JPS6254877B2 - - Google Patents

Info

Publication number
JPS6254877B2
JPS6254877B2 JP52125753A JP12575377A JPS6254877B2 JP S6254877 B2 JPS6254877 B2 JP S6254877B2 JP 52125753 A JP52125753 A JP 52125753A JP 12575377 A JP12575377 A JP 12575377A JP S6254877 B2 JPS6254877 B2 JP S6254877B2
Authority
JP
Japan
Prior art keywords
cathode
exchange membrane
rodan
nickel
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52125753A
Other languages
Japanese (ja)
Other versions
JPS5460293A (en
Inventor
Shunji Matsura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP12575377A priority Critical patent/JPS5460293A/en
Priority to DE19782811472 priority patent/DE2811472A1/en
Priority to GB1069378A priority patent/GB1603471A/en
Priority to FR7807957A priority patent/FR2384036A1/en
Publication of JPS5460293A publication Critical patent/JPS5460293A/en
Publication of JPS6254877B2 publication Critical patent/JPS6254877B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • C25D3/14Electroplating: Baths therefor from solutions of nickel or cobalt from baths containing acetylenic or heterocyclic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はイオン交換膜法によるアルカリ金属塩
の電解方法に関する。 従来、陽極と陰極との間を隔膜で仕切つて陰極
側の室(陰極室という)から苛性アルカリの水溶
液を取り出す電解方法は公知であり、通常隔膜法
と称される。この場合、隔膜としてアスベスト等
の透水性の大きい膜を用い、陽極室に供給された
アルカリ金属塩水溶液の少くとも一部を該隔膜を
通して陰極室に流入させる方法が採用されてい
る。しかしながら、この方法にあつては生成する
苛性アルカリに原料のアルカリ金属塩類が比較的
大量に混入する欠陥がある。 近年、上記隔膜に代えて陽イオン交換膜を用い
る所謂イオン交換膜法が盛んに開発されている。
この方法によれば、陽イオン交換膜が実質的に水
を透過しないために、陽極室液が陰極室液中に混
入することがないと考えられる。したがつて、生
成する苛性アルカリに原料のアルカリ金属塩類が
混入することは実質的に防止される。しかしなが
ら、イオン交換膜は比較的電気抵抗が高いため
に、電解時の極間電圧は比較的高くなる傾向にあ
る。 本発明はイオン交換膜法アルカリ金属塩の電解
において、極間電圧を下げることを主目的とする
ものである。 イオン交換膜法電解において、極間電圧降下の
原因を詳細に検討すると(イ)陽極での過電圧、例え
ば食塩水の電解にあつては塩素過電圧(ロ)イオン交
換膜の電気抵抗による電圧降下(ハ)陰極の過電圧、
即ち水素過電圧(ニ)陰・陽電極間に存在する溶液の
抵抗等があげられる。このうち(ニ)の溶液抵抗につ
いては陽極および陰極を寸法精度および安定性に
優れた金属電極を用い、極間距離を小さく保つこ
とによつて極小にすることが出来る。また(ロ)のイ
オン交換膜抵抗はその性質上から1〜2Ω−cm2
度はやむを得ないところであろう。そこで(イ)、(ロ)
における電極の過電圧をいかに下げるかが重要な
問題となる。しかして、アルカリ金属塩水溶液の
電解にあたつては、既に陽極が改良され、例えば
酸化ルテニウムまたは酸化ルテニウムと他の金属
酸化物との混合物をコーテイングした金属電極、
その他の寸法安定性に優れた過電圧の小さい陽極
が開発されている。したがつて、現在、最も開発
の必要性の高いのは陰極での過電圧を下げること
及び陰極の寸法安定性を保つ点にある。 本発明は上記した課題に鑑み、ロダンニツケル
浴を用いて電鍍した金属陰極と金属陽極とを用
い、且つ陰極室液中の次亜塩素酸イオン濃度を
1ppm以下として電解することを特徴とするイオ
ン交換膜法アルカリ金属塩の電解方法を提供す
る。 ロダンニツケル浴によるニツケルの電気メツキ
(以下、ロダンニツケルメツキと称する)した表
面は、陰極として用いた場合に水素過電圧が小さ
いことは公知である。例えば、特公昭25−2305号
公報には、鉄板上にロダンニツケルメツキを施し
た陰極を用いて水の電気分解を行なうことによ
り、黒鍍付鉄板陰極を用いた場合に比して約0.2
〜0.3ボルト極間電圧が低下することが示されて
いる。また特公昭47−7444号公報にはチタン等の
耐蝕性金属板の表面の一方を金属陽極材で被覆
し、他方を銅を電着し更にその表面にロダンニツ
ケルメツキし陰極表面とした複極型電極が提案さ
れており、該ロダンニツケルがアルカリ性溶液に
耐性を有すること及び水素過電圧が極めて低い旨
記載されている。 本発明者は上記の如き提案に基づいて、イオン
交換膜法アルカリ金属塩電解における水素過電圧
の低下を検討した結果、ロダンニツケルメツキし
た陰極表面が意外に耐久性に乏しいことを知つ
た。例えば、アルカリ性雰囲気下においても酸化
剤に弱く、水素過電圧の増大を来たすこと及び電
解時に往々に起きるイオン交換膜の劣化より生ず
ると考えられる種々の官能基の影響によると思わ
れる極間電圧の増大が認められる。したがつて、
これらの影響のために従来工業的規模でのロダン
ニツケルメツキした陰極の使用は困難であつたと
推定された。 本発明はロダンニツケルメツキした陰極を工業
的規模で使用することを意図して更に検討を進め
た結果、上記したイオン交換膜による影響を重視
し、特にパーフロロカーボンを骨格とし少くとも
イオン交換基の結合した炭素にフツ素原子が結合
している側鎖を有するイオン交換膜を使用するこ
とが極めて有効であることを見出した。即ち、本
発明において上記の特定したイオン交換膜は電解
条件下に耐久性を有するだけでなく、理由は不明
であるが陽極室で副生する次亜塩素酸イオンの透
過を有効に防止する。したがつて、陰極室におけ
る次亜塩素酸イオンの濃度は例えば1ppm以下に
保つことは比較的容易となり、ロダンニツケルメ
ツキの陰極が保護されるのに好都合である。しか
しながら長期間に亘る電解の継続によつて、陰極
室内の次亜塩素酸イオンはやはり上昇することは
まぬかれない。従つて、陰極室液中の次亜塩素酸
イオンの濃度が1ppmを越えないように種々の操
作を行う。例えば定期的に陰極室液を全部又は一
部更新するとか、或いは連続的又は間けつ的に、
陰極室液を抜き出し、還元剤を添加するなどによ
り、次亜塩素酸イオンを減少させて、陰極室に還
流させるなどの手段により該濃度を1ppm以下に
保つのが好ましい。 本発明におけるその他の利点は、陽極及び陰極
が共に寸法安定性のある材質であるため、極間距
離を1〜4mmの如く極めて小さくすることができ
る点にもある。このために極間に存在する溶液の
抵抗による電圧の降下を最大限に低下できる。 なお、本発明におけるロダンニツケルメツキの
方法については特に限定されないが、浴中にロダ
ンニツケルを溶解した系であり、前記特公昭25−
2305号公報に記載された方法またはこれと類似の
方法が採用される。 実施例 1 20cm×25cmの軟鋼製のラス材を常法によりアル
カリ浴によつて銅メツキし、これを十分に洗滌
し、次いで120g/のロダンニツケルを含有す
る溶液中で白金を陽極としてロダンニツケルメツ
キし陰極を得た。 上記陰極と20cm×25cmのチタンラス材上に酸化
ルテニウムをコーテイングした陽極とを用い、両
極間に“ナフイオン”イオン交換膜を設置して陽
極室と陰極室に区分した電解槽により、陽極室に
5N食塩水を供給し、陰極室に同室内液が6N苛性
ソーダとなるように水を注加しつつ電解を行つ
た。 また比較のため、上記陰極の代りに軟鋼製ラス
材陰極を用いた場合(比較例1)およびイオン交
換膜としてスチレン−ジビニルベンゼン系スルホ
ン酸型陽イオン交換膜を用いた場合(比較例2)
について、それぞれ同様の電解を行つた。 それらの電解条件と結果を第1表に示す。
The present invention relates to a method for electrolyzing alkali metal salts using an ion exchange membrane method. Conventionally, an electrolytic method is known in which an aqueous solution of caustic alkali is extracted from a chamber on the cathode side (referred to as a cathode chamber) by partitioning an anode and a cathode with a diaphragm, and is usually referred to as a diaphragm method. In this case, a method is adopted in which a highly water-permeable membrane such as asbestos is used as the diaphragm and at least a portion of the aqueous alkali metal salt solution supplied to the anode chamber flows into the cathode chamber through the diaphragm. However, this method has the drawback that a relatively large amount of raw material alkali metal salts are mixed into the caustic alkali produced. In recent years, a so-called ion exchange membrane method using a cation exchange membrane in place of the above-mentioned diaphragm has been actively developed.
According to this method, since the cation exchange membrane substantially does not permeate water, it is thought that the anode chamber solution will not be mixed into the cathode chamber solution. Therefore, contamination of the raw material alkali metal salts into the produced caustic alkali is substantially prevented. However, since the ion exchange membrane has a relatively high electrical resistance, the interelectrode voltage during electrolysis tends to be relatively high. The main object of the present invention is to lower the voltage between electrodes in the electrolysis of alkali metal salts using an ion exchange membrane method. In ion-exchange membrane electrolysis, a detailed study of the causes of interelectrode voltage drop reveals (a) overvoltage at the anode, for example, chlorine overvoltage in the case of salt water electrolysis, (b) voltage drop due to the electrical resistance of the ion-exchange membrane ( c) Cathode overvoltage,
In other words, hydrogen overvoltage (d), resistance of the solution existing between the negative and positive electrodes, etc. Among these, (d) solution resistance can be minimized by using metal electrodes with excellent dimensional accuracy and stability as the anode and cathode and keeping the distance between the electrodes small. Moreover, the ion exchange membrane resistance (b) is unavoidably about 1 to 2 Ω-cm 2 due to its properties. So (a), (b)
An important issue is how to reduce the overvoltage of the electrodes. For electrolysis of aqueous alkali metal salt solutions, anodes have already been improved, such as metal electrodes coated with ruthenium oxide or a mixture of ruthenium oxide and other metal oxides.
Other anodes with excellent dimensional stability and low overvoltage have been developed. Therefore, the greatest need for development at present is in reducing the overvoltage at the cathode and maintaining the dimensional stability of the cathode. In view of the above problems, the present invention uses a metal cathode and a metal anode electroplated using a Rodan nickel bath, and also reduces the hypochlorite ion concentration in the cathode chamber fluid.
Provided is a method for electrolyzing alkali metal salts using an ion exchange membrane method, which is characterized in that the electrolyzing concentration is 1 ppm or less. It is known that a surface electroplated with nickel using a Rodan nickel bath (hereinafter referred to as Rodan nickel plating) has a small hydrogen overvoltage when used as a cathode. For example, in Japanese Patent Publication No. 25-2305, water electrolysis is carried out using a cathode with rodan nickel plating on an iron plate, which is approximately 0.2
It has been shown that the interpole voltage drops by ~0.3 volts. Furthermore, in Japanese Patent Publication No. 47-7444, one of the surfaces of a corrosion-resistant metal plate made of titanium or the like is coated with a metal anode material, copper is electrodeposited on the other side, and the surface is then plated with rodanium nickel to make a bipolar cathode surface. type electrode has been proposed, and it is described that the rodan nickel has resistance to alkaline solutions and has an extremely low hydrogen overvoltage. Based on the above proposal, the present inventor investigated the reduction in hydrogen overvoltage in alkali metal salt electrolysis using an ion exchange membrane method and found that the cathode surface plated with rodanium nickel had unexpectedly poor durability. For example, it is susceptible to oxidizing agents even in an alkaline atmosphere, causing an increase in hydrogen overvoltage, and an increase in interelectrode voltage that is thought to be due to the effects of various functional groups that are thought to result from the deterioration of ion exchange membranes that often occur during electrolysis. is recognized. Therefore,
It is presumed that it has been difficult to use rodan nickel plated cathodes on an industrial scale due to these effects. As a result of further studies with the intention of using a rodan nickel-plated cathode on an industrial scale, the present invention places emphasis on the influence of the above-mentioned ion exchange membrane. It has been found that it is extremely effective to use an ion exchange membrane having a side chain in which a fluorine atom is bonded to the bonded carbon. That is, in the present invention, the above-specified ion exchange membrane not only has durability under electrolytic conditions, but also effectively prevents the permeation of hypochlorite ions produced as a by-product in the anode chamber, although the reason is unknown. Therefore, it is relatively easy to maintain the concentration of hypochlorite ions in the cathode chamber at, for example, 1 ppm or less, which is convenient for protecting the cathode of Rodan Nickelmecki. However, as electrolysis continues for a long period of time, the hypochlorite ions in the cathode chamber inevitably rise. Therefore, various operations are performed so that the concentration of hypochlorite ions in the cathode chamber solution does not exceed 1 ppm. For example, periodically renewing the catholyte in whole or in part, or continuously or intermittently.
It is preferable to remove the cathode chamber solution, add a reducing agent, etc. to reduce the hypochlorite ion, and maintain the concentration at 1 ppm or less by refluxing the cathode chamber. Another advantage of the present invention is that since both the anode and cathode are made of dimensionally stable materials, the distance between the electrodes can be made extremely small, such as from 1 to 4 mm. Therefore, the voltage drop due to the resistance of the solution existing between the electrodes can be reduced to the maximum. Although the method of rodan nickel in the present invention is not particularly limited, it is a system in which rodan nickel is dissolved in a bath, and
The method described in Publication No. 2305 or a method similar thereto is adopted. Example 1 A 20 cm x 25 cm mild steel lath material was plated with copper in an alkaline bath in a conventional manner, thoroughly washed, and then plated with rodan nickel using platinum as an anode in a solution containing 120 g of rodan nickel. A cathode was obtained. Using the above cathode and an anode made of a 20cm x 25cm titanium lath material coated with ruthenium oxide, an electrolytic cell separated into an anode chamber and a cathode chamber by installing a "nafion" ion exchange membrane between the two electrodes was used to create an anode chamber.
Electrolysis was carried out by supplying 5N saline and adding water to the cathode chamber so that the liquid in the chamber was 6N caustic soda. For comparison, a case where a mild steel lath material cathode was used instead of the above cathode (Comparative Example 1) and a case where a styrene-divinylbenzene-based sulfonic acid type cation exchange membrane was used as the ion exchange membrane (Comparative Example 2)
Similar electrolysis was performed for each. The electrolytic conditions and results are shown in Table 1.

【表】 実施例 2 1cm2の鉄円板上に銅メツキ及びロダンニツケル
メツキを施し、これを陰極とし白金を陽極として
20wt%NaOH中で80℃、30A/dm2で通電する。
なお、陰極は1000rpmで回転させる。かかる条件
下に、一方で次亜塩素酸ソーダを定期的に添加時
100ppmになるように添加しつつ、陰極の水素過
電圧の経時変化を測定した。その結果を第2表及
び第1図に示す。
[Table] Example 2 Copper plating and Rodan nickel plating were applied to a 1 cm 2 iron disk, and this was used as a cathode and platinum was used as an anode.
Electricity is applied at 80℃ and 30A/ dm2 in 20wt% NaOH.
Note that the cathode is rotated at 1000 rpm. Under these conditions, on the other hand, when adding sodium hypochlorite regularly
The hydrogen overvoltage of the cathode was measured over time while being added at a concentration of 100 ppm. The results are shown in Table 2 and Figure 1.

【表】 本例からロダンニツケル陰極が酸化剤に対して
敏感であることがわかる。
[Table] This example shows that the rodan nickel cathode is sensitive to oxidizing agents.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例においてロダンニツケル陰極が
酸化剤に対して耐久性が乏しいことを示す図面で
あり、延いては濾過性隔膜法その他陽極液の浸透
性の大きい電解法によるアルカリ金属塩の電解方
法に対しては工業的に使用に耐えないことを示
す。なお、図中の−Γ−はNaClO無添加、−●−
はNaClO添加の場合を示す。
FIG. 1 is a drawing showing that the Rodan nickel cathode has poor durability against oxidizing agents in an example, and furthermore, it is a drawing showing how to electrolyze an alkali metal salt using a filterable diaphragm method or other electrolytic method in which the anolyte has high permeability. indicates that it is not suitable for industrial use. In addition, −Γ− in the figure indicates no addition of NaClO, −●−
indicates the case of NaClO addition.

Claims (1)

【特許請求の範囲】[Claims] 1 ロダンニツケル浴を用いて電鍍した金属陰極
と金属陽極とを用い、且つ陰極室液中の次亜塩素
酸イオン濃度を1ppm以下として電解することを
特徴とするイオン交換膜法アルカリ金属塩の電解
方法。
1. A method for electrolyzing alkali metal salts using an ion-exchange membrane method, characterized by using a metal cathode and a metal anode electroplated using a Rodan nickel bath, and performing electrolysis at a hypochlorite ion concentration of 1 ppm or less in the cathode chamber solution. .
JP12575377A 1977-03-19 1977-10-21 Electrolysis of alkale metal salts Granted JPS5460293A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP12575377A JPS5460293A (en) 1977-10-21 1977-10-21 Electrolysis of alkale metal salts
DE19782811472 DE2811472A1 (en) 1977-03-19 1978-03-16 CATHODES FOR ELECTROLYTIC CELLS
GB1069378A GB1603471A (en) 1977-03-19 1978-03-17 Electrolytic process
FR7807957A FR2384036A1 (en) 1977-03-19 1978-03-20 Supported cathode esp. for sodium chloride electrolysis - having iron or nickel (alloy) support plated with iron, cobalt or nickel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12575377A JPS5460293A (en) 1977-10-21 1977-10-21 Electrolysis of alkale metal salts

Publications (2)

Publication Number Publication Date
JPS5460293A JPS5460293A (en) 1979-05-15
JPS6254877B2 true JPS6254877B2 (en) 1987-11-17

Family

ID=14917951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12575377A Granted JPS5460293A (en) 1977-03-19 1977-10-21 Electrolysis of alkale metal salts

Country Status (1)

Country Link
JP (1) JPS5460293A (en)

Also Published As

Publication number Publication date
JPS5460293A (en) 1979-05-15

Similar Documents

Publication Publication Date Title
US4917781A (en) Process for preparing quaternary ammonium hydroxides
JP2648313B2 (en) Electrolysis method
KR830002163B1 (en) Chlorine-Alkaline Electrolyzer
JPS5949318B2 (en) Electrolytic production method of alkali metal hypohalite salt
JPH04224689A (en) Electrolytic method of alkali metal sulfate
GB2166456A (en) Electrolytic process for the preparation of quaternary ammonium salts
ES475850A1 (en) Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane
WO1990006382A1 (en) Method for purifying quaternary ammonium hydroxides
EP0132816B1 (en) A method for preventing degradation in activity of a low hydrogen overvoltage cathode
US4578159A (en) Electrolysis of alkali metal chloride brine in catholyteless membrane cells employing an oxygen consuming cathode
US4454012A (en) Process for the preparation of methionine
Ochoa et al. Electrosynthesis of glyoxylic acid using a continuously electrogenerated lead cathode
JP3115440B2 (en) Electrolysis method of alkali chloride aqueous solution
US4250004A (en) Process for the preparation of low overvoltage electrodes
CA1313362C (en) Process for the dehalogenation of chloroacetic and bromoacetic acids
US4115218A (en) Method of electrolyzing brine
GB2056495A (en) Process for the preparation of low hydrogen overvoltage cathodes
JPS6254877B2 (en)
JP3538271B2 (en) Hydrochloric acid electrolyzer
JPS586789B2 (en) Method for preventing deterioration of palladium oxide anodes
JPS622036B2 (en)
JP3420790B2 (en) Electrolyzer and electrolysis method for alkali chloride electrolysis
TWI529998B (en) Membrane restoration process
RO107135B1 (en) Electrochemical preparation process for alkaline bichromates and chromatic acid
JPS61217589A (en) Electrochemical method