-04 1985-09-04 Light emitting element

Publications (1)

Publication Number Publication Date
JPS6254977A true JPS6254977A (en) 1987-03-10

Family

ID=16353721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60196192A Pending JPS6254977A (en) 1985-08-29 1985-09-04 Light emitting element

Country Status (1)

Country Link
JP (1) JPS6254977A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5125235A (en) * 1989-06-21 1992-06-30 Toyota Jidosha Kabushiki Kaisha Supercharged lean burn internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5125235A (en) * 1989-06-21 1992-06-30 Toyota Jidosha Kabushiki Kaisha Supercharged lean burn internal combustion engine

Similar Documents

Publication Publication Date Title
US6362494B1 (en) Semiconductor device and method and apparatus for manufacturing semiconductor device
JPS61222280A (en) Photovoltaic element and method and manufacture thereof
TW200915393A (en) Compound thin film and method of forming the same, and electronic device using the thin film
JP3592055B2 (en) Organic light emitting device
US5612548A (en) Diamond light-emitting element
JPS6254977A (en) Light emitting element
JPH03183173A (en) Optical element
JPS6269572A (en) Light emitting element
JPS6269571A (en) Light emitting element
JPS6254976A (en) Light emitting element
JPS6269569A (en) Light emitting element
JPS6254978A (en) Light emitting element
JPS6269570A (en) Light emitting element
JPS6254482A (en) Light emitting element
JPS6267883A (en) Light emitting device
US4987460A (en) Light emitting device
JPS6267885A (en) Light emitting device
JPS6258687A (en) Light emitting element
JPS6255971A (en) Light emitting element
JPS6248082A (en) Light emitting element
JPS6248081A (en) Light emitting element
JPS6255972A (en) Light emitting element
JPS6254484A (en) Light emitting element
JPS6254483A (en) Light emitting element
JPS6267884A (en) Light emitting device