JPS6253666B2 - - Google Patents

Info

Publication number
JPS6253666B2
JPS6253666B2 JP56201144A JP20114481A JPS6253666B2 JP S6253666 B2 JPS6253666 B2 JP S6253666B2 JP 56201144 A JP56201144 A JP 56201144A JP 20114481 A JP20114481 A JP 20114481A JP S6253666 B2 JPS6253666 B2 JP S6253666B2
Authority
JP
Japan
Prior art keywords
concrete
fibers
fiber sheet
dimensional mesh
mesh fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56201144A
Other languages
Japanese (ja)
Other versions
JPS58101960A (en
Inventor
Nobuo Shinohara
Miki Aoyama
Arata Oka
Yoshimasa Hayashi
Masao Kawahara
Rentaro Nanba
Yasuhiro Hisada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABE YOGYO KK
KYOEI KK
OOBAYASHIGUMI KK
RYOWA SANSHI KK
Original Assignee
ABE YOGYO KK
KYOEI KK
OOBAYASHIGUMI KK
RYOWA SANSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABE YOGYO KK, KYOEI KK, OOBAYASHIGUMI KK, RYOWA SANSHI KK filed Critical ABE YOGYO KK
Priority to JP20114481A priority Critical patent/JPS58101960A/en
Publication of JPS58101960A publication Critical patent/JPS58101960A/en
Publication of JPS6253666B2 publication Critical patent/JPS6253666B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Forms Removed On Construction Sites Or Auxiliary Members Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はコンクリート躯体の表面層を繊維強
化すると共に、コンクリート躯体の表面に施工し
た仕上げ材と躯体との付着力を増進し、仕上げ材
の亀裂、剥離又は剥落を未然に防止することを目
的としたコンクリート躯体の表面処理方法に関す
るものである。 一般にコンクリート構造物は、コンクリート型
枠脱型後、モルタルを施工して平滑とし、その上
にタイル張りや、吹きつけ材料(以下「最終仕上
げ材」という。)の吹きつけ工事を行うのが一般
的である。このような施工方法においては、コン
クリート躯体とモルタル層、モルタル層と最終仕
上げ材との2ケ所に接着界面が生ずるが、この内
モルタルと最終仕上げ材との接着は、色々な工法
が開発され、その界面は強固に接着されている。
一方コンクリート躯体とモルタル層との接着につ
いては未だ不十分であり、表面仕上げ材の亀裂、
剥離又は剥落の事故を生じる恐れがある。特にコ
ンクリート躯体層が緻密でなく、表面層の強度が
低い場合には、表面仕上げ材層のムーブメントに
伴う応力発生や、コンクリート躯体の鉄筋の発錆
膨張に伴う応力発生により、表面仕上げ層の亀
裂、剥離、剥落を生じ易い。 現在、躯体とモルタル層の接着に関し、躯体表
面の目荒し、合成樹脂エマルジヨンの塗布又は混
和剤入りノロ引きなどが行われているが、これら
の方法では表面仕上げ層の亀裂、剥離又は剥落の
発生を防止することは不可能に近く、更にその改
善が要請されている。コンクリート表面層の強度
不足による表面仕上げ層の亀裂、剥離又は剥落の
発生防止に対しては、上記の在来工法は殆んど効
果がない。また在来のコンクリート打設技術で
は、得られるコンクリート躯体の表面部の強度が
弱く、このことはコンクリート躯体の耐久性を考
える上で、今日、非常に重要な課題となつてい
る。 然るにこの発明は、耐アルカリ、耐水性繊維か
らなる立体網目状繊維シートを型枠板の内面に仮
止めし、これを用いて構成した型枠内へコンクリ
ートを打設するので、コンクリート中の水硬性セ
メントスラリーが立体網目状繊維シート層に浸透
してコンクリートと立体網目状繊維シートが一体
となり、コンクリート表面部へ埋設された立体網
目状繊維シートはコンクリートを強化すると共
に、コンクリート表面部へ露出された立体網目状
繊維シートは毛羽立ち状となり、モルタル層のア
ンカーとなるので、モルタル施工後、モルタル層
が亀裂、剥離又は剥落するおそれがなく、モルタ
ルなどの表面仕上げ材とコンクリート躯体とを強
固に接着して、前記在来の問題点を解決したので
ある。 この発明の特徴は、コンクリート躯体の表面層
を繊維強化すると共に、繊維をアンカーにしてモ
ルタルなどの表面仕上げ層をコンクリート躯体に
物理的・機械的に接着するものである。すなわ
ち、下地となるコンクリート表面層の強化と、表
面仕上げ層とコンクリート躯体とのケミカルボン
ドとメカニカルボンドの相乗効果により、接着の
確実性が高く、施工後モルタル層が熱や水分で膨
張収縮して、コンクリートとモルタルの界面で剪
断力や引張力が働いても、繊維のアンカー効果で
応力が緩和され、剥離が極めて少くなる。万一剥
離しても表面仕上げ層の剥落には至らないと共
に、コンクリート表面層および表面仕上げ層も繊
維により結合されている。 コンクリート表面部の繊維強化を高めるに当つ
ては、コンクリートの打設時にバイブレーターを
使用することは極めて有効である。特に、型枠設
置型のバイブレーターの使用は、立体網目状繊維
シート層内へのコンクリートの浸透を容易にする
と共に、コンクリートの余剰水が立体網目状繊維
シートの吸水、通水効果により外部へ排出される
ので、コンクリートの強度は大幅に向上する。立
体網目状繊維シートに吸水されたコンクリートの
余剰水は型枠のジヨイント部から排出されるが、
型枠に水抜き穴を適当な間隔で設けることによ
り、コンクリートの余剰水がより効果的に排出さ
れることは言うまでもない。 又、他の特徴としては材料費が安く、施工がき
わめて簡単で経済的な工法である。すなわち立体
網目状繊維シートを型枠板の内面にホツチキス針
又は両面粘膜テープで仮止めし、これにより構成
したコンクリート型枠内へコンクリートを打設す
るだけで良く、剥離剤塗布に代えて立体網目状繊
維シートを仮止めするので、従来法に比べ費用労
力を特に必要とするものではない。またコンクリ
ートが硬化後、コンクリート表面にモルタルを施
工する時は、従来の施工法と同じく水養生を行う
か、稀釈したエマルジヨンを塗布したのちモルタ
ルを施工する。この発明に用いる耐アルカリ、耐
水性繊維としては、アクリル繊維、ポリプロピレ
ン繊維、ポリエステル繊維、ナイロン繊維、ビニ
ロン繊維、レイヨン繊維、芳香族ポリアミド繊
維、炭素繊維、芳香族ポリアミド繊維、炭素繊
維、ガラス繊維、石綿繊維、岩綿繊維などの耐ア
ルカリ、耐水性繊維の単独あるいは、前記2以上
の繊維を併用し、耐アルカリ、耐水性繊維シート
として不織布、織布、編布又はモノフイラメント
絡合体としたものが用いられる。これらのうち、
繊維が絡み合つて立体的な空げき目を有する点
で、不織布およびモノフイラメント絡合体が好適
である。 不織布は、コンクリート表面部を1〜55mm程度
の深さにわたつて補強する場合に用いる。不織布
の製造法としては、浸漬法、ニードルパンチ法、
スパンボンド法、ステツチ法などがあり、いずれ
も適している。また織布あるいは編布と不織布と
を組合わせて上記立体網目状繊維シートで構成し
てもよく、この場合も良好な効果を上げることが
できる。 モノフイラメト絡合体は、コンクリート表面部
を5〜40mm程度の深さにわたつて補強する場合に
用いる。直径0.1mm以上で、かつ3次元クリンプ
を有する合成樹脂モノフイラメントを3次元に交
絡し、絡合部を接合してなる5〜40mmの見掛け厚
みをもつ合成樹脂モノフイラメント絡合体が好適
である。モノフイラメント絡合体は、剛性が高い
ことが望ましい。モノフイラメントの直径が0.1
mm未満の場合には、剛性が低いためにコンクリー
トの打設圧によつてモノフイラメント絡合体が圧
縮されるので、コンクリートのモノフイラメント
への充填が悪くなる。またバイブレーターを使用
しても、振動の伝達が悪いので、コンクリートの
モノフイラメントへの充填は余り改善されない。
従つて、直径0.1mm以上の合成樹脂モノフイラメ
ントの絡合体の使用が望ましい。 絡合体を構成するモノフイラメントは、長繊維
でも短繊維でも特に指定するものではないが、絡
合体の機械的特性面から25mm以上250mm以下が望
ましく、また異なる繊維長のものを混合し、使用
してもさしつかえない。 絡合体を構成する三次元クリンプを有するモノ
フイラメントとは、仮撚加熱法、ロープ加熱法、
潜在けん縮法、および擦過法などにより三次元ク
リンプを付与したモノフイラメントであり、特に
仮撚加熱法およびロープ加熱法などの方法による
ものが望ましい。 絡合部を接合する方法は、絡合体を噴霧法、浸
漬法などにより接着剤処理を行い、後に乾燥、熱
処理することにより接着剤を硬化し、接合する方
法および絡合体を構成するモノフイラメントの一
部に低融点素材からなるモノフイラメントを使用
するか、もしくはモノフイラメントの一部または
全部を融点の異なる複数種の素材からなる複合モ
ノフイラメントを使用し、交絡後、熱処理を行う
ことにより低融点素材を溶融し絡合部を接合する
方法などがある。 合成樹脂モノフイラメントの素材は、ポリアミ
ド、ポリエステル、ポリオレフイン、ポリ塩化ビ
ニルおよびポリ塩化ビニリデンなどの合成樹脂が
あるが、これらの合成樹脂の単独使用、もしくは
混合使用のいずれかでも良い。 立体網目状繊維シートの型枠板への取り付け
は、立体網目状繊維シートがコンクリート打設時
に脱落せず、脱型時に型枠板から容易に剥離する
事が必要であり、合板型枠の時は建築用ホツチキ
ス針で仮止めし、メタル型枠の時は両面粘着テー
プで部分接着を行う。立体網目状繊維シートとし
ては、ある程度腰のあるものが施工が容易であ
る。型枠板に仮止めする際、フクレが生ずるとコ
ンクリート打設の際、脱落の恐れがあるので型枠
板面によくなじむように仮止めする。 モルタルの施工については、従来の工法と何ら
変らない。すなわち、下地の水養生又はエマルジ
ヨンの塗布などを行つて施工したモルタル層のド
ライアウトを防ぐ事が必要で、繊維のアンカーに
よるメカニカルボンドのみでは強度が小さいの
で、モルタル本来のケミカルボンドも最大限に出
るようにしなくてはならない。モルタルの配合
は、セメント砂比を1:2〜1:3(容積)と
し、あまり富配合や貧配合は好ましくない。な
お、コンクリートの表面を施工に先だち施工面を
ワイヤーブラシなどでこすり、表面の毛羽立ちを
より多くする事はより好ましい事である。前記に
おいては、表面仕上げ材としてモルタルについて
説明したが、モルタルの他、しつくい、プラスタ
ー、又は厚付塗料などの吹付材の施工についても
同様である。 この発明の他の利点は、コンクリート型枠がコ
ンクリートのノロで汚れにくく、清掃がきわめて
容易である事、コンクリート型枠には剥離剤を塗
布する必要がない事などである。型枠板の種類と
しては、合板型枠、メタル型枠、合成樹脂型枠の
いずれも可能である。 この発明は現場施工に適しているのみならず、
プレキヤストパネル、又はプレキヤストユニツト
などのコンクリート製品を工場生産する際にも用
いることができる。 即ちこの発明によれば、立体網目状繊維シート
を型枠板面に仮着し、これを用いてコンクリート
型枠を構成した後、コンクリートを打設し、脱型
後繊維露出面へ仕上げ材を施工するので、躯体と
仕上げ材とは機械的、物理的、化学的力により強
固に接着すると共に、コンクリート表面部および
仕上げ材層を補強するなどの効果がある。然して
施工労力、材料、時間等は従来法と大差はなく、
仕上げ材の亀裂、剥離、剥落を未然に防止するこ
とができると共に、コンクリート構造物の耐久性
を大幅に向上することができる。 次にこの発明の比較実験例につき説明する。 実験例 目つけ80g/m2のポリプロピレン繊維よりなる
不織布2を合板製の型枠板1の内面に建築用ホツ
チキス針3で20ケ所/m2仮止めし、この型枠板を
用いてコンクリート型枠を組む。一方不織布を貼
らない型枠板によりコンクリート型枠を組み、
夫々の型枠内へ同質のコンクリート4を打設し、
壁体を作つた。ついで表面にセメント砂比1:3
(容積)のモルタル5を3cm厚に塗布し、1ケ月
放置したのち、建研式引張り接着力試験器にて接
着強度を測定した所、次表の結果を得た。
The purpose of this invention is to fiber-reinforce the surface layer of a concrete structure, increase the adhesion between the finishing material applied to the surface of the concrete structure and the structure, and prevent the finishing material from cracking, peeling, or falling off. The present invention relates to a method for surface treatment of concrete structures. In general, for concrete structures, after demolding the concrete formwork, mortar is applied to make it smooth, and then tiles are laid on top of it and sprayed material (hereinafter referred to as "final finishing material") is sprayed on. It is true. In this construction method, adhesive interfaces occur at two places: the concrete frame and the mortar layer, and the mortar layer and the final finishing material. Various methods have been developed to bond the mortar and the final finishing material. The interface is strongly bonded.
On the other hand, the adhesion between the concrete frame and the mortar layer is still insufficient, resulting in cracks in the surface finishing material,
There is a risk of peeling or peeling accidents. In particular, if the concrete body layer is not dense and the strength of the surface layer is low, cracks in the surface finish layer may occur due to stress generated due to movement of the surface finish material layer or stress generated due to rusting and expansion of reinforcing bars in the concrete body. , peeling and peeling easily occur. Currently, methods for adhering the structure and mortar layer include roughening the surface of the structure, applying synthetic resin emulsion, or sizing with an admixture, but these methods can cause cracks, peeling, or flaking of the surface finish layer. It is nearly impossible to prevent this, and further improvements are required. The above-mentioned conventional construction methods have little effect on preventing cracking, peeling, or flaking of the surface finish layer due to insufficient strength of the concrete surface layer. Furthermore, with conventional concrete pouring techniques, the strength of the surface of the resulting concrete structure is low, which is a very important issue today when considering the durability of concrete structures. However, in this invention, a three-dimensional mesh fiber sheet made of alkali-resistant and water-resistant fibers is temporarily fixed to the inner surface of the formwork board, and concrete is poured into the formwork constructed using this, so that the water in the concrete is reduced. The hard cement slurry penetrates into the three-dimensional mesh fiber sheet layer, and the three-dimensional mesh fiber sheet becomes one with the concrete, and the three-dimensional mesh fiber sheet buried in the concrete surface strengthens the concrete and is exposed to the concrete surface. The three-dimensional mesh fiber sheet becomes fluffy and becomes an anchor for the mortar layer, so there is no risk of the mortar layer cracking, peeling, or falling off after mortar construction, and it firmly bonds the surface finishing material such as mortar to the concrete frame. Thus, the above-mentioned conventional problems were solved. A feature of the present invention is that the surface layer of the concrete body is reinforced with fibers, and a surface finishing layer such as mortar is physically and mechanically bonded to the concrete body using the fibers as anchors. In other words, the reinforcement of the underlying concrete surface layer and the synergistic effect of the chemical bond and mechanical bond between the surface finishing layer and the concrete frame provide highly reliable adhesion, and the mortar layer does not expand or contract due to heat or moisture after construction. Even if shearing or tensile forces act at the interface between concrete and mortar, the anchoring effect of the fibers relieves the stress and extremely reduces peeling. Even if it were to peel off, the surface finish layer would not come off, and the concrete surface layer and the surface finish layer are also bonded by fibers. In order to increase the fiber reinforcement of the concrete surface, it is extremely effective to use a vibrator when pouring concrete. In particular, the use of formwork-installed vibrators makes it easier for concrete to penetrate into the three-dimensional mesh fiber sheet layer, and excess water in the concrete is discharged to the outside through the water absorption and water permeation effects of the three-dimensional mesh fiber sheet. As a result, the strength of concrete is greatly improved. Excess water in the concrete absorbed by the three-dimensional mesh fiber sheet is discharged from the joint part of the formwork,
Needless to say, by providing drainage holes in the formwork at appropriate intervals, excess water in the concrete can be drained more effectively. Another feature is that the material cost is low and construction is extremely simple and economical. In other words, it is only necessary to temporarily fix the three-dimensional mesh fiber sheet to the inner surface of the form board with staples or double-sided mucosal tape, and then pour concrete into the constructed concrete form. Since the fibrous sheet is temporarily fixed, it does not require much cost and labor compared to the conventional method. Furthermore, when applying mortar to the concrete surface after the concrete has hardened, water curing is performed as in conventional construction methods, or mortar is applied after diluted emulsion is applied. The alkali-resistant and water-resistant fibers used in this invention include acrylic fibers, polypropylene fibers, polyester fibers, nylon fibers, vinylon fibers, rayon fibers, aromatic polyamide fibers, carbon fibers, aromatic polyamide fibers, carbon fibers, glass fibers, Alkali-resistant and water-resistant fibers such as asbestos fibers and rock wool fibers used alone or in combination of two or more of the above to form non-woven fabrics, woven fabrics, knitted fabrics or monofilament entanglements as alkali-resistant and water-resistant fiber sheets. is used. Of these,
Nonwoven fabrics and monofilament entangled bodies are suitable because the fibers are intertwined and have three-dimensional openings. Nonwoven fabrics are used to reinforce concrete surfaces to a depth of about 1 to 55 mm. Manufacturing methods for nonwoven fabric include dipping method, needle punch method,
There are spunbond methods and stitch methods, both of which are suitable. Further, the three-dimensional mesh fiber sheet may be constructed by combining a woven fabric or a knitted fabric with a non-woven fabric, and in this case as well, good effects can be achieved. Monofilament entangled bodies are used when reinforcing concrete surfaces to a depth of approximately 5 to 40 mm. A synthetic resin monofilament entangled body having an apparent thickness of 5 to 40 mm, which is obtained by three-dimensionally entangling synthetic resin monofilaments having a diameter of 0.1 mm or more and having a three-dimensional crimp, and joining the entangled portions, is suitable. It is desirable that the monofilament entangled body has high rigidity. Monofilament diameter is 0.1
If it is less than mm, the monofilament entangled body will be compressed by the concrete placement pressure due to the low rigidity, making it difficult to fill the monofilament with concrete. Also, even if a vibrator is used, the filling of the concrete into the monofilament is not significantly improved due to poor vibration transmission.
Therefore, it is desirable to use an entangled body of synthetic resin monofilaments with a diameter of 0.1 mm or more. The monofilaments constituting the entangled body are not particularly specified as long fibers or short fibers, but in terms of the mechanical properties of the entangled body, the monofilament is preferably 25 mm or more and 250 mm or less, and monofilaments of different fiber lengths may be mixed and used. I don't mind. The monofilament with three-dimensional crimps that constitutes the entangled body can be produced using the false twist heating method, the rope heating method,
It is a monofilament that has been given a three-dimensional crimp by a latent crimping method, a rubbing method, etc., and it is particularly desirable to use methods such as a false twist heating method and a rope heating method. The entangled parts are joined together by applying an adhesive treatment to the entangled body by spraying or dipping, and then drying and heat-treating the adhesive to harden it. By using a monofilament partially made of a material with a low melting point, or by using a composite monofilament made of multiple materials with different melting points for part or all of the monofilament, and then heat-treating the monofilament after intertwining, the melting point can be lowered. There are methods such as melting the materials and joining the intertwined parts. Materials for the synthetic resin monofilament include synthetic resins such as polyamide, polyester, polyolefin, polyvinyl chloride, and polyvinylidene chloride, and these synthetic resins may be used alone or in combination. When attaching a three-dimensional mesh fiber sheet to a formwork board, it is necessary that the three-dimensional mesh fiber sheet does not fall off during concrete pouring, and that it can be easily peeled off from the formwork board when demolding. Temporarily fasten with architectural staples, and when using metal formwork, partially adhere with double-sided adhesive tape. As a three-dimensional mesh fiber sheet, one with a certain degree of stiffness is easy to construct. If blistering occurs when temporarily fixing to the formwork board, there is a risk of it falling off during concrete pouring, so temporarily fix it so that it blends well with the formwork board surface. Mortar construction is no different from traditional construction methods. In other words, it is necessary to prevent the mortar layer from drying out by curing the base with water or applying emulsion, and since mechanical bonding using fiber anchors alone has low strength, chemical bonding, which is inherent in mortar, should also be used to the maximum extent. I have to make it come out. The mortar should be mixed at a cement-sand ratio of 1:2 to 1:3 (by volume), and a rich or poor mix is not preferable. In addition, it is more preferable to rub the concrete surface with a wire brush or the like to make the surface more fluffy before construction. In the above, mortar has been described as a surface finishing material, but the same applies to the application of spray materials such as plaster, plaster, and thick paint in addition to mortar. Other advantages of the present invention include that the concrete formwork is resistant to staining with concrete slag, is extremely easy to clean, and that there is no need to apply a release agent to the concrete formwork. As for the type of formwork board, any of plywood formwork, metal formwork, and synthetic resin formwork is possible. This invention is not only suitable for on-site construction, but also
It can also be used in factory production of concrete products such as precast panels or precast units. That is, according to the present invention, a three-dimensional mesh fiber sheet is temporarily attached to the surface of a formwork plate, a concrete formwork is constructed using this, concrete is poured, and finishing material is applied to the exposed fiber surface after removing the mold. Since it is constructed, the building frame and finishing material are firmly bonded by mechanical, physical, and chemical forces, and it also has the effect of reinforcing the concrete surface and the finishing material layer. However, the construction labor, materials, time, etc. are not much different from the conventional method.
Cracking, peeling, and flaking of the finishing material can be prevented, and the durability of the concrete structure can be greatly improved. Next, a comparative experimental example of this invention will be explained. Experimental example A non-woven fabric 2 made of polypropylene fibers with a basis weight of 80 g/m 2 is temporarily fixed to the inner surface of a plywood form board 1 at 20 locations/m 2 using construction staples 3, and this form board is used to create a concrete mold. Assemble a frame. On the other hand, the concrete formwork is constructed using formwork boards that do not have non-woven fabric attached.
Concrete 4 of the same quality is poured into each formwork,
I made a wall. Then apply cement to sand ratio 1:3 on the surface.
(volume) of mortar 5 was applied to a thickness of 3 cm, and after being left for one month, the adhesive strength was measured using a Kenken type tensile adhesion tester, and the results shown in the following table were obtained.

【表】 実験例 実験例と同じ方法で作つた供試体に1kwの白
熱ランプを1mの距離よりあて、冷熱の繰返しを
10回行つたのち、建研式引張り接着力試験器で接
着強度を測定した所、次表の結果を得た。
[Table] Experimental example A 1kw incandescent lamp was applied to a specimen made in the same manner as in the experimental example from a distance of 1m to repeatedly heat and cool the specimen.
After the test was repeated 10 times, the adhesive strength was measured using a Kenken-type tensile adhesive strength tester, and the results shown in the following table were obtained.

【表】 実験例 繊維径1mm前後のナイロン繊維よりなる2.5〜
5mmの空げきを有する10mm厚のモノフイラメント
絡合体(300g/m2)を合板型枠板の内面に建築
用ホツチキス針で20ケ所/m2仮止めし、この型枠
板を用いてコンクリート型枠を組む。 一方、立体網目状繊維シートを貼らない型枠板
を用いて、コンクリート型枠を組む。夫々の型枠
内へ同質のコンクリーを打設し、壁体を作つた
(壁寸法1m×2m、150mm厚)コンクリートの打
設後14日経てから脱型し、更に14日間放置した後
に、エポキシ樹脂系接着剤を用いて鉄製のアタツ
チメント(5cm×10cm)を張付け、建研式引張接
着力試験器にてコンクリート表面部の引張強度を
測定した所、次表の結果を得た。
[Table] Experimental example 2.5~ made of nylon fibers with a fiber diameter of around 1 mm
A 10 mm thick intertwined monofilament (300 g/m 2 ) with a 5 mm gap was temporarily fixed to the inner surface of the plywood form board at 20 locations/m 2 using construction staples, and the form board was used to create a concrete mold. Assemble a frame. On the other hand, a concrete formwork is constructed using formwork boards to which the three-dimensional mesh fiber sheet is not attached. Concrete of the same quality was poured into each formwork to create a wall (wall dimensions: 1m x 2m, 150mm thick).The mold was removed 14 days after the concrete was poured, and after being left for another 14 days, epoxy was applied. An iron attachment (5 cm x 10 cm) was attached using a resin adhesive, and the tensile strength of the concrete surface was measured using a Kenken tensile adhesion tester, and the results shown in the following table were obtained.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明により表面処理したコンクリ
ート躯体の一部断面図、第2図は同じく一部拡大
図、第3図はこの発明の施工に用いる型枠板の一
部平面図である。 1……型枠板、2……不織布、4……コンクリ
ート、5……モルタル。
FIG. 1 is a partial sectional view of a concrete frame whose surface has been treated according to the present invention, FIG. 2 is a partially enlarged view of the same, and FIG. 3 is a partial plan view of a form board used in construction according to the present invention. 1... Form board, 2... Non-woven fabric, 4... Concrete, 5... Mortar.

Claims (1)

【特許請求の範囲】 1 耐アルカリ、耐水性繊維からなる立体網目状
繊維シートを内面に仮止めした型枠板を用いてコ
ンクリート型枠を組み立て、前記コンクリート型
枠内にコンクリートを打設して前記立体網目状繊
維シートをコンクリート表面層に埋設するととも
に、立体網目状繊維シートの表面をコンクリート
から露出させ、脱型後、前記立体網目状繊維シー
トの露出部へ表面仕上げ材を施工することを特徴
としたコンクリート躯体の表面処理方法。 2 耐アルカリ、耐水性繊維を、アクリル繊維、
ポリプロピレン繊維、ポリエステル繊維、ナイロ
ン繊維、ビニロン繊維、レイヨン繊維、ガラス繊
維、石綿繊維又は岩綿繊維とした特許請求の範囲
第1項記載のコンクリート躯体の表面処理方法。 3 立体網目状繊維シートを、不織布、織布、編
布とした特許請求の範囲第1項記載のコンクリー
ト躯体の表面処理方法。 4 表面仕上げ材をセメントモルタル、プラスタ
ーまたは厚付塗料とした特許請求の範囲第1項記
載のコンクリート躯体の表面処理方法。
[Scope of Claims] 1. A concrete form is assembled using a form board to which a three-dimensional mesh fiber sheet made of alkali-resistant and water-resistant fibers is temporarily fixed on the inner surface, and concrete is poured into the concrete form. The method includes embedding the three-dimensional mesh fiber sheet in a concrete surface layer, exposing the surface of the three-dimensional mesh fiber sheet from the concrete, and applying a surface finishing material to the exposed portion of the three-dimensional mesh fiber sheet after demolding. Characteristic surface treatment method for concrete structures. 2 Alkali-resistant and water-resistant fibers, acrylic fibers,
2. The method for surface treatment of a concrete building body according to claim 1, wherein polypropylene fibers, polyester fibers, nylon fibers, vinylon fibers, rayon fibers, glass fibers, asbestos fibers or rock wool fibers are used. 3. The method for surface treatment of a concrete frame according to claim 1, wherein the three-dimensional mesh fiber sheet is a nonwoven fabric, a woven fabric, or a knitted fabric. 4. The method for surface treatment of a concrete frame according to claim 1, wherein the surface finishing material is cement mortar, plaster, or thick paint.
JP20114481A 1981-12-14 1981-12-14 Surface treatment of concrete body Granted JPS58101960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20114481A JPS58101960A (en) 1981-12-14 1981-12-14 Surface treatment of concrete body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20114481A JPS58101960A (en) 1981-12-14 1981-12-14 Surface treatment of concrete body

Publications (2)

Publication Number Publication Date
JPS58101960A JPS58101960A (en) 1983-06-17
JPS6253666B2 true JPS6253666B2 (en) 1987-11-11

Family

ID=16436123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20114481A Granted JPS58101960A (en) 1981-12-14 1981-12-14 Surface treatment of concrete body

Country Status (1)

Country Link
JP (1) JPS58101960A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148220U (en) * 1989-05-20 1990-12-17
JPH0720414B2 (en) * 1989-01-11 1995-03-08 政次 満松 Punching machine for planting seedlings

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130546A (en) * 1984-11-28 1986-06-18 旭フアイバ−グラス株式会社 Wall construction method of house and heat insulating sound-proof material
JP4546878B2 (en) * 2004-11-17 2010-09-22 株式会社淺沼組 Application method and structure of mortar for concrete wall
KR100970251B1 (en) 2008-06-19 2010-07-16 주식회사 오피 a self-adhesion type multilayer TPU sheet, a waterproof layer and waterproof method using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219416A (en) * 1975-08-04 1977-02-14 Nippon Muki Zairiyou Kk Strengthening method of surface portion of concrete building
JPS5549452A (en) * 1978-10-04 1980-04-09 Nippon Kobunshi Kagaku Kk Method of making lining layer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49120025U (en) * 1973-02-09 1974-10-15

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219416A (en) * 1975-08-04 1977-02-14 Nippon Muki Zairiyou Kk Strengthening method of surface portion of concrete building
JPS5549452A (en) * 1978-10-04 1980-04-09 Nippon Kobunshi Kagaku Kk Method of making lining layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720414B2 (en) * 1989-01-11 1995-03-08 政次 満松 Punching machine for planting seedlings
JPH02148220U (en) * 1989-05-20 1990-12-17

Also Published As

Publication number Publication date
JPS58101960A (en) 1983-06-17

Similar Documents

Publication Publication Date Title
EP0383510B1 (en) Gypsum board
US7846278B2 (en) Methods of making smooth reinforced cementitious boards
CA1204279A (en) Process for the preparation of fiber-reinforced flat bodies containing a hardenable binder
JPS624223B2 (en)
CS24691A2 (en) Silicate building panel with fibrous planary reinforcement
CA2295561A1 (en) Composite element and its method of manufacture
JPS6253666B2 (en)
JP2832430B2 (en) Building outer wall repair method
KR100777844B1 (en) Underground panel, outer wall facing method and insulation pc curtain wall
JPH0261584B2 (en)
JPS6141723B2 (en)
JP2968170B2 (en) Sheet-shaped plastering finishing material, its manufacturing method and its on-site construction method
JP3028976B2 (en) Base adjustment method
JPH0699194B2 (en) Surface reinforcement method for concrete structure
DK1936064T3 (en) Fugebånd
JP3758734B2 (en) Construction board for curved surface formation, curved surface structure, ground frame structure for curved surface, and construction method of curved surface structure
JP7492266B2 (en) Washout panel and its manufacturing method
JP5371320B2 (en) A base sheet member to be affixed to the surface of a concrete frame, a surface treatment method for a concrete frame using the base sheet member, and a method for producing precast concrete using the base sheet member
KR100555179B1 (en) Panel to intercept noise and vibration between the floor and ceiling
JP7050242B2 (en) Construction method of skeleton surface structure, fabric and board for skeleton surface construction
JP2552291B2 (en) Composite board
JPH0627371Y2 (en) Nonwoven fabric for reinforcing inorganic molded body and inorganic molded body
JP2005146764A (en) Roughened surface material and concrete member with roughened surface material
JPH05248059A (en) Construction method for laying tile
JPH01187263A (en) Inverted lining concreting method