JPS6254235B2 - - Google Patents

Info

Publication number
JPS6254235B2
JPS6254235B2 JP55003877A JP387780A JPS6254235B2 JP S6254235 B2 JPS6254235 B2 JP S6254235B2 JP 55003877 A JP55003877 A JP 55003877A JP 387780 A JP387780 A JP 387780A JP S6254235 B2 JPS6254235 B2 JP S6254235B2
Authority
JP
Japan
Prior art keywords
sheet
active material
porosity
nickel
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55003877A
Other languages
Japanese (ja)
Other versions
JPS56102076A (en
Inventor
Isao Matsumoto
Tsutomu Iwaki
Nobuyuki Yanagihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP387780A priority Critical patent/JPS56102076A/en
Publication of JPS56102076A publication Critical patent/JPS56102076A/en
Publication of JPS6254235B2 publication Critical patent/JPS6254235B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/808Foamed, spongy materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 本発明は、三次元的に連続した構造を有するス
ポンジ状シートを基板とし、その内部に活物質も
しくは触媒を充填した電極の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an electrode in which a sponge-like sheet having a three-dimensional continuous structure is used as a substrate and an active material or catalyst is filled inside the sponge sheet.

通常、電極は金属スクリーンや穴あき板を支持
体として両側に活物質などを塗着する方法や、金
属焼結体内部に活物質などを充填する方法、およ
び、活物質などを缶もしくは微孔を有する筒や袋
につめこむ方法を用いて製造される。これらの製
造方法の他に、最近開発されたスポンジ状金属シ
ートを基板とし、その中に活物質や触媒性を有す
る物質を充填する方法が提案されている。この方
法自体は、焼結基板を用いる場合と似ているが、
スポンジ状金属シートを用いる特徴は、孔径が焼
結基板より大きいので活物質粉末が直接充填でき
ることである。しかも、高多孔度(最大98%)で
あるから理論上高密度充填が可能であり、比較的
導電性に富むため高率放電にも適している。
Usually, electrodes are made by using a metal screen or a perforated plate as a support and applying an active material on both sides, by filling the active material inside a sintered metal body, or by placing the active material in a can or using microporous holes. It is manufactured using a method of packing it into a tube or bag with a In addition to these manufacturing methods, a method has been proposed in which a recently developed sponge-like metal sheet is used as a substrate and an active material or a substance having catalytic properties is filled therein. This method itself is similar to using a sintered substrate, but
A feature of using a sponge-like metal sheet is that the pore diameter is larger than that of the sintered substrate, so that the active material powder can be directly filled. Moreover, it has a high porosity (up to 98%), which theoretically allows for high-density packing, and its relatively high conductivity makes it suitable for high-rate discharge.

本発明は、これらの長所のうち活物質などを高
密度に充填できる点をさらに改良すると同時に、
電極表面の芯材を強固にして全体として活物質な
どの保持強度を向上させることを目的とする。す
なわち、本発明は基板として用いるスポンジ状金
属シートとして、表面付近から厚みの中心にゆく
に従つて連続的に格子径が細くなるものを用いる
ことを特徴とする。
The present invention further improves the ability to fill active materials etc. with high density among these advantages, and at the same time,
The purpose is to strengthen the core material on the electrode surface and improve the retention strength of the active material as a whole. That is, the present invention is characterized in that the sponge-like metal sheet used as the substrate has a lattice diameter that becomes continuously thinner from near the surface toward the center of thickness.

以下、アルカリ蓄電池用ニツケル極の基板にス
ポンジ状ニツケルシートを適用した例により本発
明をさらに詳しく説明する。
The present invention will be explained in more detail below using an example in which a sponge-like nickel sheet is applied to the substrate of a nickel electrode for an alkaline storage battery.

スポンジ状シート内部に水酸化ニツケルを主と
する活物質粉末を充填した電極は、従来のポケツ
ト式電極に近い簡単な方法で製作でき、焼結式ニ
ツケル極に近い高率放電特性、寿命等を有してい
る。また焼結式電極より大きい放電容量密度も有
している。スポンジ状ニツケルシートは最大98%
程度までの高多孔度が可能で、70個/インチ程度
までの孔を有する目の細かいものが現状では製作
が可能である。しかし、工業的には取り扱いや寿
命を考慮しての物論的強度の必要性から約95%の
多孔度が限度であり、その目的は細かいものほど
充放電を繰り返した場合の強度と高率放電などの
電極特性に優れている。目の細かさに関しては、
さらに細かいほど好ましく、高密度に充填できる
という点では高多孔度であるほど望ましい。
The electrode, which has a sponge-like sheet filled with active material powder mainly composed of nickel hydroxide, can be manufactured using a simple method similar to that of conventional pocket-type electrodes, and has high-rate discharge characteristics and lifespan similar to those of sintered nickel electrodes. have. It also has a higher discharge capacity density than sintered electrodes. Spongy nickel sheet up to 98%
Currently, it is possible to produce fine-mesh pores with up to 70 pores/inch. However, industrially, the porosity is limited to approximately 95% due to the need for physical strength in consideration of handling and lifespan, and the purpose is to increase the strength and high porosity after repeated charging and discharging. Excellent electrode properties such as discharge. Regarding the fineness of the eyes,
The finer the layer, the more preferable it is, and the higher the porosity, the more preferable it is in terms of being able to fill it with high density.

本発明者らは、平均多孔度が例えば95%と同じ
であつても、基板内部の多孔度が大きいほど、す
なわち格子径が細いほど活物質粉末を多く保持で
き、充填後の加圧成形によつても外部に活物質が
吹き出ることも少なく、しかも充放電中の活物質
の脱落も少ないことを見出した。
The present inventors found that even if the average porosity is the same, for example, 95%, the larger the porosity inside the substrate, that is, the smaller the lattice diameter, the more active material powder can be held, and the more active material powder can be held, and the more the porosity is It has been found that the active material is less likely to blow out to the outside even when the battery is damaged, and that the active material is less likely to fall off during charging and discharging.

なお、本発明者らは、すでに多孔度の小さいス
ポンジ状ニツケルシートの間に多孔度の大きいシ
ートをはさんで一体化した電極を提案したが、本
発明はスポンジ状ニツケルシート単体で、連続し
て表面付近から厚みの中心部にゆくに従つて格子
径を細くし、その結果中心部ほど高多孔度の基板
を用いることが特徴であり、構造上異なる上に、
工程上も一回の充填だけでよく、張り合わせる工
程などが不要であり、電極自体の強度も強いなど
の特徴がある。
The present inventors have already proposed an electrode in which a highly porous sheet is sandwiched between spongy nickel sheets with low porosity, but the present invention uses a single spongy nickel sheet that is continuous. The lattice diameter becomes thinner from near the surface to the center of the thickness, and as a result, a substrate with higher porosity is used in the center.
In terms of the process, it only needs to be filled once, there is no need for a bonding process, and the electrode itself is strong.

第1図は本発明に用いるスポンジ状ニツケルシ
ートの概略断面図であり、1はニツケル格子、2
は空間部である。このシートの表面付近の格子1
aの径は内部の格子1bのそれより大きい。この
例では格子は中心部に向かうほど連続的に細くな
つている。
FIG. 1 is a schematic cross-sectional view of a sponge-like nickel sheet used in the present invention, where 1 is a nickel lattice, 2
is the spatial part. Grid 1 near the surface of this sheet
The diameter of a is larger than that of the internal grating 1b. In this example, the grid becomes continuously thinner toward the center.

以下、本発明の実施例を説明する。 Examples of the present invention will be described below.

厚さ約2mm、多孔度約97%の発泡状ポリウレタ
ンシートに無電解メツキ法によりパラジウムを付
着させた後、ワツト浴にて3A/cm2の電流密度で
約5分間ニツケルメツキをする。ついで約500℃
で焼結した後、約800℃でアニールしてスポンジ
状ニツケルシートを製作する。こうして得られた
シートの平均多孔度は95%、平均孔径は200μm
であり、表面付近の格子径約60μm、多孔度93
%、中心部の格子径約30μm、多孔度約97%であ
つた。このシートをAとする。
Palladium is deposited on a foamed polyurethane sheet with a thickness of about 2 mm and a porosity of about 97% by electroless plating, and then nickel plated in a Watt bath at a current density of 3 A/cm 2 for about 5 minutes. Then about 500℃
After sintering the material, it is annealed at approximately 800℃ to produce a spongy nickel sheet. The average porosity of the sheet thus obtained was 95% and the average pore diameter was 200 μm.
The lattice diameter near the surface is approximately 60 μm, and the porosity is 93
%, the lattice diameter at the center was about 30 μm, and the porosity was about 97%. This sheet is called A.

次に比較例として、上記ワツト浴でのニツケル
メツキの際、電流密度を1A/cm2以下とし、かつ
浴を十分撹拌する。通常のニツケル電気メツキは
このような条件で行なわれる。この方法による
と、2mm厚程度のシートでは、内部まで殆んど同
じ格子径のスポンジ状シートが得られた。こうし
て得られた平均多孔度95%のシートをBとする。
シートAは、ニツケルメツキの際の電流密度を極
めて大きくし、浴の撹拌も殆んど行わないで得た
ものである。
Next, as a comparative example, during nickel plating in the Watt bath, the current density was set to 1 A/cm 2 or less, and the bath was sufficiently stirred. Normal nickel electroplating is performed under these conditions. According to this method, a sponge-like sheet with a lattice diameter of almost the same size even inside the sheet was obtained with a thickness of about 2 mm. The thus obtained sheet having an average porosity of 95% is designated as B.
Sheet A was obtained by increasing the current density during nickel plating and hardly stirring the bath.

上記のシートA,Bに、平均粒子径100μmの
水酸化ニツケル粉末85重量%と金属ニツケル粉末
12重量%および金属コバルト粉末3重量%の混合
物をペースト状にして充填し、400Kg/cm2の圧力
で加圧成形し、乾燥してニツケル電極を得た。
To the above sheets A and B, 85% by weight of nickel hydroxide powder with an average particle diameter of 100 μm and nickel metal powder
A mixture of 12% by weight and 3% by weight of metallic cobalt powder was made into a paste and filled, pressure molded at a pressure of 400 kg/cm 2 and dried to obtain a nickel electrode.

シートAを用いて得られた電極は、厚さ1.3
mm、活物質充填密度約520mAh/c.c.であつた。一
方シートBを用いたものは、厚さ1.2mm、活物質
充填密度約460mAh/c.c.であつた。このように表
面付近の格子径を中心部のそれより大きくしたシ
ートを用いた場合、平均多孔度が同一であれば、
表面付近および中心部とも同じ格子径のものを用
いた場合より充填密度が大きくなり、その傾向は
シートの厚さが薄くなるほど顕著であつた。例え
ば、1mm厚で平均多孔度93%のスポンジ状ニツケ
ルシートを用いた場合、表面部と中心部の格子径
の異なるものでは、厚さ0.65mm、充填密度500m
Ah/c.c.の電極が得られたが、中心部の格子径が
表面部のそれと同一のものでは厚さ0.50mm、充填
密度400mAh/c.c.であつた。
The electrode obtained using sheet A has a thickness of 1.3
mm, and the active material packing density was approximately 520 mAh/cc. On the other hand, the one using sheet B had a thickness of 1.2 mm and an active material packing density of about 460 mAh/cc. When using a sheet in which the lattice diameter near the surface is larger than that at the center, if the average porosity is the same,
The packing density was higher than when using grids with the same diameter near the surface and in the center, and this tendency became more pronounced as the sheet thickness became thinner. For example, when using a sponge-like nickel sheet with a thickness of 1 mm and an average porosity of 93%, if the surface and center lattice diameters are different, the thickness is 0.65 mm and the packing density is 500 m.
An electrode of Ah/cc was obtained, but when the grid diameter in the center was the same as that in the surface, the thickness was 0.50 mm and the packing density was 400 mAh/cc.

次に、上記シートAを用いて得たニツケル電極
と、対極のニツケルスクリーンおよび比重1.26の
か性カリ水溶液からなる電解液を用いた半電池
を、0.1Cで15時間充電し、0.2Cで完全放電をす
る充放電試験をしたところ、500サイクル程度で
はほとんど活物質の脱落がみられなかつた。一
方、シートBを用いて得た電極では、150サイク
ル程度で活物質の脱落が多くみられた。このよう
に、本発明の電極は活物質の保持性にも優れてい
る。
Next, a half cell using the nickel electrode obtained using the above sheet A, a nickel screen as a counter electrode, and an electrolyte consisting of a caustic potassium aqueous solution with a specific gravity of 1.26 was charged at 0.1C for 15 hours, and completely discharged at 0.2C. When a charge-discharge test was conducted, almost no active material was observed to fall off after about 500 cycles. On the other hand, in the electrode obtained using Sheet B, the active material often fell off after about 150 cycles. In this way, the electrode of the present invention also has excellent active material retention.

第2図は、平均多孔度95%、厚さ2mmのスポン
ジ状シートに前記と同様のペースト状活物質を充
填し、400Kg/cm2の圧力で加圧した後の基板であ
るシート自体の中心部における多孔度と活物質の
充填密度との関係を示す。なお、この状態におけ
るシート自体の平均多孔度は93%となつている。
シート中心部の格子径30μmは、図の多孔度96%
に対応し、格子径55μmは多孔度93%に対応して
いる。この結果からも明らかなように、シート中
心部の格子径が細く、多孔度の大きいものほど活
物質の充填密度は大きくなる。
Figure 2 shows the center of the sheet itself, which is a substrate, after a sponge-like sheet with an average porosity of 95% and a thickness of 2 mm is filled with the same paste-like active material as above and pressed at a pressure of 400 kg/cm 2 . The relationship between the porosity and the packing density of the active material in the area is shown. Note that the average porosity of the sheet itself in this state was 93%.
The lattice diameter of 30μm in the center of the sheet means the porosity is 96% as shown in the figure.
, and a lattice diameter of 55 μm corresponds to a porosity of 93%. As is clear from this result, the smaller the lattice diameter at the center of the sheet and the greater the porosity, the higher the packing density of the active material.

以上の例ではニツケル極について説明したが、
本発明は二酸化マンガン極、カドミウム極、亜鉛
極、鉄極、鉛極、酸化銀あるいは触媒を用いる電
極などにも適用することができる。
In the above example, we explained the nickel pole,
The present invention can also be applied to manganese dioxide electrodes, cadmium electrodes, zinc electrodes, iron electrodes, lead electrodes, electrodes using silver oxide or catalysts, and the like.

以上のように、本発明の電極は活物質あるいは
触媒を高密度で保有し、しかもその保持性に優れ
るものである。
As described above, the electrode of the present invention retains the active material or catalyst at a high density and has excellent retention thereof.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例のスポンジ状ニツケル
シートを概略構成を示す縦断面図、第2図はシー
トの平均多孔度を一定としたときのシート中心部
の多孔度と活物質充填密度との関係を示す。 1……格子、2……空間部。
Fig. 1 is a vertical cross-sectional view showing the schematic structure of a sponge-like nickel sheet according to an embodiment of the present invention, and Fig. 2 shows the porosity and active material packing density at the center of the sheet when the average porosity of the sheet is constant. shows the relationship between 1... Lattice, 2... Space section.

Claims (1)

【特許請求の範囲】[Claims] 1 三次元的に連続した構造を有するスポンジ状
金属シートを基板とし、その内部に活物質もしく
は触媒を充填した電極であつて、前記シートはそ
の表面付近より厚みの中心部にゆくに従つて連続
的に格子径が細いことを特徴とする電極。
1 An electrode in which a sponge-like metal sheet having a three-dimensionally continuous structure is used as a substrate and an active material or catalyst is filled inside the sheet, and the sheet is continuous from near the surface toward the center of the thickness. An electrode characterized by a particularly thin lattice diameter.
JP387780A 1980-01-16 1980-01-16 Electrode Granted JPS56102076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP387780A JPS56102076A (en) 1980-01-16 1980-01-16 Electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP387780A JPS56102076A (en) 1980-01-16 1980-01-16 Electrode

Publications (2)

Publication Number Publication Date
JPS56102076A JPS56102076A (en) 1981-08-15
JPS6254235B2 true JPS6254235B2 (en) 1987-11-13

Family

ID=11569405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP387780A Granted JPS56102076A (en) 1980-01-16 1980-01-16 Electrode

Country Status (1)

Country Link
JP (1) JPS56102076A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066416A (en) * 1995-11-22 2000-05-23 Matsushita Electric Industrial Co., Ltd. Nickel hydroxide positive electrode active material having a surface layer containing a solid solution nickel hydroxide with manganese incorporated therein
EP1890350A2 (en) 1997-02-03 2008-02-20 Matsushita Electric Industrial Co., Ltd. The manufacturing method of active materials for the positive electrode in alkaline storage batteries

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3438142B2 (en) * 1992-09-18 2003-08-18 松下電器産業株式会社 Medium / large capacity sealed metal oxide / hydrogen storage battery
JP2015191702A (en) * 2014-03-27 2015-11-02 プライムアースEvエナジー株式会社 Positive electrode plate for battery, alkali storage battery, and method of manufacturing positive electrode plate for battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066416A (en) * 1995-11-22 2000-05-23 Matsushita Electric Industrial Co., Ltd. Nickel hydroxide positive electrode active material having a surface layer containing a solid solution nickel hydroxide with manganese incorporated therein
EP1890350A2 (en) 1997-02-03 2008-02-20 Matsushita Electric Industrial Co., Ltd. The manufacturing method of active materials for the positive electrode in alkaline storage batteries

Also Published As

Publication number Publication date
JPS56102076A (en) 1981-08-15

Similar Documents

Publication Publication Date Title
JP5062724B2 (en) Method for producing nickel electrode for alkaline battery and nickel electrode for alkaline battery
JP5119577B2 (en) Nickel metal hydride battery
JPS6254235B2 (en)
JPH0221098B2 (en)
JP2765029B2 (en) Manufacturing method of nickel hydroxide electrode
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JP2981538B2 (en) Electrodes for alkaline batteries
JPS5851669B2 (en) Manufacturing method of battery electrode substrate
JPH0243308B2 (en)
JPS63307665A (en) Manufacture of electrode plate for alkali storage battery
JPS6048868B2 (en) Manufacturing method of electrode substrate
JP3015455B2 (en) Electrode plate for battery
JP2590437B2 (en) Electrode substrate for alkaline batteries
JP2981537B2 (en) Negative electrode for alkaline batteries
JP2000077067A (en) Positive electrode for alkaline storage battery
JPH10162835A (en) Electrode for alkaline storage battery and manufacture thereof
JP3686316B2 (en) Alkaline secondary battery
JPH0773876A (en) Nickel electrode for secondary battery and manufacture thereof
JP2003317712A (en) Nickel - hydrogen storage battery
JPH0773885A (en) Electrode for alkaline secondary battery
JP2525320B2 (en) Positive electrode for alkaline secondary battery
JPH0132633B2 (en)
JP4085434B2 (en) Alkaline battery electrode
JPH0982334A (en) Electrode substrate for battery
JPS5832210Y2 (en) Cylindrical alkaline storage battery