JPS6254883B2 - - Google Patents

Info

Publication number
JPS6254883B2
JPS6254883B2 JP54018998A JP1899879A JPS6254883B2 JP S6254883 B2 JPS6254883 B2 JP S6254883B2 JP 54018998 A JP54018998 A JP 54018998A JP 1899879 A JP1899879 A JP 1899879A JP S6254883 B2 JPS6254883 B2 JP S6254883B2
Authority
JP
Japan
Prior art keywords
yarn
birefringence
roll
polyester fiber
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54018998A
Other languages
Japanese (ja)
Other versions
JPS55112314A (en
Inventor
Shiro Kumakawa
Toshimasa Kuroda
Koichi Iohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP1899879A priority Critical patent/JPS55112314A/en
Publication of JPS55112314A publication Critical patent/JPS55112314A/en
Publication of JPS6254883B2 publication Critical patent/JPS6254883B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は結晶性ポリエステル繊維に関するもの
である。更に詳しくは、本発明は全体として高配
向性でしかも非晶部の配向性が著しく大きく、ゴ
ム補強材などの産業資材用途のみならず衣料用用
途にも好適なポリエステル繊維に関するものであ
る。 ゴム補強材などの産業資材用途においては、強
力、モジユラス、寸法安定性の特性が特に要求さ
れることは周知の通りである。これらの特性を満
足する素材として、ガラス繊維、スチール繊維な
どの無機質素材や分子鎖の剛直な全芳香族ポリア
ミド繊維が挙げられるが、一方ではポリエステル
繊維、特にポリエチレンテレフタレート繊維も汎
用的に使用されている。特に、このポリエステル
繊維においては、上記特性を改良向上させるため
にこれまで幾多の研究がなされている。たとえば
強力の向上においては、分子配向性(△n)を向
上させたり、分子鎖長(η)を増大させたりする
手段がある。又、寸法安定性の向上には、結晶領
域間の非晶領域をできるだけ緩和させる即ち分子
配向性(△na)を低下する手段がある。しかし
ながら、ポリエステル繊維のモジユラスの点から
みると、前述の強力や寸法安定性を向上させる手
段が非晶領域における分子鎖の配向性を低下させ
たり、分子鎖の数の減少を図つていることから結
局前記モジユラスの向上にはマイナスになつてい
ることは否定できない。 それ故、本発明の目的は、上述の如き二律背反
性を克服することにより、強力水準が高いばかり
でなく、寸法安定性も比較的良好で、しかもモジ
ユラスの高いポリエステル繊維を提供することに
ある。 本発明者等は、上記の目的を達成せんとして鋭
意研究を重ねた結果、糸物性のなかでも、特に、
糸全体としての分子配向性(△n)は勿論のこ
と、非晶部の配向性(△na)がモジユラスに著
しい影響を及ぼしていることを知ると共に、この
△nの絶対値に加えて該△nと△naとが特定の
関係を満足するとき、強力、寸法安定性が共に高
度の水準に維持されつつ、モジユラスが著しく改
善されることを究明し、本発明に到達したのであ
る。 かくして、本発明によれば 主たる繰返し単位としてエチレンテレフタレー
トを含有し、極限粘度が0.5以上のポリエステル
からなる溶融吐出糸条の糸温度T1が未だ完全固
化していないT1=100〜140℃の位置で且つ、(T1
―30)〜(T1+30)の範囲の100〜140℃に加熱
された第1のロールに吐出糸条を引き取り、これ
を120〜180℃に加熱した第2のロールとの間で
3.5〜4.75倍に1段延伸後(巻取るこことなく)
引き続き前記第2のロール上で予熱温度120〜180
℃で予熱しつつ180℃以上に加熱された第3のロ
ールとの間で少くとも全延伸倍率が5.6倍以上に
2段延伸を行うと共に前記第3のロール上で温度
180℃以上で0.3秒以上熱処理することにより得ら
れた繊維であつて、複屈折率(△n)及び非晶部
の複屈折率(△na)が下記(1)及び(2)式を満足し △n≧0.190 …(1) △na/△n≧0.95 …(2) しかも2%伸長時の応力Mと上記△naとが下記
(3)式を満足し M≧62.5△na―9.4 …(3) 且つ上記応力Mが1.9g/de以上であることに依つ
て特徴づけられる結晶性ポリエステル繊維 が提供される。 本発明におけるポリエステルとは、エチレンテ
レフタレート単位を主たる繰返し単位とするポリ
エステルを意味し、ポリエチレンテレフタレート
を主たる対象とするが、その性質を本質的に変化
させない範囲(例えば15モル%以下)で第3成分
を共重合させたコポリエステルでもよい。 このポリエステルの重合度は、ポリエステルの
種類やその用途に応じて適宜選定すべきである
が、一般にポリエチレンテレフタレートの場合、
35℃のO―クロロフエノール溶液で測定した極限
粘度が0.5以上のものが適当である。そして、こ
れらのポリエステルより成る繊維は、強力、寸法
安定性の面から当然のことながら結晶性(この点
については後で詳述する)であることが前提とな
り、加えて該結晶性繊維は上記(1)、(2)、(3)の条件
を同時に満足することが不可欠である。 まず、本発明のポリエステル繊維の配向性につ
いて言及する。フイラメント軸に沿う分子の配向
の程度は複屈折率や音速の測定から求められる。
本発明のポリエステル繊維の配向性を複屈折率で
表わすと、全体の複屈折率(△n)及び非晶部の
複屈折率(△na)は以下の(1)及び(2)式を満足し
なければならない。 △n≧0.190 …(1) △na/△n≧0.95 …(2) (ここで非晶部の複屈折率△naとは、結晶相と非
晶相の2相構造を仮定して、全体の複屈折率より
算出するものである。) 上記の式(1)及び(2)の意味する所は、繊維全体の
複屈折率(△n)が0.190以上ということから、
極めて高配向性であるのに加えて、非晶部の配向
性(△na)も全体の複屈折率(△n)の95%以
上という値をとり、これ又極めて高配向性であ
り、結晶部分の配向性と遜色のない程度を示す。
このことは、結晶相と非晶相との区別が明瞭に識
別できない状態を示すものである。 本発明のポリエステル繊維は上述の如く、分子
全体の配向性が高いのに加えて非晶鎖の複屈折率
(△na)が大きいためにモジユラスが著しく改良
される。モジユラスとして荷伸曲線における2%
伸長時の応力で表わすと、非晶鎖の複屈折率(△
na)とは(3)式の関係を満足するような特異な性
質を有する。 M≧62.5△na―9.4 …(3) 更に上記(3)式で表わされるモジユラスMは1.9g/d
e以上(好ましくは2.3g/de以上)である。 本発明のポリエステル繊維の構成因子である分
子全体の複屈折率が0.190未満であるとモジユラ
スが1.9g/de以上に改良されないばかりか強力も
低水準である。同時に、非晶部の複屈折率が全体
の複屈折率の0.95未満ではモジユラスが1.9g/de
以上に改良されない。従つて、1.9g/de以上のモ
ジユラスを呈する繊維を得るには、上記(1)及び(2)
式を同時に満足することが必要である。 上述の如く本発明のポリエステル繊維は、分子
全体の複屈折率が0.190以上で、且つ非晶部の複
屈折率(△na)が分子全体の複屈折率の95%以
上であるので極めて高配向性にして、結晶と非晶
の区別のつきにくいものであり、一般に密度とし
ては1.39g/cm3以下の糸条を形成する。換言すれば
密度から算出せられる結晶化度は48%以下であ
る。(ここで密度法による結晶化度も結晶相と非
晶相の2相構造を仮定し、両相の比言の加成性を
仮定して全体の密度より算出するものである。) 即ち、本発明のポリエステル繊維は、結晶相と
非晶相の2相構造を仮定した場合、結晶相の割合
は全体の48%以下で、結晶相と非晶相とを合わせ
た分子の配向性は複屈折率で0.190と高く、更に
特徴的なことは非晶相の分子配向性は複屈折率
で、全体の複屈折率の0.95以上と極めて高いこと
である。いいかえると、非晶相の分子鎖も結晶相
と同様配列性がよいものといえる。 一般に結晶相と非晶相が分離し、分子軸方向に
その周期性を有するとX線小角散乱方法で解析す
ると長周期が観察される。しかしながら、本発明
のポリエステル繊維は上述の結晶性と配向性を有
しているために、そのような結晶相と非晶相の分
離が比較的明確でなく、従つて小角散乱強度は弱
く、その繰り返しが明瞭でないことも特徴の一つ
である。 本発明のポリエステル繊維はポリエステルの重
合度を極限粘度で0.5以上にすることにより、モ
デユラス1.9g/de以上に加えて強度7g/de以上の
ものが得られ産業用資材として極めて好適な素材
となる。従来の産業用資材ポリエステル繊維にお
いては、強度を7g/de以上にしようとすれば極
限粘度として0.6以上必要であるが、モデユラス
は1.9g/deには改良されない。又、モデユラスを
できるだけ改良しようとして極限粘度を0.5程度
に低下しても強度は7g/de以下となるのみなら
ず、モデユラスは1.9g/deには改良されない。こ
れらはいずれも本発明の如き構成因子1,2,3
を満足していないためであり、本発明においては
極限粘度が少くとも0.5で強度、モデユラスの両
方を高水準にすることが可能である。 本発明のポリエステル繊維は、溶融吐出後未だ
固化していない糸条を、直ちに2段延伸熱処理す
ることによつて得ることができる。更に詳細にい
えば、溶融吐出後、冷却し吐出糸条の糸温度T1
が未だ完全固化していないT1=100〜140℃の位
置で且つ、(T1―30)〜(T1+30)の範囲の100
〜140℃に加熱された第1のロールに吐出糸条を
引き取り、これを120〜180℃に加熱した第2のロ
ールとの間で3.5〜4.75倍に1段延伸後(巻取る
ことなく)引き続き前記第2のロール上で予熱温
度120〜180℃で予熱しつつ180℃以上に加熱され
た第3のロールとの間で少くとも全延伸倍率が
5.6倍以上に2段延伸を行うと共に前記第3のロ
ール上で温度180℃以上で0.3秒以上熱処理する方
法である。 この方法は分子の比容積が大きい、即ち分子の
モビリテイの大きい状態で第1段及び第2段の延
伸倍率を特定しつつ、連続2段延伸することが特
長であり、これにより非晶部分の配向度が大きく
なり、且つ分子全体の複屈折率の0.95以上である
ためモデユラスが改良されるのである。 この方法に類似するものとして、英国特許第
1189393及び1192254号明細書には、溶融吐出後冷
却した吐出糸条の糸温度が未だ完全固化していな
い状態で、予熱後一段延伸する方法及びその性能
が記述されている。又更に、1段延伸後一旦捲取
つた糸条を別工程で延伸熱処理する方法及びその
性能が記述されている。また1段延伸糸の広角X
線解析結果として子午方向の(001)面反射強度
についても言及されている。 本発明者らは、上記方法を追試していく過程で
連続して2段延伸熱処理を行う際、1段延伸糸の
上記(001)面反射強度の程度が後続する2段延
伸倍率及び最終的な糸条な糸条の強度、モデユラ
スに多大の影響を与えることを見い出した。即
ち、1段延伸時の倍率が高い程(001)面反射強
度は強くなるが、一方2段延伸時の延伸倍率は上
らず、最終的にはモデユラスの低いものとなる。
上記明細書では1段延伸倍率が5.0倍のとき、1
段延伸後の熱セツトローラー温度が高温になる程
モデユラスが低下し、又5.0倍で1段延伸し別工
程で2段延伸熱処理したものは、連続して2段延
伸熱処理したものに比べ強度が低くなることも記
載されている。そして、このように物性が改善さ
れないのは、1段延伸倍率を5倍と高倍率延伸を
行い、(001)面反射を示す1段延伸糸の繊維構造
を強固に形成せしめたためである。 これに対して本発明者らは、連続して2段延伸
熱処理を行い、最終的に得られる糸条が高強力、
高モデユラスを示す条件として吐出糸条が完全に
固化せず未だ100〜140℃にある状態でこれと同温
度の加熱ローラーに引取り連続して2段延伸を行
うと共に、第1段延伸倍率として3.5〜4.75倍、
好ましくは4.0〜4.5倍、第2段延伸条件として予
熱温度120℃〜180℃で少くとも全延伸倍率が5.6
倍以上に延伸することが極めて好ましく、その際
第1段延伸時に形成される繊維構造の(001)面
反射はそれ程強くしないことが必須条件であるこ
とを見い出したのである。 本発明のポリエステル繊維は、適宜な結晶性と
分子全体の配向性が高く、且つ非晶部の複屈折率
が大きいために、強力、モデユラスが著しく改良
されるためにゴム補強材などの産業用途に特に好
適であるが、非晶部分の特異性(たとえば熱応力
の大きいこと)を発揮させた衣料用途にも極めて
有用である。又、かかる繊維は紡糸時に延伸工程
を組み入れた直延伸法によつて得られるので、コ
スト合理化の面でも極めて有用なものといえる。 以下本発明の実施例を詳述するが、本発明に使
用した特性値の測定方法は以下の通りである。 (1) 複屈折率(△n) 偏光顕微鏡を用いてセナルモ法による。 (2) 非晶部の複屈折率(△na) 次式より算出する。 △na=△n―△ncfcxp/1―xp 但し、△nc=0.216、fc=0.92、xp=密度法
結晶化度 (3) 2%伸長時の応力M インストロン引張試験機を使用し、試料長20
cm、引張速度100%/分で荷重―伸長曲線を描
かせ該曲線から伸長2%のところの応力を読み
取りデニールで除した値(g/de)とした。 (4) 沸水収縮率 JIS L1073に準じて測定する。 (5) 密度 n―ヘプタン―四塩化炭素系の密度勾配管中
にて25℃で測定した。 尚、密度法結晶化度(xp)は以下で求めら
れる。 1/p=1/pa(1―xp)+1/pcxp 但し、pa=1.455 pc=1.335 実施例 1 35℃のO―クロロフエノール溶液で測定した極
限粘度が0.64のポリエチレンテレフタレート(酸
化チタン含有量0.03%)を、孔径0.35mm、孔数48
個の紡糸口金より290℃の温度で溶融吐出し、吐
出糸条を紡糸筒内で糸条を横切るように吹き出す
線速度0.2m/secの冷却風により冷却し、吐出糸
条の温度が100℃になる位置即ち紡糸口金より85
cmの位置で120℃に加熱され、且つ400m/minで
駆動されているセパレートロール付加熱ロール
(加熱時間0.26秒)に引き取り、130〜175℃に加
熱した第2段加熱ロール(加熱時間0.05秒)間で
1段延伸し、次いで引き続き第3段加熱ロール間
で2段延伸をしながらオイリングを行い該第3段
加熱ロール上で185℃、0.64秒間緊張熱処理し巻
取つた。 その際1段延伸倍率、第2段加熱ロールの温度
を変化させた際の糸条物性は以下の通りである。
The present invention relates to crystalline polyester fibers. More specifically, the present invention relates to a polyester fiber which has a high degree of orientation as a whole and has a significantly large degree of orientation in the amorphous portion, and is suitable not only for use in industrial materials such as rubber reinforcing materials but also for use in clothing. It is well known that in industrial material applications such as rubber reinforcing materials, properties such as strength, modulus, and dimensional stability are particularly required. Materials that satisfy these characteristics include inorganic materials such as glass fiber and steel fiber, and fully aromatic polyamide fibers with rigid molecular chains, but polyester fibers, especially polyethylene terephthalate fibers, are also commonly used. There is. In particular, many studies have been made to improve the above-mentioned properties of polyester fibers. For example, to improve the strength, there are ways to improve the molecular orientation (Δn) or increase the molecular chain length (η). Further, in order to improve the dimensional stability, there is a method of relaxing the amorphous regions between the crystalline regions as much as possible, that is, reducing the molecular orientation (Δna). However, from the point of view of the modulus of polyester fibers, the above-mentioned means of improving strength and dimensional stability reduce the orientation of molecular chains in the amorphous region or reduce the number of molecular chains. In the end, it cannot be denied that this has a negative effect on the improvement of the modulus. Therefore, an object of the present invention is to provide a polyester fiber that not only has a high strength level but also relatively good dimensional stability and high modulus by overcoming the above-mentioned trade-offs. As a result of intensive research aimed at achieving the above objectives, the present inventors found that, among the yarn properties, in particular,
We know that not only the molecular orientation (△n) of the yarn as a whole but also the orientation of the amorphous part (△na) has a significant influence on the modulus, and in addition to the absolute value of △n, It was discovered that when Δn and Δna satisfy a specific relationship, the modulus is significantly improved while both strength and dimensional stability are maintained at a high level, and the present invention has been achieved. Thus, according to the present invention, the yarn temperature T 1 of the melt-discharged yarn made of polyester containing ethylene terephthalate as the main repeating unit and having an intrinsic viscosity of 0.5 or more is T 1 = 100 to 140°C, which is not yet completely solidified. at the position and (T 1
-30) to (T 1 +30), the discharged yarn is taken up by a first roll heated to 100 to 140℃, and this is transferred between it and a second roll heated to 120 to 180℃.
After 1 stage stretching to 3.5 to 4.75 times (without winding)
Subsequently, preheat temperature 120 to 180 on the second roll.
Two-step stretching is carried out between the third roll, which is preheated at 180°C or higher, to a total stretching ratio of at least 5.6 times, and the third roll is heated at 180°C or higher.
Fibers obtained by heat treatment at 180°C or higher for 0.3 seconds or more, whose birefringence (△n) and the birefringence of the amorphous portion (△na) satisfy the following formulas (1) and (2). △n≧0.190 …(1) △na/△n≧0.95 …(2) Moreover, the stress M at 2% elongation and the above △na are as follows.
There is provided a crystalline polyester fiber that satisfies the formula (3), M≧62.5△na−9.4 (3), and is characterized by the stress M being 1.9 g/de or more. The polyester in the present invention means a polyester having ethylene terephthalate units as the main repeating unit, and polyethylene terephthalate is the main target, but the third component is contained within a range that does not essentially change the properties (for example, 15 mol% or less). A copolyester obtained by copolymerizing may also be used. The degree of polymerization of this polyester should be selected appropriately depending on the type of polyester and its use, but generally in the case of polyethylene terephthalate,
A suitable material has an intrinsic viscosity of 0.5 or more as measured in an O-chlorophenol solution at 35°C. Naturally, fibers made of these polyesters must be crystalline (more on this point later) in terms of strength and dimensional stability, and in addition, the crystalline fibers have the above-mentioned properties. It is essential to simultaneously satisfy conditions (1), (2), and (3). First, the orientation of the polyester fiber of the present invention will be mentioned. The degree of molecular orientation along the filament axis can be determined from measurements of birefringence and sound velocity.
When the orientation of the polyester fiber of the present invention is expressed in terms of birefringence, the overall birefringence (△n) and the birefringence of the amorphous portion (△na) satisfy the following formulas (1) and (2). Must. △n≧0.190 …(1) △na/△n≧0.95 …(2) (Here, the birefringence △na of the amorphous part is the birefringence index of the whole, assuming a two-phase structure of crystalline and amorphous phases. (It is calculated from the birefringence of
In addition to being extremely highly oriented, the orientation of the amorphous portion (△na) is more than 95% of the overall birefringence (△n); The degree of orientation is comparable to that of the other parts.
This indicates a state in which the crystalline phase and the amorphous phase cannot be clearly distinguished. As mentioned above, the polyester fiber of the present invention has a high degree of orientation of the entire molecule and a large birefringence index (Δna) of the amorphous chain, so that the modulus is significantly improved. 2% in the loading curve as modulus
Expressed as the stress during elongation, the birefringence of the amorphous chain (△
na) has a unique property that satisfies the relationship in equation (3). M≧62.5△na−9.4 …(3) Furthermore, the modulus M expressed by the above formula (3) is 1.9 g/d
e or more (preferably 2.3 g/de or more). If the birefringence of the entire molecule, which is a constituent factor of the polyester fiber of the present invention, is less than 0.190, not only will the modulus not be improved to 1.9 g/de or more, but the strength will also be at a low level. At the same time, if the birefringence of the amorphous part is less than 0.95 of the overall birefringence, the modulus will be 1.9g/de.
It cannot be improved beyond that. Therefore, in order to obtain a fiber exhibiting a modulus of 1.9 g/de or more, the above (1) and (2)
It is necessary to satisfy the expressions at the same time. As mentioned above, the polyester fiber of the present invention has a birefringence index of the entire molecule of 0.190 or more, and the birefringence index of the amorphous portion (△na) is 95% or more of the birefringence index of the entire molecule, so it has extremely high orientation. It is difficult to distinguish between crystalline and amorphous materials, and they generally form threads with a density of 1.39 g/cm 3 or less. In other words, the crystallinity calculated from the density is 48% or less. (Here, the crystallinity according to the density method is also calculated from the overall density assuming a two-phase structure of a crystalline phase and an amorphous phase, and assuming the additivity of both phases.) That is, Assuming that the polyester fiber of the present invention has a two-phase structure of a crystalline phase and an amorphous phase, the ratio of the crystalline phase is 48% or less of the total, and the molecular orientation of the crystalline phase and the amorphous phase is complex. It has a high refractive index of 0.190, and what is more distinctive is that the molecular orientation of the amorphous phase has a birefringence that is extremely high, exceeding the overall birefringence of 0.95. In other words, the molecular chains in the amorphous phase can be said to have good alignment just like in the crystalline phase. Generally, when a crystalline phase and an amorphous phase are separated and have periodicity in the direction of the molecular axis, a long period is observed when analyzed by small-angle X-ray scattering. However, since the polyester fiber of the present invention has the above-mentioned crystallinity and orientation, the separation between the crystalline phase and the amorphous phase is relatively unclear, and the small-angle scattering intensity is weak. One of its characteristics is that the repetition is not clear. The polyester fiber of the present invention has a modulus of 1.9 g/de or more and a strength of 7 g/de or more by increasing the degree of polymerization of the polyester to an intrinsic viscosity of 0.5 or more, making it extremely suitable as an industrial material. . In conventional industrial polyester fibers, if the strength is to be 7 g/de or more, the intrinsic viscosity must be 0.6 or more, but the modulus cannot be improved to 1.9 g/de. Further, even if the intrinsic viscosity is lowered to about 0.5 in an attempt to improve the modulus as much as possible, the strength will not only be 7 g/de or less, but the modulus will not be improved to 1.9 g/de. All of these are constituent factors 1, 2, and 3 as in the present invention.
In the present invention, it is possible to achieve high levels of both strength and modulus with an intrinsic viscosity of at least 0.5. The polyester fiber of the present invention can be obtained by immediately subjecting the unsolidified yarn after melt-discharging to two-stage stretching heat treatment. More specifically, after melting and discharging, the yarn temperature of the discharged yarn is T 1
at a position where T 1 = 100 to 140°C has not yet completely solidified, and at 100 in the range of (T 1 -30) to (T 1 +30).
The discharged yarn is taken up by a first roll heated to ~140°C, and then stretched in one step by a factor of 3.5 to 4.75 between it and a second roll heated to 120 to 180°C (without winding). Subsequently, the second roll is preheated at a preheating temperature of 120 to 180°C and the third roll is heated to 180°C or higher so that at least the total stretching ratio is
This is a method in which two-stage stretching is performed to 5.6 times or more, and heat treatment is performed on the third roll at a temperature of 180° C. or higher for 0.3 seconds or longer. This method is characterized by continuous two-stage stretching while specifying the first and second stage stretching ratios in a state where the specific volume of the molecules is large, that is, the mobility of the molecules is large. The modulus is improved because the degree of orientation is increased and the birefringence of the entire molecule is 0.95 or more. Similar to this method, British patent no.
No. 1189393 and No. 1192254 describe a method in which the yarn temperature of the discharged yarn cooled after melting and discharge is preheated and one-stage stretching is performed in a state where the yarn temperature is not yet completely solidified, and its performance. Furthermore, a method is described in which a yarn that has been wound up after one stage of drawing is subjected to a drawing heat treatment in a separate step, and its performance. Also, wide angle X of single-stage drawn yarn
The (001) plane reflection intensity in the meridian direction is also mentioned as a line analysis result. In the process of repeating the above method, the present inventors discovered that when carrying out two-stage stretching heat treatment continuously, the degree of the reflection intensity of the (001) plane of the first-stage drawn yarn was determined by the subsequent second-stage stretching ratio and the final It was discovered that the strength and modulus of the yarn have a great influence. That is, the higher the magnification in the first stage of stretching, the stronger the (001) plane reflection intensity, but on the other hand, the stretching ratio in the second stage of stretching does not increase, resulting in a lower modulus.
In the above specification, when the first stage stretching ratio is 5.0 times, 1
The higher the temperature of the heat set roller after stage stretching, the lower the modulus, and those that were stretched in one stage at 5.0 times and then heat treated in two stages in a separate process had lower strength compared to those that were heat treated in two consecutive stages. It is also stated that it is lower. The reason why the physical properties are not improved in this way is that the first stage drawing ratio was 5 times, which was a high stretching ratio, and the fiber structure of the first stage drawn yarn exhibiting (001) surface reflection was formed strongly. In contrast, the present inventors performed continuous two-stage drawing heat treatment, and the final yarn obtained had high strength and
As a condition for showing high modulus, the discharged yarn is not completely solidified and is still at a temperature of 100 to 140°C, and is taken up by a heating roller at the same temperature and continuously stretched in two stages, and the first stage stretching ratio is 3.5-4.75 times,
Preferably 4.0 to 4.5 times, the second stage stretching condition is a preheating temperature of 120°C to 180°C and a total stretching ratio of at least 5.6.
They have found that it is extremely preferable to stretch the fibers by more than double the amount, and that it is essential that the (001) plane reflection of the fiber structure formed during the first stage stretching is not so strong. The polyester fiber of the present invention has appropriate crystallinity and high orientation of the entire molecule, and has a high birefringence in the amorphous part, so the strength and modulus are significantly improved, so it can be used in industrial applications such as rubber reinforcing materials. It is particularly suitable for use in clothing, but it is also extremely useful for clothing applications that take advantage of the unique properties of the amorphous portion (for example, high thermal stress). Furthermore, since such fibers can be obtained by a direct drawing method that incorporates a drawing step during spinning, they can be said to be extremely useful in terms of cost rationalization. Examples of the present invention will be described in detail below, and the method of measuring characteristic values used in the present invention is as follows. (1) Birefringence (△n) According to the Senalmo method using a polarizing microscope. (2) Birefringence of amorphous part (△na) Calculated from the following formula. △na=△n-△ncfcxp/1-xp However, △nc=0.216, fc=0.92, xp=density method crystallinity (3) Stress M at 2% elongation long 20
A load-elongation curve was drawn at a tensile rate of 100%/min, and the stress at 2% elongation was read from the curve and divided by the denier (g/de). (4) Boiling water shrinkage rate Measured according to JIS L1073. (5) Density Measured at 25°C in an n-heptane-carbon tetrachloride density gradient tube. Note that the density method crystallinity (xp) is determined as follows. 1/p=1/pa(1-xp)+1/pcxp However, pa=1.455 pc=1.335 Example 1 Polyethylene terephthalate (titanium oxide content 0.03 %), hole diameter 0.35mm, number of holes 48
The yarn is melted and discharged from a spinneret at a temperature of 290℃, and the discharged yarn is cooled by cooling air at a linear velocity of 0.2m/sec that blows across the yarn within the spinning tube until the temperature of the discharged yarn reaches 100℃. 85 from the spinneret position
It is heated to 120℃ at a position of cm and taken over by a separate roll additional heating roll (heating time 0.26 seconds) which is driven at 400m/min, and the second stage heating roll (heating time 0.05 seconds) heated to 130-175℃. ), followed by two stages of stretching between third-stage heating rolls, oiling, tension heat treatment at 185° C. for 0.64 seconds on the third-stage heating rolls, and winding. At that time, the yarn physical properties when the first stage stretching ratio and the temperature of the second stage heating roll were changed are as follows.

【表】【table】

【表】 上記例(No.6)において、第1段延伸倍率が
4.75を越えた場合5.6倍以上の全延伸倍率を得ら
れず、従つてモデユラスも高々1.7g/de程度のも
のしか得られない。このことは、△nと△naと
の関係が本発明で規定する前記(1)及び(2)式を満足
しないことに起因している。他方、(1)及び(2)式を
満足するNo.1〜No.5においては所望の繊維が得ら
れる。 実施例 2 35℃のO―クロロフエノール溶液で測定した極
限粘度が0.71のポリエチレンテレフタレート(酸
化チタン含有量0.03%)を、孔径0.35mm、孔数30
個の紡糸口金より295℃の温度で溶融吐出し、吐
出糸条を紡糸筒内で糸条を横切るように吹き出す
線速度0.1m/secの冷却風により冷却し、吐出糸
条の温度が120℃になる位置即ち紡糸口金より75
cmの位置で100℃に加熱された400m/minで駆動
されているセパレートロール付加熱ロールに引き
取り、第2段加熱ロール間で1段延伸し、次いで
引き続き第3段加熱ロール間で2段延伸をしなが
らオイリングを行い、該第3段加熱ロール上で
200℃、0.64秒緊張熱処理した。 その際1段延伸倍率、第2段加熱ロールの温度
を変化させた際の糸条物性は以下の通りである。
[Table] In the above example (No. 6), the first stage stretching ratio is
If it exceeds 4.75, a total stretching ratio of 5.6 times or more cannot be obtained, and therefore a modulus of only about 1.7 g/de can be obtained. This is because the relationship between Δn and Δna does not satisfy equations (1) and (2) defined in the present invention. On the other hand, desired fibers can be obtained in No. 1 to No. 5 that satisfy formulas (1) and (2). Example 2 Polyethylene terephthalate (titanium oxide content: 0.03%) with an intrinsic viscosity of 0.71 measured in an O-chlorophenol solution at 35°C was prepared with a pore diameter of 0.35 mm and a number of pores of 30.
The yarn is melted and discharged from a spinneret at a temperature of 295℃, and the discharged yarn is cooled by cooling air at a linear velocity of 0.1m/sec that blows across the yarn within the spinning tube until the temperature of the discharged yarn reaches 120℃. 75 from the spinneret
It is taken over to a separate roll heating roll heated to 100℃ and driven at 400m/min at a position of 1.5 cm, and stretched in one stage between the second heating rolls, and then stretched in two stages between the third heating rolls. Oiling is performed while
Tension heat treatment was performed at 200°C for 0.64 seconds. At that time, the yarn physical properties when the first stage draw ratio and the temperature of the second stage heating roll were changed are as follows.

【表】【table】

【表】 上記例において、第2段加熱ロール温度が低い
場合(No.10)或いは高い場合(No.12)安定な操業
が確保できなくなり、同時に所望の繊維を得るこ
ともできない。そこで、No.11の如く第2段延伸倍
率を下げて安定な操業状態を得ようとすると、逆
に糸質面で所望の物性が期待できなくなることが
判る。 比較例 特開昭53−58028号実施例3に記載の方法に準
じて、極限粘度が0.65のポリエチレンテレフタレ
ートを290℃で溶融吐出後、完全に冷却固化させ
た糸条を巻取ることなく直ちに周速度420m/
min、表面温度95℃の第1ネルソンローラー対
と、表面温度160℃の第2ネルソンローラー対と
の間で3.60倍に1段延伸し、次いで、表面温度
200℃の第3ネルソンローラー対との間で2段延
伸し、全延伸倍率を5.9倍とした。得られた糸条
は以下の物性を有した。 繊 度 1500de/250fils 強 度 7.9g/de 伸 度 11.8% 2%伸長時応力 1.7g/de 複屈折率△n 0.189 非晶部の複屈折率△na 0.178 密度法結晶化度 52% △n/△na 0.942。
[Table] In the above example, if the temperature of the second stage heating roll is low (No. 10) or high (No. 12), stable operation cannot be ensured, and at the same time, the desired fiber cannot be obtained. Therefore, if an attempt is made to obtain a stable operating condition by lowering the second stage draw ratio as in No. 11, it is found that the desired physical properties in terms of yarn quality cannot be expected. Comparative Example According to the method described in Example 3 of JP-A No. 53-58028, polyethylene terephthalate having an intrinsic viscosity of 0.65 was melted and discharged at 290°C, and then the yarn, which had been completely cooled and solidified, was immediately wrapped without winding. Speed 420m/
min, the first pair of Nelson rollers with a surface temperature of 95°C and the second pair of Nelson rollers with a surface temperature of 160°C are stretched 3.60 times, and then the surface temperature
The film was stretched in two stages between a third pair of Nelson rollers at 200°C, and the total stretching ratio was 5.9 times. The obtained yarn had the following physical properties. Fineness 1500de/250fils Strength 7.9g/de Elongation 11.8% Stress at 2% elongation 1.7g/de Birefringence △n 0.189 Birefringence of amorphous part △na 0.178 Density method crystallinity 52% △n/ △na 0.942.

Claims (1)

【特許請求の範囲】 1 主たる繰返し単位としてエチレンテレフタレ
ートを含有し、極限粘度が0.5以上のポリエステ
ルからなる溶融吐出糸条の糸温度T1が未だ完全
固化していないT1=100〜140℃の位置で且つ、
(T1―30)〜(T1+30)の範囲の100〜140℃に加
熱された第1のロールに吐出糸条を引き取り、こ
れを120〜180℃に加熱した第2のロールとの間で
3.5〜4.75倍に1段延伸後(巻取ることなく)引
き続き前記第2のロール上で予熱温度120〜180℃
で予熱しつつ180℃以上に加熱された第3のロー
ルとの間で少くとも全延伸倍率が5.6倍以上に2
段延伸を行うと共に前記第3のロール上で温度
180℃以上で0.3秒以上熱処理することにより得ら
れた繊維であつて、複屈折率(△n)及び非晶部
の複屈折率(△na)が下記(1)及び(2)式を満足し △n≧0.190 (1) △na/△n≧0.95 (2) しかも2%伸長時の応力Mと上記△naとが下記
(3)式を満足し M≧62.5△na―9.4 (3) 且つ上記応力Mが1.9g/de以上であることによつ
て特徴づけられる結晶性ポリエステル繊維。 2 密度が1.39g/cm3以下である、特許請求の範囲
第1項記載の結晶性ポリエステル繊維。 3 極限粘度が0.5以上である、特許請求の範囲
第1項記載の結晶性ポリエステル繊維。 4 切断強度が7g/de以上である、特許請求の
範囲第1項記載の結晶性ポリエステル繊維。
[Claims] 1. The yarn temperature T 1 of the melt-discharged yarn made of polyester containing ethylene terephthalate as a main repeating unit and having an intrinsic viscosity of 0.5 or more is T 1 = 100 to 140°C, which is not yet completely solidified. at the location and
The discharged yarn is taken up by a first roll heated to 100 to 140℃ in the range of (T 1 -30) to (T 1 +30), and this is transferred between it and a second roll heated to 120 to 180℃. in
After one stage stretching to 3.5 to 4.75 times (without winding), preheating temperature is 120 to 180°C on the second roll.
The total stretching ratio is at least 5.6 times or more by 2.
While carrying out stage stretching, the temperature is increased on the third roll.
Fibers obtained by heat treatment at 180°C or higher for 0.3 seconds or more, whose birefringence (△n) and the birefringence of the amorphous portion (△na) satisfy the following formulas (1) and (2). △n≧0.190 (1) △na/△n≧0.95 (2) Moreover, the stress M at 2% elongation and the above △na are as follows.
A crystalline polyester fiber that satisfies the formula (3), M≧62.5△na−9.4 (3), and is characterized by the stress M being 1.9 g/de or more. 2. The crystalline polyester fiber according to claim 1, having a density of 1.39 g/cm 3 or less. 3. The crystalline polyester fiber according to claim 1, which has an intrinsic viscosity of 0.5 or more. 4. The crystalline polyester fiber according to claim 1, which has a cutting strength of 7 g/de or more.
JP1899879A 1979-02-22 1979-02-22 Crystalline polyester fiber Granted JPS55112314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1899879A JPS55112314A (en) 1979-02-22 1979-02-22 Crystalline polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1899879A JPS55112314A (en) 1979-02-22 1979-02-22 Crystalline polyester fiber

Publications (2)

Publication Number Publication Date
JPS55112314A JPS55112314A (en) 1980-08-29
JPS6254883B2 true JPS6254883B2 (en) 1987-11-17

Family

ID=11987216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1899879A Granted JPS55112314A (en) 1979-02-22 1979-02-22 Crystalline polyester fiber

Country Status (1)

Country Link
JP (1) JPS55112314A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49117718A (en) * 1973-03-16 1974-11-11
JPS52121529A (en) * 1976-04-06 1977-10-13 Teijin Ltd Preparation of polyester filament yarns having high tensile strength
JPS5358028A (en) * 1976-11-02 1978-05-25 Teijin Ltd Production of polyester fibers for reinforcing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49117718A (en) * 1973-03-16 1974-11-11
JPS52121529A (en) * 1976-04-06 1977-10-13 Teijin Ltd Preparation of polyester filament yarns having high tensile strength
JPS5358028A (en) * 1976-11-02 1978-05-25 Teijin Ltd Production of polyester fibers for reinforcing

Also Published As

Publication number Publication date
JPS55112314A (en) 1980-08-29

Similar Documents

Publication Publication Date Title
KR950007813B1 (en) Polyester fiber for industrial use and process for preparation thereof
JP2549804B2 (en) Polyester filament yarn, polyester tire cord, and methods for producing the same
JPH0128127B2 (en)
JPH0210243B2 (en)
EP0338534B1 (en) Polyvinyl alcohol fiber having excellent resistance to hot water and process for producing the same
JP2629075B2 (en) High modulus polyester yarn for tire cords and composites
JPH10513228A (en) Method for producing continuous polyester filament yarn
US6878326B2 (en) Process for preparing industrial polyester multifilament yarn
JPH01162820A (en) Direct spinning and drawing for polyester fiber
US4851508A (en) Polyester fibers having high strength and high modulus and process for producing the same
JPS58115117A (en) Polyester yarn and its preparation
JPH06136614A (en) Polyester fiber having improved dimensional stability and its production
JPS6254883B2 (en)
JPH0261109A (en) Polyester fiber
JPH0428806B2 (en)
JP2564872B2 (en) Polyester fiber for seat belt
JPS63159518A (en) Polyester fiber
JPH0323644B2 (en)
KR960002887B1 (en) High strength and low shrinkage polyester fiber and the method for manufacturing thereof
JP2960755B2 (en) Manufacturing method of polyester fiber
KR940004697B1 (en) Polyester fiber used for tire cord of good dimensional stability
JPH04163314A (en) Polyester fiber and production thereof
JPS5813718A (en) Polyester fiber
JPS59168119A (en) Preparation of polyester yarn having improved thermal dimensional stability and high strength
JPS61132616A (en) Polyester fiber