JPS6254050B2 - - Google Patents

Info

Publication number
JPS6254050B2
JPS6254050B2 JP57222300A JP22230082A JPS6254050B2 JP S6254050 B2 JPS6254050 B2 JP S6254050B2 JP 57222300 A JP57222300 A JP 57222300A JP 22230082 A JP22230082 A JP 22230082A JP S6254050 B2 JPS6254050 B2 JP S6254050B2
Authority
JP
Japan
Prior art keywords
ferric
hydrogen sulfide
chelate
absorption liquid
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57222300A
Other languages
Japanese (ja)
Other versions
JPS59112824A (en
Inventor
Masaki Kondo
Akira Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP57222300A priority Critical patent/JPS59112824A/en
Publication of JPS59112824A publication Critical patent/JPS59112824A/en
Publication of JPS6254050B2 publication Critical patent/JPS6254050B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Description

【発明の詳細な説明】 本発明は第2鉄キレート水溶液を使用する硫化
水素湿式除去法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydrogen sulfide wet removal process using an aqueous ferric chelate solution.

硫化水素(H2S)は、悪臭が強く、燃焼によつ
てSOxとなり、又パルプ廃液等の嫌気性消化(メ
タン発酵)を阻害する等の問題があるため、従来
よりガス中のH2Sの除去法が種々検討されてき
た。
Hydrogen sulfide (H 2 S) has a strong odor, becomes SOx when burned, and has problems such as inhibiting anaerobic digestion (methane fermentation) of pulp waste liquid, etc. Various removal methods have been studied.

従来提案されたいわゆる湿式酸化法は、例えば
Na2CO3やアンモニアの水溶液にピクリン酸や水
酸化鉄等の触媒を添加したものを吸収液とし、通
常PH8〜9で使用される。先ず、吸収塔でH2Sを
吸収液に反応吸収させ、酸化塔で空気酸化により
吸収液の再生と硫黄の析出を行い、硫黄をフイル
ター等で分離するプロセスである。
The so-called wet oxidation method proposed in the past is, for example,
The absorption liquid is made by adding a catalyst such as picric acid or iron hydroxide to an aqueous solution of Na 2 CO 3 or ammonia, and is usually used at a pH of 8 to 9. First, H 2 S is reacted and absorbed into an absorption liquid in an absorption tower, and the absorption liquid is regenerated and sulfur is precipitated by air oxidation in an oxidation tower, and the sulfur is separated using a filter or the like.

この湿式酸化法は種々の変法があるが、例えば
フエロツクス法では脱硫剤に硫酸第1鉄と炭酸ソ
ーダを用いる。即ち、炭酸ソーダ水溶液に硫酸第
1鉄を加えるとFeCO3、Fe(OH)2、Fe(OH)3
となるが、酸化塔で第1鉄は第2鉄に変化し、吸
収液はNa2CO3水溶液中にFe(OH)3が懸濁した
状態になる。主な反応は次の通りである。
There are various variations of this wet oxidation method; for example, in the ferrox method, ferrous sulfate and soda carbonate are used as desulfurizing agents. That is, when ferrous sulfate is added to an aqueous solution of soda carbonate, FeCO 3 , Fe(OH) 2 , Fe(OH) 3
However, ferrous iron changes to ferric iron in the oxidation tower, and the absorbent becomes a state in which Fe(OH) 3 is suspended in an aqueous Na 2 CO 3 solution. The main reactions are as follows.

しかしながら、このフエロツクス法をはじめと
する従来の湿式酸化法では、チオ硫酸塩等の副生
が多いため、排水処理量が増加し多くの薬剤を消
費している。又、脱硫率も十分とは言えない上、
回収されるS純度は90%が限度である。
However, in conventional wet oxidation methods such as the ferrox method, a large amount of by-products such as thiosulfates are generated, which increases the amount of wastewater treated and consumes a large amount of chemicals. In addition, the desulfurization rate is not sufficient,
The maximum purity of recovered S is 90%.

本発明の目的は、上記の如き従来の湿式酸化法
の欠点を一気に解決する所にある。
An object of the present invention is to solve the above-mentioned drawbacks of the conventional wet oxidation method at once.

即ち、本発明は吸収液として、第2鉄塩にヒド
ロキシ酢酸とクエン酸及び/又はギ酸を混合した
キレート剤を添加して得られる第2鉄キレート水
溶液を更にPH5.5〜8に調整した水溶液を用い、
これをH2S含有ガスに反応させてガス中のH2Sを
除去するものである。又、本発明は、第1鉄塩に
ヒドロキシ酢酸とクエン酸及び/又はギ酸を混合
したキレート剤を添加し、PH7〜8に調整された
第1鉄キレートを空気酸化して得られる第2鉄キ
レート水溶液を更にPH5.5〜8に調整した水溶液
を吸収液として用いるものである。
That is, the present invention uses, as an absorption liquid, an aqueous solution of a ferric chelate obtained by adding a chelating agent made of a mixture of hydroxyacetic acid and citric acid and/or formic acid to a ferric salt, which is further adjusted to a pH of 5.5 to 8. using
This is reacted with H 2 S-containing gas to remove H 2 S from the gas. Further, the present invention provides ferric iron obtained by adding a chelating agent containing a mixture of hydroxyacetic acid and citric acid and/or formic acid to a ferrous salt, and air-oxidizing the ferrous chelate whose pH is adjusted to 7 to 8. An aqueous chelate solution further adjusted to a pH of 5.5 to 8 is used as an absorption liquid.

第2鉄塩(通常、硫酸第2鉄水溶液)に上記キ
レート剤を添加して生成する第2鉄キレート液
は、PH<5〜5.5である。このPH域ではH2Sの除
去が十分ではないため、NaOHやアンモニア水等
でPH5.5〜8好ましくはPH6〜7に調整してH2S
除去に用いる。又、第2鉄キレート水溶液の第2
鉄濃度は0.001〜0.2mol/が好ましく、第2鉄
とキレート剤のモル比は1:0.5〜1:2.5が好ま
しい。ヒドロキシ酢酸と他の酸(クエン酸及び/
又はギ酸)との混合割合は1:4〜4:1が好ま
しい。
A ferric chelate solution produced by adding the above chelating agent to a ferric salt (usually an aqueous ferric sulfate solution) has a pH of <5 to 5.5. Since removal of H 2 S is not sufficient in this PH range, adjust the pH to 5.5 to 8, preferably 6 to 7, with NaOH or ammonia water, etc. to remove H 2 S.
Used for removal. In addition, the ferric chelate aqueous solution
The iron concentration is preferably 0.001 to 0.2 mol/, and the molar ratio of ferric iron to the chelating agent is preferably 1:0.5 to 1:2.5. Hydroxyacetic acid and other acids (citric acid and/or
or formic acid) is preferably 1:4 to 4:1.

第2鉄キレート吸収液によるH2S吸収と吸収液
再生反応は主として次のように考えられる。
The H 2 S absorption by the ferric chelate absorption liquid and the absorption liquid regeneration reaction are mainly considered as follows.

吸収 2〔FeX2++3H2S→Fe2S3+4X-+6H+ 再生 Fe2S3+4X-6H++3/2 O2
2〔FeX2++3S+3H2O (式中、Xはキレートを示す。) 上記反応は、常温常圧で起こるが、適用温度は
0〜80℃である。
Absorption 2 [FeX 2 ] + +3H 2 S→Fe 2 S 3 +4X - +6H + Regeneration Fe 2 S 3 +4X - 6H + +3/2 O 2
2[FeX 2 ] + +3S+3H 2 O (In the formula, X represents a chelate.) The above reaction occurs at normal temperature and pressure, but the applicable temperature is 0 to 80°C.

図は本発明によるH2S除去プロセスの一例を示
すフローシートである。H2S含有ガスをライン1
より吸収塔2に導き、H2Sとライン3より供給さ
れる第2鉄キレート吸収液とを反応させる。前記
式の如き反応により極めて微細なFe2S3粒子が
析出しガス中のH2Sが除去される。このとき褐色
透明な吸収液は黒色のFe2S3懸濁液に変化する。
除去後の精製ガスはライン4より排出される。吸
収塔2には、公知のいずれの気液接触装置が使用
できる。
The figure is a flow sheet showing an example of the H 2 S removal process according to the present invention. H 2 S containing gas to line 1
The H 2 S is led to the absorption tower 2, and the ferric chelate absorption liquid supplied from the line 3 is reacted with the H 2 S. By the reaction shown in the above formula, extremely fine Fe 2 S 3 particles are precipitated and H 2 S in the gas is removed. At this time, the brown transparent absorption liquid changes to a black Fe 2 S 3 suspension.
The purified gas after removal is discharged from line 4. Any known gas-liquid contact device can be used for the absorption tower 2.

吸収塔2にて生成したFe2S3懸濁液(一部又は
全部)はライン5により再生槽6に送られる。
Fe2S3懸濁液の1部を再生槽6に送給する場合に
は、残部はライン5′よりライン3に送られる。
再生槽6でライン7により導入される再生用空気
によりFe2S3懸濁液は、主として前記式の反応
によつて硫黄と第2鉄キレートとなる。排ガスは
ライン8により排出されるが、本発明では吸収塔
2内で溶解したH2Sはただちに第2鉄キレートと
反応するため、吸収液中のH2Sが常に極めて低濃
度に維持される。従つて、再生槽排ガスにはほと
んどH2Sは存在せず、そのまま大気に放出でき
る。
The Fe 2 S 3 suspension produced in the absorption tower 2 (in part or in whole) is sent to the regeneration tank 6 via a line 5.
When part of the Fe 2 S 3 suspension is fed to the regeneration tank 6, the remainder is fed to the line 3 via line 5'.
By the regeneration air introduced through the line 7 in the regeneration tank 6, the Fe 2 S 3 suspension becomes sulfur and ferric chelate mainly through the reaction of the above formula. The exhaust gas is discharged through line 8, but in the present invention, the H 2 S dissolved in the absorption tower 2 immediately reacts with the ferric chelate, so the H 2 S in the absorption liquid is always maintained at an extremely low concentration. . Therefore, almost no H 2 S exists in the regeneration tank exhaust gas, and it can be released into the atmosphere as it is.

硫黄の懸濁している再生吸収液は、ライン9に
より硫黄分離機10へ送られ、硫黄スラツジをラ
イン11より系外に出す。硫黄分離機10には公
知の固液分離機が使用できる。硫黄分離後の再生
吸収液はライン3により吸収塔2へ送られ再利用
されるが、前述したように吸収塔導入前にPHを
5.5〜8に調整しておく必要がある。
The regenerated absorption liquid in which sulfur is suspended is sent to a sulfur separator 10 through a line 9, and sulfur sludge is discharged from the system through a line 11. A known solid-liquid separator can be used as the sulfur separator 10. The regenerated absorption liquid after sulfur separation is sent to absorption tower 2 via line 3 and reused, but as mentioned above, the pH is adjusted before introducing it into the absorption tower.
It needs to be adjusted to 5.5-8.

吸収液原料として第1鉄キレートを使用する場
合には、第1鉄塩(通常、硫酸第1鉄水溶液)に
該キレート剤を添加し、アルカリでPH7〜8に調
整された第1鉄キレートをライン12により再生
槽6へ送り空気酸化して第2鉄キレートに変化さ
せれば良い。この場合も吸収塔2導入前にPHを
5.5〜8に調整する。
When using a ferrous chelate as a raw material for an absorption liquid, add the chelating agent to a ferrous salt (usually an aqueous ferrous sulfate solution), and add the ferrous chelate to a pH of 7 to 8 with an alkali. It is sufficient to send it to the regeneration tank 6 through the line 12 and oxidize it with air to convert it into ferric chelate. In this case as well, the pH should be adjusted before introducing absorption tower 2.
Adjust to 5.5-8.

なお、被処理ガス中に酸素を含む場合や被処理
ガスに空気又は酸素を供給する場合には、吸収液
は吸収塔2内で再生され、再生槽6を省略するこ
とができる。
Note that when the gas to be treated contains oxygen or when air or oxygen is supplied to the gas to be treated, the absorption liquid is regenerated within the absorption tower 2, and the regeneration tank 6 can be omitted.

以上の説明から明らかなように本発明による
H2S除去法は以下に挙げたような優れた特長を有
する。(順不同) (1) 高いH2S除去率が得られ、吸収液の再生が容
易で副反応が少なく、吸収液の補給量が少量で
良い。
As is clear from the above explanation, according to the present invention
The H 2 S removal method has the following excellent features. (In no particular order) (1) A high H 2 S removal rate can be obtained, the absorption liquid can be easily regenerated, there are few side reactions, and a small amount of absorption liquid can be replenished.

(2) 吸収液が安価(Feイオン濃度0.05mol/で
約5〜9円/)で無害である。
(2) The absorption liquid is inexpensive (approximately 5 to 9 yen/for Fe ion concentration 0.05 mol/) and harmless.

(3) 吸収及び再生は常温常圧で出来、スチーム等
の熱源を必要としないため、ランニングコスト
が低廉である。
(3) Absorption and regeneration can be performed at room temperature and pressure, and no heat source such as steam is required, so running costs are low.

(4) 吸収液が中性〜弱酸性であるため、被処理ガ
ス中にCO2が含まれていてもCO2の吸収は少な
い。
(4) Since the absorption liquid is neutral to weakly acidic, even if the gas to be treated contains CO 2 , absorption of CO 2 is small.

(5) 被処理ガス中にHCNが含まれていても、吸
収液中のFeイオンにより安定無害なフエロシ
アン酸塩やベルリンブルーとなり、排水処理の
困難なチオシアンの生成は極めて少ない。
(5) Even if HCN is contained in the gas to be treated, the Fe ions in the absorption liquid turn it into stable and harmless ferrocyanate and Berlin blue, and the production of thiocyanate, which is difficult to treat wastewater, is extremely rare.

(6) 硫黄懸濁液からの硫黄の分離が容易で、生成
硫黄の純度が高い。
(6) It is easy to separate sulfur from a sulfur suspension, and the purity of the produced sulfur is high.

(7) 再生槽排ガス中のH2Sは極めて少ない。(7) H 2 S in the regeneration tank exhaust gas is extremely low.

(8) 構造簡単・操作容易である。(8) Simple structure and easy operation.

以下、実施例を示す。 Examples are shown below.

実施例 ヒドロキシ酢酸75mol%+クエン酸25mol%の
混合液とFeSO40.05molをモル比1:2で調製
し、空気酸化後、更にPH4〜8に調整して吸収液
を得た。各々の吸収液を実容量1.0の吸収ビン
に入れ、吸収液をマグネチツクスターラーで撹拌
しながらH2S1.0vol%(N2基準)の合成ガスを1.0
/minで供給してガス中のH2Sを除去した。結
果は下記に示す通りであつた。H2Sと反応させる
際のPH値を始発PHとした。
Example A mixed solution of 75 mol% hydroxyacetic acid + 25 mol% citric acid and 0.05 mol FeSO 4 were prepared at a molar ratio of 1:2, and after air oxidation, the pH was further adjusted to 4 to 8 to obtain an absorption liquid. Pour each absorption liquid into an absorption bottle with an actual volume of 1.0, and add 1.0 vol% of H 2 S 1.0 vol% (N 2 standard) synthesis gas while stirring the absorption liquid with a magnetic stirrer.
/min to remove H 2 S in the gas. The results were as shown below. The PH value at the time of reaction with H 2 S was defined as the initial PH.

吸収液始発PH H2S除去率(%) 4 23〜47 5 55〜85 5.5 93〜98 6 93〜99 7 92〜98 8 92〜95 始発PH<5.5では反応初期にH2Sにより第2鉄
キレートが第1鉄キレートに還元される現象が見
られ、H2S除去機構がやや複雑になる。又、H2S
除去率も始発PH<5.5〜8に比べ低くなつてい
る。
Absorbing solution initial PH H 2 S removal rate (%) 4 23-47 5 55-85 5.5 93-98 6 93-99 7 92-98 8 92-95 When initial pH < 5.5, H 2 S removes the second A phenomenon in which iron chelate is reduced to ferrous chelate is observed, making the H 2 S removal mechanism somewhat complicated. Also, H 2 S
The removal rate is also lower than when the initial pH is <5.5 to 8.

次に上記H2S除去反応後、空気酸化により吸収
液を再生した結果、始発PH<5.5では第1鉄キレ
ートを第2鉄キレートに酸化することが困難であ
つたが、始発PH>5.5ではFe2S3を第2鉄キレート
と硫黄粒子にすることは容易であつた。
Next, after the above H 2 S removal reaction, the absorption liquid was regenerated by air oxidation. As a result, it was difficult to oxidize the ferrous chelate to ferric chelate when the initial pH was <5.5, but when the initial pH was >5.5. It was easy to convert Fe 2 S 3 into ferric chelate and sulfur particles.

一方、一般的に湿式酸化法によるH2S除去では
吸収液再生時にチオ硫酸や硫酸生成の副反応が問
題となるため、再生吸収液中のS2-とSO4 -2濃度
を測定してこれらの生成量を求めた。結果は下記
に示す通りであつた。再生は常温常圧下で行つた
ものである。
On the other hand, when removing H 2 S using the wet oxidation method, side reactions such as thiosulfuric acid and sulfuric acid production occur during absorption liquid regeneration, so the concentration of S 2- and SO 4 -2 in the regenerated absorption liquid is measured. The amount of these produced was determined. The results were as shown below. Regeneration was carried out at room temperature and pressure.

吸収液始発PH S2-(mg/) SO4 -2(mg/
) 4 37.6 1150 5 15.7 520 5.5 トレース 100 6 12.5 100 7 10.0 200 8 13.5 350 これより始発PH5.5〜8でS2-(但しNa2Sと
S2O3 -2の合計)及びSO4 -2の生成が最も少ない。
又、始発PH6の場合、除去したH2SからSへの転
化率は97.5%以上で非常に良い値を示した。
Absorption liquid initial PH S 2- (mg/) SO 4 -2 (mg/
) 4 37.6 1150 5 15.7 520 5.5 Trace 100 6 12.5 100 7 10.0 200 8 13.5 350 From this, S 2- (However, Na 2 S and
S 2 O 3 -2 ) and SO 4 -2 are produced the least.
In addition, in the case of starting pH 6, the conversion rate of removed H 2 S to S was 97.5% or more, which was a very good value.

生成した硫黄粒子は濾紙5Aで完全に濾過で
き、硫黄スラツジは水洗により黄白色〜灰白色の
純度99%以上のものが得られた。又、吸収液再生
時に硫黄による発色はほとんど見られなかつた。
The generated sulfur particles could be completely filtered with filter paper 5A, and the sulfur sludge was washed with water to obtain a yellowish-white to grayish-white sulfur sludge with a purity of 99% or more. Furthermore, almost no color development due to sulfur was observed during regeneration of the absorption liquid.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明によるH2S除去プロセスの一例を示
すフローシートである。 2…吸収塔、6…再生槽、10…硫黄分離機。
The figure is a flow sheet showing an example of the H 2 S removal process according to the present invention. 2... Absorption tower, 6... Regeneration tank, 10... Sulfur separator.

Claims (1)

【特許請求の範囲】 1 第2鉄塩にヒドロキシ酢酸とクエン酸及び/
又はギ酸を混合したキレート剤を添加して得られ
る第2鉄キレート水溶液を更にPH5.5〜8に調整
した水溶液を、硫化水素含有ガスに反応させてガ
ス中の硫化水素を除去することを特徴とする硫化
水素湿式除去法。 2 第2鉄キレート水溶液の第2鉄濃度が0.001
〜0.2mol/である特許請求の範囲第1項記載の
除去法。 3 第2鉄とキレート剤のモル比が1:0.5〜
1:2.5である特許請求の範囲第1項又は第2項
記載の除去法。 4 第1鉄塩にヒドロキシ酢酸とクエン酸及び/
又はギ酸を混合したキレート剤を添加し、PH7〜
8に調整された第1鉄キレートを空気酸化して得
られる第2鉄キレート水溶液を更にPH5.5〜8に
調整した水溶液を、硫化水素含有ガスに反応させ
てガス中の硫化水素を除去することを特徴とする
硫化水素湿式除去法。
[Claims] 1. Hydroxyacetic acid, citric acid and/or ferric salt
Alternatively, a ferric chelate aqueous solution obtained by adding a chelating agent mixed with formic acid and further adjusted to pH 5.5 to 8 is reacted with a hydrogen sulfide-containing gas to remove hydrogen sulfide in the gas. Hydrogen sulfide wet removal method. 2 The ferric concentration of the ferric chelate aqueous solution is 0.001
The removal method according to claim 1, wherein the amount is ˜0.2 mol/. 3 The molar ratio of ferric iron and chelating agent is 1:0.5~
1:2.5. 4 Hydroxyacetic acid, citric acid and/or ferrous salt
Or add a chelating agent mixed with formic acid to adjust the pH to 7~
A ferric chelate aqueous solution obtained by air oxidizing a ferrous chelate adjusted to a pH of 8 is further adjusted to a pH of 5.5 to 8, and the aqueous solution is reacted with a hydrogen sulfide-containing gas to remove hydrogen sulfide in the gas. A wet hydrogen sulfide removal method characterized by:
JP57222300A 1982-12-18 1982-12-18 Wet removal of hydrogen sulfide Granted JPS59112824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57222300A JPS59112824A (en) 1982-12-18 1982-12-18 Wet removal of hydrogen sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57222300A JPS59112824A (en) 1982-12-18 1982-12-18 Wet removal of hydrogen sulfide

Publications (2)

Publication Number Publication Date
JPS59112824A JPS59112824A (en) 1984-06-29
JPS6254050B2 true JPS6254050B2 (en) 1987-11-13

Family

ID=16780196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57222300A Granted JPS59112824A (en) 1982-12-18 1982-12-18 Wet removal of hydrogen sulfide

Country Status (1)

Country Link
JP (1) JPS59112824A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103611391B (en) * 2013-12-12 2016-01-20 北京博源恒升高科技有限公司 Glycols composite solution removes the method for SOx in gas
CN103623689B (en) * 2013-12-12 2016-06-29 北京博源恒升高科技有限公司 The method of SOx in polyhydric alcohol composite solution elimination gas
CN105817130A (en) * 2016-05-10 2016-08-03 四川西油致诚石油技术有限公司 Device for efficient treatment of exhaust gas hydrogen sulfide

Also Published As

Publication number Publication date
JPS59112824A (en) 1984-06-29

Similar Documents

Publication Publication Date Title
USRE31236E (en) Method of removing sulfur dioxide from combustion exhaust gas
US3959452A (en) Process for removing hydrogen sulfide from contaminated gas
SK280506B6 (en) Anaerobic removal of sulphur compounds from wastewater
KR0174794B1 (en) Exhaust gas desulfurization process
CN102284238A (en) Bialkali-method flue-gas desulphurization process
JP3572223B2 (en) Absorbent slurry treatment method and flue gas desulfurization system
KR101254129B1 (en) Liquid type desulfurizng agent for removing sulfur compounds from anaerobic digester gas
US4299652A (en) Process for recovery of pulp mill chemicals
JP3385137B2 (en) Treatment of flue gas desulfurization wastewater
JPS6254050B2 (en)
US4218431A (en) Removal of sulfide contaminants from carbonate waters with production of CO2 -free H2 S
EP1265692B1 (en) Process for purifying aqueous buffer solutions
JPH0218129B2 (en)
JP4014679B2 (en) Wastewater treatment method
US4364918A (en) Separation of thiosulfate from Stretford solution
JPH1170317A (en) Method for removing sulfur dioxide from flue gas
JP2001348346A (en) Method for purifying methane fermentation gas
US4014983A (en) Removal of hydrogen sulfide from gases
JP3504427B2 (en) Exhaust gas desulfurization method
EP0271203A1 (en) Method of stabilizing solutions of chelated polyvalent metals
CN112358079B (en) Regeneration process of sulfur-containing waste alkali liquor
CN101549250B (en) Method for inhibiting effective desulfurization components in double-alkali method flue gas desulfurization slurry from catalytic oxidation
JP3902861B2 (en) Exhaust gas desulfurization method
JPH05111614A (en) Treatment of exhaust gas
JPS60125230A (en) Wet desulfurization process for absorptive removal of sulfurous acid gas in exhaust gas