JPS6254032A - Continuous annealing furnace for steel strip - Google Patents

Continuous annealing furnace for steel strip

Info

Publication number
JPS6254032A
JPS6254032A JP19260585A JP19260585A JPS6254032A JP S6254032 A JPS6254032 A JP S6254032A JP 19260585 A JP19260585 A JP 19260585A JP 19260585 A JP19260585 A JP 19260585A JP S6254032 A JPS6254032 A JP S6254032A
Authority
JP
Japan
Prior art keywords
burner
steel strip
heating
region
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19260585A
Other languages
Japanese (ja)
Other versions
JPH0146567B2 (en
Inventor
Shuzo Fukuda
福田 脩三
Masahiro Abe
阿部 正広
Shiro Fukunaka
福中 司郎
Michio Nakayama
道夫 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP19260585A priority Critical patent/JPS6254032A/en
Priority to PCT/JP1986/000352 priority patent/WO1987000555A1/en
Priority to CA000513536A priority patent/CA1255897A/en
Priority to BR8606772A priority patent/BR8606772A/en
Priority to AU61432/86A priority patent/AU598981B2/en
Priority to AT86904373T priority patent/ATE61416T1/en
Priority to CN 86104502 priority patent/CN1011982B/en
Priority to US07/027,224 priority patent/US4760995A/en
Priority to DE8686904373T priority patent/DE3677959D1/en
Priority to EP86904373A priority patent/EP0233944B1/en
Publication of JPS6254032A publication Critical patent/JPS6254032A/en
Publication of JPH0146567B2 publication Critical patent/JPH0146567B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To provide continuous annealing furnace which prevents the roll pickup arising from the oxidation of a steel strip by disposing plural burners capable of forming non-equil. regions without contg. free O2 in such a manner that flames collide against the surface of the steel strip approximately perpendicularly to and in the non-equil. regions. CONSTITUTION:Plural air discharge holes 2 for combustion spaced in a peripheral direction are provided to an inside wall 6 of a cylindrical burner tile 1 of the above- mentioned heating burner I (a) and combustion gas discharge holes 3 are provided to the inside central part of the burner. The following plural heating burners (a) mentioned above are disposed to the region on the outlet side of the pass including the heating region just before at least outlet side strip passage roll 8d of each pass of the direct firing heating furnace for the continuous heating furnace for the steel strip S having the direct firing heating furnace consisting of the plural passes. More specifically, each of such burners (a) can form the non-equil. region having an intermediate product of combustion and having no free O2 in the flame so that the flame of each burner (a) collides against the surface of the steel strip S approximately perpendicularly to the steel strip and in the non-equil. region. The steel strip S is thereby delivered in the non-oxidizing state from the heating furnace and the steel strip having the excellent surface quality is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は鋼帯の連続焼鈍炉、詳細には複数パスの直火加
熱炉を有する連続焼鈍炉にII!1?lる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a continuous annealing furnace for steel strips, and more particularly, to a continuous annealing furnace having a multiple-pass direct-fire heating furnace. 1? Ill.

[従来の技術] 連続焼鈍炉の加熱方式として、ラジアントチュー7を利
用した間接加熱方式と直火加熱方式とが知られている。
[Prior Art] As a heating method for a continuous annealing furnace, an indirect heating method using a radiant chew 7 and a direct heating method are known.

このうち、#li者の直火加熱方式は、間接加熱方式に
較べ加熱能力に優れ、しかも冷間圧延油をバーンアウト
できるためそのクリーニング設備を省略できる等の利点
を有している。しかし、従来の直火加熱方式では鋼帯の
酸化が著しく、これに基因したロールピックアップを生
じるという大きな問題がある。特に、直火加熱炉が複数
パスからなる場合、炉内ロールで0−ルビツクアップを
生じ、この結果、鋼帯の表面品質が著しく損われてしま
う。
Among these, the #li type direct heating method has superior heating ability compared to the indirect heating method, and has advantages such as being able to burn out the cold rolling oil and therefore eliminating the need for cleaning equipment. However, in the conventional direct flame heating method, there is a major problem in that the steel strip is significantly oxidized and roll pickup occurs due to this. In particular, when the direct-fired heating furnace consists of multiple passes, zero-rubbick-up occurs in the rolls in the furnace, resulting in a significant loss of surface quality of the steel strip.

このようなことから、例えば特開昭53−54106号
等において、炉内ロールを収容する隔離室を設け、この
隔11を室内を保護雰囲気にするようにした構造の直火
加熱炉も提案されているが、直火加熱炉のような高温条
件下においてロール隔m室と直火炉内とを適切にシール
することは非常に難しく、隔離室を十分な保護雰囲気と
するためには、膨大な吊の保′IJ雰囲気ガスを供給す
る必要があり、実用的ではない。ちなみに、保護室と直
火炉内どの開口部が5 cta X 2 m (幅)の
場合、両者の差圧を約10mト120とすると、約45
0ONm3 / h (!: イウQ大な岳の保護ガス
を供給しなG)ればならない。
For this reason, for example, in Japanese Patent Laid-Open No. 53-54106, a direct-fired heating furnace has been proposed in which an isolation chamber is provided to accommodate the rolls in the furnace, and this partition 11 is used to create a protective atmosphere inside the chamber. However, it is very difficult to properly seal the roll compartment and the inside of the direct-fired furnace under high-temperature conditions such as in direct-fired heating furnaces, and it takes a huge amount of energy to create a sufficiently protective atmosphere in the isolated room. It is not practical because it is necessary to supply a suspended IJ atmosphere gas. By the way, if the opening in the protection chamber and the open-fired furnace is 5 cta x 2 m (width), and the differential pressure between the two is about 10 m to 120, it will be about 45 m.
0ONm3/h (!: Iu Q Odake's protective gas must be supplied G).

[問題を解決するための手段及び実施例]本発明者はこ
のような従来の問題に鑑み検討を重ねたものであり、こ
の結果、火炎中に非平衡領域、すなわち燃焼中間生成物
(中間イオン、ラジカル等)が存在し且つ遊離酸素が存
在しない領域を形成し得る加熱バーナが鋼帯無酸化・還
元加熱に極めて有効であり、これを加熱炉に所定条件で
配置することにより、鋼帯を無酸化状態で炉内ロールと
接触さUることができ、ロールピックアップ等のトラブ
ルを防止と鋼帯の無酸化加熱ができることを見い出した
。すなわち本発明は複数パスからなる直火加熱炉を備え
た鋼帯の連続焼鈍炉において、直火加熱炉各パスの各な
くとも出側通板ロール直前の加熱領域を含むパス出側領
域に、燃焼中間生成物を有し且つ遊MFli素を有しな
い非平衡領域を火炎中に形成し得る複数の加熱バーブを
、各バーナの火炎が鋼帯に対し略直角に;しかもその非
平衡領域で鋼帯面に衝突するよう配置したものぐある。
[Means and Examples for Solving the Problems] The present inventor has made repeated studies in view of such conventional problems, and as a result, a non-equilibrium region in the flame, that is, a combustion intermediate product (intermediate ion A heating burner that can form a region where free oxygen exists and free oxygen is extremely effective for non-oxidation and reductive heating of steel strips, and by placing it in a heating furnace under predetermined conditions, it is possible to It has been discovered that the steel strip can be brought into contact with the rolls in the furnace in a non-oxidizing state, preventing troubles such as roll pickup, and heating the steel strip without oxidizing. That is, the present invention provides a continuous annealing furnace for steel strips equipped with a direct-fire heating furnace consisting of a plurality of passes, in which each pass of each pass of the direct-fire heating furnace includes at least a heating area immediately before the exit-side passing roll. A plurality of heating barbs capable of forming a non-equilibrium region in the flame having combustion intermediate products and no free MFLi elements is arranged so that the flame of each burner is approximately perpendicular to the steel strip; There is something arranged so that it collides with the belt surface.

このように各パスの出側位置に配置された還元型の加熱
バーナにより、鋼帯は各パスの入側で酸化された表面が
還元され、無酸化状態で各パス出側の通・板ロールと接
触し、しかも無酸化状態で加熱炉から送り出される。
In this way, the reduction-type heating burner placed at the exit side of each pass reduces the surface of the steel strip that was oxidized at the entrance side of each pass, and the steel strip passes through and rolls at the exit side of each pass in a non-oxidized state. and is sent out from the heating furnace in an unoxidized state.

本発明では、火炎中に非平衡領域、づなわら燃焼中間生
成物が存在し且つ遊Ill酸素が存在しない領域が形成
され得る加熱バーナが用いられる。このJ:うな加熱バ
ーナでは、火炎中はぼ燃焼が完了しGO2、N20.N
2 、ト12 、 Co等を含む領域、ずなわち準平面
領域が酸化性であるのに対し、中間イオン、ラジカル等
を含む上記非平衡領域は還元性を示し、この火炎を非平
衡領域で鋼帯に衝突させることにより鋼帯を還元状態で
加熱することができる。
In the present invention, a heating burner is used in which a non-equilibrium region can be formed in the flame, a region in which combustion intermediate products are present and free oxygen is absent. In this J: eel heating burner, combustion is completed in the flame and GO2, N20. N
While the region containing 2, 12, Co, etc., that is, the quasi-plane region, is oxidizing, the non-equilibrium region containing intermediate ions, radicals, etc. exhibits reducing property, and this flame is By impinging on the steel strip, the steel strip can be heated in a reducing state.

第2図及び第3図はそのような加熱バーナの一例を承り
もので、円筒形のバーナタイル(1)の内壁(6)に、
周方向で間隔をおいて複数の燃焼用空気吐出孔(2)を
設けるとともに、バー大内方中心部に燃料ガス吐出孔(
3)を設け、しかも燃焼用空気吐出孔(2)及び燃料ガ
ス吐出孔(3)を次のような構成としたものである。
Figures 2 and 3 show an example of such a heating burner, in which the inner wall (6) of the cylindrical burner tile (1) is
A plurality of combustion air discharge holes (2) are provided at intervals in the circumferential direction, and a fuel gas discharge hole (2) is provided in the inner center of the bar.
3), and the combustion air discharge hole (2) and the fuel gas discharge hole (3) have the following configuration.

イ) 空気吐出孔(2)の空気供給方向に前記バーナタ
イル内周に関する接線に対して60°以下の角度θを付
する。
b) The air supply direction of the air discharge hole (2) is made at an angle θ of 60° or less with respect to the tangent to the inner circumference of the burner tile.

口) 燃料ガス吐出孔(3)と空気吐出孔(2)のバー
ナ軸方内路1ilIfNを、燃料ガス吐出孔が空気吐出
孔よりもバーナタイル出口側にある場合を(−)、その
逆を(+)とした場合、−0,11)〜+ 0.25 
D (D :バーナ内口径)に設定する。
) The burner axial inner path 1ilIfN of the fuel gas discharge hole (3) and air discharge hole (2) is indicated by (-) if the fuel gas discharge hole is closer to the burner tile outlet than the air discharge hole, and vice versa. When set as (+), -0,11) to +0.25
Set to D (D: burner inner diameter).

ハ) 空気吐出孔(2)からバーナタイル出口(5)ま
での距離りを0.6D〜3DどJる。
c) Adjust the distance from the air discharge hole (2) to the burner tile outlet (5) by 0.6D to 3D.

このように構成された加熱バーナは、空気比1.0以下
で使用されることにより、火炎中に所定の範囲で非平衡
領域が形成される。すなわら、このような加熱バーナで
は空気吐出孔(2)からの燃焼用空気の旋回流とバーナ
中央から吐出される燃料ガスとにより急速燃焼が実現さ
れ、バーナ出口外方の所定の範囲に亘って、燃焼中間生
成物を多聞に含み■つ未反応の遊離酸素を含まない領域
、すなわちJt平衡領域を形成する。第4図は、このよ
うな加熱バーナによって形成される火炎中非平衡領域の
イオン検出プローブによる一例定例を示すbので、プロ
ーブによる測定電流値が高いのはイオン強度が大きく、
したがって燃焼中間生成物が多聞に存在していることを
意味している。これによれば、バーナ出口外方の所定の
範囲に亘って非平衡領域が形成され、その外方はほぼ反
応を完了したC02.N20.N2′!sを含(r 準
平11i ffi 域となっている。
When the heating burner configured in this way is used at an air ratio of 1.0 or less, a non-equilibrium region is formed in the flame within a predetermined range. In other words, in such a heating burner, rapid combustion is achieved by the swirling flow of combustion air from the air discharge hole (2) and the fuel gas discharged from the center of the burner, and the combustion is carried out in a predetermined range outside the burner outlet. This forms a region that contains many combustion intermediate products but does not contain unreacted free oxygen, that is, a Jt equilibrium region. FIG. 4 shows an example of an ion detection probe for detecting the non-equilibrium region in the flame formed by such a heating burner.
This means that a large amount of combustion intermediate products are present. According to this, a non-equilibrium region is formed over a predetermined range outside the burner outlet, and the outside of the region is formed by C02. N20. N2'! s is included (r semi-hei 11i ffi area).

第5図はこのような加熱バーナの還元加熱特性、すなわ
ち、無酸化で加熱し得る限界温rfI<凹通鋼の薄板に
関する限界温度)を示すものであり、空気比0185〜
0.95の範囲において鋼帯を約900℃まで加熱でき
ることが示されている。
Figure 5 shows the reductive heating characteristics of such a heating burner, that is, the limit temperature rfI that can be heated without oxidation <the limit temperature for a thin plate of concave steel.
It has been shown that the steel strip can be heated up to about 900° C. in the range of 0.95.

また、本発明は以上のような加熱バーナ以外に、例えば
所謂ラジアントカップバーナを用いることができる。こ
のバーナは急速燃焼反応を行なわせるため、空気と燃料
ガスとを予め混合した北合気体を、バーナタイルの半球
状四部で急速燃焼させ、バーナタイル内面を高温化して
、放射伝熱を主として加熱するもので、被加熱物温度が
高温度の領域で高い熱流束が得られる特性を有している
。そしてこのバーナで、空気比を1゜O以下で燃焼させ
ることにより、火炎中に非平衡領域が形成される。
Furthermore, in the present invention, in addition to the heating burner described above, for example, a so-called radiant cup burner can be used. In order to perform a rapid combustion reaction, this burner rapidly burns Kitai Gas, which is a pre-mixed mixture of air and fuel gas, in the four hemispherical parts of the burner tile, raising the temperature of the inner surface of the burner tile, and heating mainly through radiation heat transfer. It has the characteristic that a high heat flux can be obtained in a region where the temperature of the heated object is high. By performing combustion in this burner at an air ratio of 1°O or less, a non-equilibrium region is formed in the flame.

但し、このラジアントバーナは燃焼用空気と燃多 料ガスの本混合方式であるため燃焼用空気の予熱ができ
ないこと、及びこのように空気の予熱ができないため無
酸化加熱は750”Q程度が限度であり、より高温域で
の加熱を必要とするような場合には適用できないこと等
の難点がある。この点、第3図にポリような加熱バーナ
では、予熱空気を利用できることから900℃程度まで
無酸化加熱が可能であり、またこのように予熱空気を利
用することにより火炎温度が高められるため、ラジアン
トバーナに較べ中間反応生成物による還元作用そのもの
も効果的に向上させることができる。
However, since this radiant burner uses a main mixing method of combustion air and fuel gas, the combustion air cannot be preheated, and since the air cannot be preheated in this way, non-oxidation heating is limited to about 750"Q. However, it has the disadvantage that it cannot be applied in cases where heating in a higher temperature range is required.In this respect, a heating burner like the one shown in Fig. 3 can use preheated air, so it can be heated to around 900℃. Since non-oxidative heating is possible up to 100%, and since the flame temperature is raised by using preheated air in this way, the reduction action itself by intermediate reaction products can be effectively improved compared to a radiant burner.

本発明では、このような加熱バーナが直火加熱4各パス
の出側通板ロール直前の加熱領域を含むパス出側領域に
、その火炎が鋼帯に対し略直角にしかもその非平衡領域
で鋼帯表面に衝突するよう複数配置される。
In the present invention, such a heating burner is installed in the pass exit region including the heating region immediately before the exit passing roll of each pass of the direct flame heating 4, and the flame is directed approximately at right angles to the steel strip and in the non-equilibrium region thereof. A plurality of them are arranged so as to collide with the surface of the steel strip.

このような還元型加熱バーナによる加熱は、直火加熱4
各バスの全加熱領域で行うことにより鋼帯を終始無酸化
状態で加熱することが可能であるが、この種のバーナは
一般に使用されている非還元型バーナ(拡散型バーナ)
に較べ熱容量が小さく、これをパス全加熱領域に亘って
配置する場合、その配置間隔を密にして多数のバーナを
用いなければ必要な熱量を確保できない。
Heating by such a reduction type heating burner is direct flame heating 4.
By heating the steel strip in the entire heating area of each bath, it is possible to heat the steel strip in a non-oxidizing state from start to finish, but this type of burner is a commonly used non-reducing burner (diffusion burner).
The heat capacity is smaller than that of the burners, and if they are arranged over the entire pass heating area, the necessary amount of heat cannot be secured unless the burners are closely spaced and a large number of burners are used.

一方、鋼帯酸化に基づ(ロールピックアップは、直火加
熱帯を構成するパスの出側通板ロール直前で鋼帯が無酸
状態であれば防止できるものである。
On the other hand, roll pick-up due to steel strip oxidation can be prevented if the steel strip is in an acid-free state immediately before the exit-side passing roll of the pass that constitutes the direct-fired heating zone.

このようなことから本発明では、直火加熱炉を構成する
各パスについて、その入側加熱領域に熱害Mの大きい非
還元型加熱バーナを配置することにより熱巳を十分確保
するとともに、出側加熱領域において、入側加熱領域で
鋼帯表面に形成された酸化膜を還元し1する還元型加熱
バーナを配置し、鋼帯を無酸化状態で次のパス、または
均熱帯に送り出すようにしたものである。
For this reason, in the present invention, a non-reducing heating burner with high heat damage M is arranged in the inlet heating region of each pass constituting the direct-fired heating furnace, thereby ensuring sufficient heat capacity and In the side heating area, a reduction type heating burner is installed to reduce the oxide film formed on the surface of the steel strip in the inlet heating area, so that the steel strip is sent to the next pass or soaking zone in a non-oxidized state. This is what I did.

第1図はその一例を示すもので、2パスタイブの直火加
熱炉に適用した例である。図において(I)は第1バス
、(II)は第2バス、(8a)〜(8d)は炉内の通
板ロール、(S)は鋼帯である。
FIG. 1 shows an example of this, which is an example applied to a 2-past-tube direct-fired heating furnace. In the figure, (I) is the first bus, (II) is the second bus, (8a) to (8d) are the passing rolls in the furnace, and (S) is the steel strip.

このような構成において、各パスの出側通板ロール(8
b)及び(8d)直前の加熱領域には、上述した)!元
型の加熱バーブ(a)をライン方向で複数備えた加熱バ
ーノ一群(9)が配置されでいる。一方、桟用熱領域に
は従来一般に用いられている非還元型の加熱バーナによ
る加熱バーナ群(10)が配置されている。
In such a configuration, the output threading roll (8
The heating area immediately before b) and (8d) is as described above)! A group of heating burners (9) including a plurality of original heating barbs (a) in the line direction is arranged. On the other hand, a group of heating burners (10) made up of non-reducing heating burners that are commonly used in the past are arranged in the heat area for the crosspiece.

還元型の加熱バーナ(a)は、その火炎が鋼帯−(S)
に対し略直角に、しかもその非平衡領域で鋼帯面に衝突
するよう配置されている。従来の直火加熱炉、例えばN
OF等に用いられる加熱バーナでは、上記バーナのよう
な非平衡領域が、他の領域と明確に区別されるような形
では形成されない。従って、目視しつる火炎が鋼帯に直
接接触すると、鋼帯表面が著しく酸化される。この為に
、一般的には、火炎が直接鋼帯に触れないように、火炎
が鋼帯幅方向と平行に形成されるように配置されている
。これに対し、本発明ではバーナ火炎の長手方向中間に
形成される非平衡領域により鋼帯を加熱することを目的
とし、このため火炎が鋼帯面に対し略直角に、しかもそ
の非平衡領域で衝突するようバーナを配置するものであ
る。
The reduction type heating burner (a) has a flame that is a steel strip (S).
The steel strip surface is arranged substantially perpendicularly to the surface of the steel strip and collides with the surface of the steel strip in its non-equilibrium region. Conventional direct-fired furnaces, e.g.
In a heating burner used for OF, etc., a non-equilibrium region like the above-mentioned burner is not formed in a shape that is clearly distinguishable from other regions. Therefore, when the visible flame directly contacts the steel strip, the surface of the steel strip is significantly oxidized. For this reason, the steel strip is generally arranged so that the flame is formed parallel to the width direction of the steel strip so that the flame does not directly touch the steel strip. In contrast, the purpose of the present invention is to heat the steel strip using a non-equilibrium region formed in the longitudinal middle of the burner flame. The burners are arranged so that they collide.

なお、第1図に示した加熱バーナ群は、ノズルミックス
型の短炎を形成しうるバーナを使用してd3す、その準
平衡領域の部分が、鋼帯に衝突しうるように配置をして
いる。
The heating burner group shown in Fig. 1 uses a nozzle mix type burner that can form a short flame, and is arranged so that its quasi-equilibrium region can collide with the steel strip. ing.

また、本実施例では、第1バス(I)の出側及σ第2パ
ス(I[)の入側に、通板ロール(8b)及び(8C)
を直火炉からの直接輻射から遮蔽するための遮蔽板(1
1)が突設されている。
In addition, in this embodiment, threading rolls (8b) and (8C) are provided on the exit side of the first bus (I) and the entrance side of the second pass (I[).
A shielding plate (1
1) is provided protrudingly.

このような本発明の直火加熱炉では、鋼帯(S)は各パ
スの入側及び中間領域における加熱バーナ1ff(10
)による加熱により一定程度酸化されるが、バス出側通
数ロール(8b)及び(8d)直前の加熱バーナ群(9
)による還元加熱によりその酸化膜が還元され、通板ロ
ール(8b)、  <8C)、  (8d)を無酸化状
態で通過し、加えて加熱炉出側から続く均熱炉に無酸化
状態で送り出される。
In such a direct-fired heating furnace of the present invention, the steel strip (S) is heated by 1ff (10
), but the heating burner group (9) immediately before the bus exit side number roll (8b) and (8d)
), the oxide film is reduced, and the sheet passes through the passing rolls (8b), <8C), and (8d) in an unoxidized state, and is then passed through the soaking furnace continuing from the heating furnace exit side in an unoxidized state. Sent out.

なお、上記第2図及び第3図に示す加熱バーナの構成を
具体的に説明する。
The structure of the heating burner shown in FIGS. 2 and 3 will be specifically explained.

図においで、(7)はバーノータイル内端壁(4)に突
設された燃料ガスノズルであり、本実施例ではこの燃料
ガスノズル(7)の周方向に間隔をおいて燃料ガス吐出
孔(3)が形成されている。
In the figure, (7) is a fuel gas nozzle protruding from the inner end wall (4) of the burnout tile, and in this embodiment, the fuel gas discharge holes (7) are spaced apart in the circumferential direction of this fuel gas nozzle (7). 3) is formed.

このような加熱バーナにおいて、その空気吐出孔(2)
に空気供給角θを持たせるのは、バーナタイル内で燃焼
用空気に旋回流を生じさせるためで、この旋回流により
バーナ内側に負圧領域が形成され、この負圧によってガ
スが再循環することにより燃焼が促進され、もって適切
な非平衡領域を形成せしめることができる。この空気供
給角θは最大60゛、好ましくは20〜40°とするこ
とにより空気流の旋回性が安定して得られる。
In such a heating burner, its air discharge hole (2)
The reason for having an air supply angle θ is to create a swirling flow in the combustion air within the burner tile.This swirling flow forms a negative pressure area inside the burner, and this negative pressure recirculates the gas. This promotes combustion, thereby forming an appropriate non-equilibrium region. By setting the air supply angle θ to a maximum of 60°, preferably 20 to 40°, a stable swirling property of the airflow can be obtained.

燃料ガス吐出孔(3)と空気吐出孔(2)のバーナ軸方
内圧IVt Nは、これが(−)側にある場合、ガス温
度が高く、しかも燃焼中間生成物も広範囲に高い分布状
態にあるが、反面遊MO2(未反応02 )が軸方向に
長く分布する傾向にある。本発明が目的とする非平衡領
域を適切に形成せしめるには、この遊離02のバーナ軸
方向残存距離を最小にする必要があり、その限界を求め
ると−0,10どなる。
When the burner axial internal pressure IVtN of the fuel gas discharge hole (3) and air discharge hole (2) is on the (-) side, the gas temperature is high and combustion intermediate products are also highly distributed over a wide range. However, on the other hand, free MO2 (unreacted 02) tends to be distributed long in the axial direction. In order to appropriately form the non-equilibrium region which is the object of the present invention, it is necessary to minimize the remaining distance of the free 02 in the burner axial direction, and its limit is -0, 10, etc.

Nが(+)側にあれば適正な非平衡領域が形成され′る
が、余り大きくなるとバーノータイル内端壁が1400
℃以上に加熱されるため好ましくなく、バーナタイル内
端壁のSiCの保護上−1−0,25[)が限界と・な
る。第6図は、燃料ガス吐出孔(3)と空気吐出孔(2
)のバーナ軸方向距離Nを−0,25Dとした場合の、
バーナ出口からのバーナ軸方向距離とバーナタイル内の
ガス温度、02濃度及びイオン強瓜との各関係を調べた
ものであり、これによれば、Nがこのような(−)側に
ある場合、遊1lIffO2の軸方向における残存距離
1゜が大きく存在することが示されている。
If N is on the (+) side, a proper non-equilibrium region will be formed, but if it becomes too large, the inner end wall of the Burno tile will be
This is not preferable because it is heated to temperatures above .degree. C., and the limit is -1-0.25 [) in order to protect the SiC on the inner end wall of the burner tile. Figure 6 shows the fuel gas discharge hole (3) and the air discharge hole (2).
) when the burner axial distance N is -0.25D,
The relationship between the burner axial distance from the burner outlet, the gas temperature in the burner tile, the 02 concentration, and the ion strength was investigated, and according to this, when N is on the (-) side like this, , it is shown that there is a large residual distance of 1° in the axial direction of the free play 1lIffO2.

第7図は燃料ガス孔と空気吐出孔のバーナ軸方向距離N
と、遊MO2の軸方向残存距1111Loとの関係を示
すもので、これによればNが一〇、1Dよりも(−)側
に大きくなるど、LOが急激に大きくなっており、この
ため(−)側では−0,10が限界となる。一方、第8
図はNを+0.1Dとした場合の、バーナ出口からのバ
ーナ軸方向距離と02濃度、イオン強度及びガス温度と
の各関係を調べたものである。
Figure 7 shows the burner axial distance N between the fuel gas hole and the air discharge hole.
This shows the relationship between the remaining axial distance 1111Lo of free MO2, and according to this, as N becomes larger than 10,1D on the (-) side, LO increases rapidly, and for this reason, On the (-) side, the limits are -0 and 10. On the other hand, the 8th
The figure shows the relationship between the burner axial distance from the burner outlet, the 02 concentration, the ion strength, and the gas temperature when N is +0.1D.

この第7図及び第8図によれば、Nが(+)側であれば
、0281度にも問題がなく、バーナ出口からの距離が
0.5D以上のところに適正な:11平衡領域が形成さ
れている。
According to FIGS. 7 and 8, if N is on the (+) side, there is no problem with 0281 degrees, and there is an appropriate :11 equilibrium region at a distance of 0.5D or more from the burner outlet. It is formed.

黙しながらNを(+)側に大きくすると、バーナタイル
内端壁(4)が加熱されるために、第9図の距1lIN
とバーナタイル内端壁(4)の温度Tbとの関係グラフ
に示されるように、+ 0.25DでTbが1400℃
以上となり、このため内IS 17の材質がSiCであ
ることを考慮し、+ 0.250以下とするのが耐熱限
界上好ましい。以上のことから燃焼ガス吐出孔と空気吐
出孔のバーナ中心軸距111iNに関しては、−0,1
D〜0.25 Dの範囲とすることが好ましい。
When N is increased to the (+) side while silently increasing, the inner end wall (4) of the burner tile is heated, so the distance 1lIN in Fig. 9 is increased.
As shown in the graph showing the relationship between temperature Tb and the temperature Tb of the burner tile inner end wall (4), Tb is 1400°C at +0.25D.
Therefore, considering that the material of the inner IS 17 is SiC, it is preferable to set it to +0.250 or less in view of the heat resistance limit. From the above, regarding the burner center axis distance 111iN of the combustion gas discharge hole and the air discharge hole, -0,1
The range is preferably from D to 0.25D.

空気吐出孔(2)からバーナタイル出口(5)までの距
離りは非平衡領域の形成範囲と密接な関係を有している
。すなわちLが3Dを超えると非平衡領域がバーナタイ
ル出口直後の部分にしか形成されず好ましくない。一方
、Lが0.6D未満の場合は火炎がバーナタイル出口直
後で花びら状の火炎どなりバーナ中心軸上に適正な非平
衡領域が安定して得られない。従って0.6D〜3.0
D(7)範囲にLを定めることが好ましい。
The distance from the air discharge hole (2) to the burner tile outlet (5) has a close relationship with the formation range of the non-equilibrium region. That is, if L exceeds 3D, the non-equilibrium region will be formed only in the portion immediately after the burner tile exit, which is not preferable. On the other hand, if L is less than 0.6D, the flame will form a petal-like flame immediately after the exit of the burner tile, and an appropriate non-equilibrium region cannot be stably obtained on the burner central axis. Therefore 0.6D~3.0
It is preferable to set L in the D(7) range.

薄鋼板を連続加熱する場合、バーナタイル出口(5)と
鋼板との距離を一定以上(通常、100m程度以上)と
らないと、通板中に、鋼板がバーナに接触する恐れがあ
る。したがって、火炎中の非平衡領域は、バーナ出口側
から所定の距離に位置する鋼帯通板位置を含むなるべく
広い範囲に形成さぜ°ることが好ましいことになる。第
10図は距離Lとバーナ出口から非平衡領域の末端(反
バーナ側の末端、例えば第8図中のΔ点)までの距離L
Rとの関係について調べたものである。これによれば、
Lが3Dを越えると非平衡領域の形成はバーナタイル出
口直後のみとなり、それよりも前方側にはほとんど形成
されない。Lが小さくなるにしたがい非平衡領域の形成
範囲は拡大するが、Lが0.6D未満の領域(X)では
、火炎はバーナタイル出口直後で、花びら状の放射状の
火炎となり、バーナ軸心上に適正な非平衡領域が安定し
て形成されない。以上のことから、空気吐出孔(2)か
らバーナタイル出口(5)までの距離しは0.6D〜3
.0Dの範囲とすることが望ましい。
When continuously heating a thin steel plate, unless the distance between the burner tile outlet (5) and the steel plate is at least a certain distance (usually about 100 m or more), there is a risk that the steel plate will come into contact with the burner during threading. Therefore, it is preferable that the non-equilibrium region in the flame be formed in as wide a range as possible, including the steel strip passing position located at a predetermined distance from the burner outlet side. Figure 10 shows the distance L and the distance L from the burner outlet to the end of the non-equilibrium region (the end on the anti-burner side, e.g. point Δ in Figure 8).
This study investigated the relationship with R. According to this,
If L exceeds 3D, the non-equilibrium region will be formed only immediately after the burner tile exit, and will hardly be formed in front of it. As L becomes smaller, the range in which the non-equilibrium region is formed expands, but in the region (X) where L is less than 0.6D, the flame becomes a petal-shaped radial flame immediately after the exit of the burner tile, and is located on the burner axis. An appropriate non-equilibrium region is not stably formed. From the above, the distance from the air discharge hole (2) to the burner tile outlet (5) is 0.6D to 3
.. It is desirable to set it in the range of 0D.

なお、以上のような加熱バーノーの構造において、燃焼
用空気吐出孔(2)から吐出される空気の旋回流が強過
ぎるとバーナ出側の燃焼ガスのバーナ径方向での温度分
布が不均一になり、この結果、安定した広範囲の非平衡
領域が形成されにくくなるような場合がある。このよう
な場合には、空気旋回流を緩和して温度分布の均一化を
図るため、燃料ガス吐出孔(3)を、その噴射方向が燃
料ノズル外周に11!′Iする接線に対して非直角で、
しかもこれによる燃料ガス流が燃焼用空気吐出孔(2)
からの空気流と逆向きの旋回流、すなわち空気旋回流と
逆向きから衝突するような旋回流となるよう形成する構
造、或いは、燃料ガス吐出孔(3)を、その噴射方向が
バーナ軸線方向またはバーナ軸線方向に対して傾斜した
方向となるようにする構造、さらには空気吐出孔(2)
にバーナタイル径方向に対しバーナ開口方向への傾斜角
(ねじれ角′)をイ]与するような構造等を単独または
、それぞれを組み合せた形で採用することができる。
In addition, in the structure of the heating burner as described above, if the swirling flow of the air discharged from the combustion air discharge hole (2) is too strong, the temperature distribution of the combustion gas on the burner outlet side in the burner radial direction will become uneven. As a result, it may become difficult to form a stable and wide non-equilibrium region. In such a case, in order to reduce the swirling air flow and make the temperature distribution uniform, the fuel gas discharge hole (3) is installed so that the injection direction is 11! non-perpendicular to the tangent to 'I,
Moreover, the fuel gas flow caused by this is the combustion air discharge hole (2).
A structure that forms a swirling flow in the opposite direction to the airflow from the air, that is, a swirling flow that collides with the air swirling flow from the opposite direction, or a structure in which the fuel gas discharge hole (3) is formed so that the injection direction is in the direction of the burner axis. Or a structure in which the direction is inclined with respect to the burner axis direction, and furthermore, an air discharge hole (2)
A structure that provides an inclination angle (torsion angle') toward the burner opening direction with respect to the radial direction of the burner tile can be employed alone or in combination.

またバーナによる加熱面積を拡大するため、バーナタイ
ル〈1)の少なくとも燃焼用空気吐出孔形成部位より先
端開口側の内壁に、バーナ内口径が先端開口側に拡径す
るような広がり角をイリした構造、さらには空気吐出孔
(2)の形成を容易にするため、筒状バーナタイルの壁
体内に、バーナ周方向に沿った燃焼用空気の旋回流路を
設け、該旋回流路をバーナ内部と連通させる複数の燃焼
用空気吐出孔を設Gプた構造等も採用することができる
In addition, in order to expand the heating area by the burner, at least the inner wall of the burner tile (1) on the tip opening side from the combustion air discharge hole formation part is provided with a widening angle such that the burner inner diameter expands toward the tip opening side. In order to facilitate the structure and the formation of the air discharge holes (2), a swirling flow path for combustion air along the circumferential direction of the burner is provided inside the wall of the cylindrical burner tile, and the swirling flow path is connected to the inside of the burner. It is also possible to adopt a structure in which a plurality of combustion air discharge holes are provided in communication with the combustion air.

[発明の効果] 以上述べた本発明によれば、鋼帯酸化に基因したロール
ピックアップ、すなわち、加熱炉内ロールや接続の均熱
炉内ロールでのロールピックアップを防止でき、しかも
鋼帯を無酸化状態で加熱炉から送り出すことができ、優
れた表面品質の鋼帯を得ることができる効果がある。
[Effects of the Invention] According to the present invention described above, it is possible to prevent roll pickup caused by steel strip oxidation, that is, roll pickup at the rolls in the heating furnace and the connected rolls in the soaking furnace, and moreover, it is possible to prevent the steel strip from being removed. It is possible to send the steel strip out of the heating furnace in an oxidized state, which has the effect of producing a steel strip with excellent surface quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明加熱炉の一実施例を示す縦断面図である
。第2図及び第3図は本発明の加熱炉に適用すべき加熱
バーナの一例を示すもので、第2図は縦断面図、第3図
は第2図中■−■線に沿う断面図である。第4図は第2
図及び第3図に示す加熱バーナにおける非平衡領域形成
範囲の一例定例を示J−ものである。第5図は同じく加
熱バーナの還元加熱特性を示すものである。第6図ない
し第10図は第2図及び第3図に示ず加熱バーナの特性
を示すもので、第6図は燃料ガス吐出孔と空気吐出孔と
のバーナ軸方向における距fiNを−0,251)とし
た場合のバーブ出口からの距離とガス温度、02濃度イ
オン強度との関係、第7図は燃料ガス叶出孔と空気吐出
孔のバーナ軸方向における距離Nと′NNO2Oバーナ
軸方向残存距卯LOどの関係、第8図は距1!INを−
)  0.1[)どした場合のパーツ゛出口からの距離
りとガス温度02f1度、イオン強度との関係、第9図
は燃料ガス吐出孔と空気吐出孔の距離Nとバーナタイル
後壁温度Tbとの関係、第10図は空気吐出孔からバー
ナ出口までの距MLと非平衡領域の末端までの距離LR
との関係を各示づものである。 図において、(8a)〜(8d)は炉内通板ロール、(
9)は加熱バーナ群、(a)は加熱バーナを各示す。 第 4 図 j1!5図 空萱(上巳 第6図 s7  図
FIG. 1 is a longitudinal sectional view showing an embodiment of the heating furnace of the present invention. Figures 2 and 3 show an example of a heating burner to be applied to the heating furnace of the present invention. Figure 2 is a longitudinal sectional view, and Figure 3 is a sectional view taken along the line ■-■ in Figure 2. It is. Figure 4 is the second
3 shows an example of the non-equilibrium region forming range in the heating burner shown in FIGS. FIG. 5 similarly shows the reduction heating characteristics of the heating burner. Figures 6 to 10 show the characteristics of the heating burner not shown in Figures 2 and 3, and Figure 6 shows the distance fiN between the fuel gas discharge hole and the air discharge hole in the burner axis direction by -0. , 251), the relationship between the distance from the barb outlet, the gas temperature, and the 02 concentration ionic strength. What relationship is the remaining distance LO? Figure 8 shows the distance 1! IN-
) 0.1 [) The relationship between the distance from the part outlet, gas temperature 02f1 degrees, and ion strength, Figure 9 shows the relationship between the distance N between the fuel gas discharge hole and the air discharge hole and the burner tile rear wall temperature Tb. Figure 10 shows the relationship between the distance ML from the air discharge hole to the burner outlet and the distance LR to the end of the non-equilibrium region.
It shows the relationship between each. In the figure, (8a) to (8d) are furnace passing rolls, (
9) shows a heating burner group, and (a) shows a heating burner. Figure 4 j1! 5 Sorakaya (Kamimi Figure 6 s7 Figure

Claims (1)

【特許請求の範囲】[Claims] 複数パスからなる直火加熱炉を備えた鋼帯の連続焼鈍炉
において、直火加熱炉各パスの少なくとも出側通板ロー
ル直前の加熱領域を含むパス出側領域に、燃焼中間生成
物を有し且つ遊離酸素を有しない非平衡領域を火炎中に
形成し得る複数の加熱バーナを、各バーナの火炎が鋼帯
に対し略直角に、しかもその非平衡領域で鋼帯面に衝突
するよう配置したことを特徴とする鋼帯の連続焼鈍炉。
In a continuous annealing furnace for steel strips equipped with a direct-fired heating furnace consisting of multiple passes, combustion intermediate products are present in at least the pass exit region of each pass of the direct-fired heating furnace, including the heating region immediately before the exit-side threading roll. A plurality of heating burners capable of forming a non-equilibrium region in the flame that does not contain free oxygen is arranged so that the flame of each burner is approximately perpendicular to the steel strip and impinges on the surface of the steel strip in the non-equilibrium region. A continuous annealing furnace for steel strips.
JP19260585A 1985-07-10 1985-08-31 Continuous annealing furnace for steel strip Granted JPS6254032A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP19260585A JPS6254032A (en) 1985-08-31 1985-08-31 Continuous annealing furnace for steel strip
PCT/JP1986/000352 WO1987000555A1 (en) 1985-07-18 1986-07-10 Continuous strip steel processing line having direct firing furnace
CA000513536A CA1255897A (en) 1985-07-10 1986-07-10 Continuously treating line for steel bands having a heating furnace by directly flaming
BR8606772A BR8606772A (en) 1985-07-18 1986-07-10 CONTINUOUS TREATMENT LINE FOR STEEL TAPES WITH A DIRECT FLAME HEATING OVEN
AU61432/86A AU598981B2 (en) 1985-07-18 1986-07-10 Continuous strip steel processing line having direct firing furnace
AT86904373T ATE61416T1 (en) 1985-07-18 1986-07-10 PLANT FOR THE CONTINUOUS TREATMENT OF STRIP WITH A DIRECTLY HEATED FURNACE.
CN 86104502 CN1011982B (en) 1985-07-10 1986-07-10 Steel strip continuous treatment production line with open fire furnace
US07/027,224 US4760995A (en) 1985-07-18 1986-07-10 Continuously treating line for steel bands having a heating furnace by directly flaming
DE8686904373T DE3677959D1 (en) 1985-07-18 1986-07-10 SYSTEM FOR THE CONTINUOUS TREATMENT OF TAPE STEEL WITH A DIRECTLY HEATED OVEN.
EP86904373A EP0233944B1 (en) 1985-07-18 1986-07-10 Continuous strip steel processing line having direct firing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19260585A JPS6254032A (en) 1985-08-31 1985-08-31 Continuous annealing furnace for steel strip

Publications (2)

Publication Number Publication Date
JPS6254032A true JPS6254032A (en) 1987-03-09
JPH0146567B2 JPH0146567B2 (en) 1989-10-09

Family

ID=16294041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19260585A Granted JPS6254032A (en) 1985-07-10 1985-08-31 Continuous annealing furnace for steel strip

Country Status (1)

Country Link
JP (1) JPS6254032A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290924A (en) * 1989-04-28 1990-11-30 Nkk Corp Non-oxidizing heating method for steel strip
JPH02290925A (en) * 1989-04-28 1990-11-30 Nkk Corp Method for nonoxidatively heating band steel
CN1060715C (en) * 1995-09-14 2001-01-17 株式会社安川电机 Teaching unit for robots

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077931A (en) * 1983-10-05 1985-05-02 Nippon Kokan Kk <Nkk> Oxygen free heating method of steel strip
JPS6077929A (en) * 1983-10-04 1985-05-02 Nippon Kokan Kk <Nkk> Direct fire reduction of steel strip

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077929A (en) * 1983-10-04 1985-05-02 Nippon Kokan Kk <Nkk> Direct fire reduction of steel strip
JPS6077931A (en) * 1983-10-05 1985-05-02 Nippon Kokan Kk <Nkk> Oxygen free heating method of steel strip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290924A (en) * 1989-04-28 1990-11-30 Nkk Corp Non-oxidizing heating method for steel strip
JPH02290925A (en) * 1989-04-28 1990-11-30 Nkk Corp Method for nonoxidatively heating band steel
CN1060715C (en) * 1995-09-14 2001-01-17 株式会社安川电机 Teaching unit for robots

Also Published As

Publication number Publication date
JPH0146567B2 (en) 1989-10-09

Similar Documents

Publication Publication Date Title
US4373702A (en) Jet impingement/radiant heating apparatus
US6095798A (en) Combustion apparatus
JPS6254032A (en) Continuous annealing furnace for steel strip
JPS6254031A (en) Direct firing heating furnace of continuous annealing installation for steel strip
WO1987000555A1 (en) Continuous strip steel processing line having direct firing furnace
JPS644088B2 (en)
JPS6254035A (en) Continuous heat treatment of steel strip
JPH0121853B2 (en)
JPS6254028A (en) Direct firing type heating furnace in continuous annealing installation for steel strip
JPS6252313A (en) Directly heating burner under reducing condition
JPS6252311A (en) Directly heating burner under reducing condition
EP0506043B1 (en) Burner for generating soot and furnace to deposit soot by using the same
JPS6254033A (en) Continuous annealing installation for steel strip
JP2526669B2 (en) Water heater
JPH0553862B2 (en)
JPS6229820A (en) Direct flame reducing heating burner
JPH0368934B2 (en)
JPS6252312A (en) Directly heating burner under reducing condition
JPS6221051B2 (en)
JPH06933B2 (en) Burner for direct flame reduction heating of steel strip
JPH0553848B2 (en)
JPH06346153A (en) Method for direct firing reduction heating and burner structure therefor
JPS6029426A (en) Device for controlling temperature in roll chamber of vertical type plural pass direct-firing heating furnace
JPS6250416A (en) Direct firing non-oxidation heating method
JPH0369972B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees