JPS6253469B2 - - Google Patents

Info

Publication number
JPS6253469B2
JPS6253469B2 JP56181787A JP18178781A JPS6253469B2 JP S6253469 B2 JPS6253469 B2 JP S6253469B2 JP 56181787 A JP56181787 A JP 56181787A JP 18178781 A JP18178781 A JP 18178781A JP S6253469 B2 JPS6253469 B2 JP S6253469B2
Authority
JP
Japan
Prior art keywords
weight
curing
steam
magnesium hydroxide
asbestos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56181787A
Other languages
Japanese (ja)
Other versions
JPS5884154A (en
Inventor
Hiroshi Teramoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP56181787A priority Critical patent/JPS5884154A/en
Publication of JPS5884154A publication Critical patent/JPS5884154A/en
Publication of JPS6253469B2 publication Critical patent/JPS6253469B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】 本発明はケイ酸カルシウム硬化体からなる無機
質板の製造方法に関するものである。 ケイ酸カルシウム硬化体をマドリツクスとする
無機質板を製造するには、ケイ酸質原料と石灰質
原料とを含むスラリーから例えば、抄造法により
板状体を成形し、この成形体を高温高圧の水蒸気
によりオートクレイブ養生しており、この場合、
ケイ酸カルシウム硬化体の生成がSiO2とCa
(OH)2との熱水反応に基づくものであるから、オ
ートクレイブ養生が不可欠である。従つて、少な
くとも4Kg/cm2の高圧水蒸気を必要とし、高価な
養生設備が不可欠である。 このため、ケイ酸質原料に無定形シリカを70%
以上含む反応性に富むシリカ源、例えば、フエロ
シリコンダストを使用して低圧の水蒸気養生を使
用すること、並びに硬化体の強度不足を石綿繊維
で補うことが知られているが、繊維補強にもかゝ
わらず、所定の強度(曲げ強度)が得られていな
い現況である。 ところが、本発明者等は、ケイ酸質原料にフエ
ロシリコンダストを使用する場合、水酸化マグネ
シウムを一定量添加すると、40〜100℃の蒸気養
生でも、硬化体の曲げ強度を著しく向上できるこ
とを知つた。この効果は、ケイ酸カルシウム硬化
体のケイ酸質原料として通常使用されている珪藻
土の場合においては出現せず、フエロシリコンダ
ストを使用する場合の特有の現象である。シリカ
と水酸化マグネシウムとを圧力10Kg/cm2の高温高
圧水蒸気のもとで反応させれば、ケイ酸マグネシ
ウムが生成することが知られているが、上記曲げ
強度の向上効果は、40〜100℃の低圧水蒸気下で
の処置で生じ、その原因は定かではない。 本発明に係る無機質板の製造方法は、上記意外
な知見に基づき発明された方法であり、無定形シ
リカを70%以上含むシリカ源が20〜50重量%、消
石灰又はセメントあるいはこれら両者の総量が15
〜40重量%、水酸化マグネシウムが5〜35重量
%、パルプ又は石綿あるいはこれら両者の総量が
残部%である組成物を水の存在下で成形し、該成
形体を40〜100℃の蒸気養生により硬化させるこ
とを特徴とする方法である。 本発明において、無定形シリカの70%以上を含
むシリカ源、並びに消石灰又はセメントあるいは
これらの両者のそれぞれの重量%を20〜50重量%
並びに15〜40重量%に限定した理由は、ケイ酸カ
ルシウム反応に必要なC/S比に基づくものであ
り、通常の配合量である。 パルプ又は石綿あるいはこれらの両者を配合す
る理由は、製品板材の可撓性、釘打ち施工性、抄
造効率の確保等のためであり、その配合量は通常
の配合量である。 本発明において、水酸化マグネシウムを配合す
る理由並びに養生蒸気温度を40〜100℃に限定す
る理由は、前記した意外な知見に基づくものであ
り、ケイ酸質原料として無定形シリカを70%以上
含むシリカ源を使用する場合、蒸気温度40〜100
℃の低圧水蒸気の養生でも製品板材の曲げ強度を
著しく大にできることにある。この水酸化マグネ
シウムの配合量を5〜35重量%に限定する理由
は、5重量%以下では上記効果を充分に発揮させ
得ず、35重量%以上では上記曲げ強度が添加量の
増加に伴い低下するからである。 本発明において使用するシリカ源は、代表的に
はフエロシリコンダストである。養生時間は100
℃水蒸気の場合で8時間、40℃水蒸気の場合で24
時間であり、8〜24時間の範囲内である。 以下、本発明を実施例について比較例との対比
のもとで説明する。 実施例 1〜3 表に示す通りの水酸化マグネシウム、フエロシ
リコンダスト、消石灰、パルプ並びに石綿の配合
組成物(%は重量%、以下同じ)を固形分とする
スラリーから板状体(厚さ;10mm)を成形し(成
形圧;100Kg/cm2)、この成形体を80℃の水蒸気で
20時間蒸気養生し、而るのち7日間自然養生し
た。 比較例 1並びに2 配合組成物として表に示す通りの配合の水酸化
マグネシウム、フエロシリコンダスト、消石灰、
パルプ並びに石綿からなる組成物を使用し、成形
並びに養生条件は実施例に同じとした。 比較例 3並びに4 配合組成物として表に示す通りの水酸化マグネ
シウム、珪藻土、消石灰、パルプ並びに石綿から
なる組成物を使用し、成形並びに養生条件は実施
例に同じとした。 上記実施例品並びに比較例品のそれぞれにつき
曲げ強度並びに絶乾比重を測定したところ、表に
示す通りであつた。 上記説明から明らかなように、本発明によれ
ば、製品板材の曲げ強度をよく向上でき、しか
も、軽量な無機質板を得ることができる。そし
て、養生を40〜100℃の低圧水蒸気により行い
得、高価なオートクレイブ設備を必要としない。 従つて、本発明によれば、建材に適した高曲げ
強度、軽量な珪酸カルシウム硬化板を低圧の蒸気
養生で製造できる。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an inorganic plate made of a hardened calcium silicate body. In order to manufacture an inorganic plate using a matrix of hardened calcium silicate, a plate is formed from a slurry containing a silicate raw material and a calcareous raw material, for example, by a papermaking method, and this formed body is heated with high-temperature, high-pressure steam. Autoclave curing, in this case,
Formation of calcium silicate hardened body is caused by SiO 2 and Ca
Since it is based on a hydrothermal reaction with (OH) 2 , autoclave curing is essential. Therefore, high-pressure steam of at least 4 kg/cm 2 is required, and expensive curing equipment is indispensable. For this reason, 70% amorphous silica is added to the silicic acid raw material.
It is known to use a highly reactive silica source containing the above, for example, ferrosilicon dust, and to use low-pressure steam curing, and to compensate for the lack of strength of the cured product with asbestos fibers. However, the current situation is that the required strength (bending strength) is not achieved. However, the present inventors have discovered that when using ferrosilicon dust as a silicic acid raw material, adding a certain amount of magnesium hydroxide can significantly improve the bending strength of the cured product even during steam curing at 40 to 100°C. I knew. This effect does not appear in the case of diatomaceous earth, which is commonly used as a silicate raw material for hardened calcium silicate products, and is a peculiar phenomenon when ferrosilicon dust is used. It is known that magnesium silicate is produced when silica and magnesium hydroxide are reacted under high-temperature, high-pressure steam at a pressure of 10 kg/ cm2 . It occurs during treatment under low-pressure steam at ℃, and the cause is unknown. The method for producing an inorganic board according to the present invention is a method invented based on the above-mentioned unexpected findings, in which the silica source containing 70% or more of amorphous silica is 20 to 50% by weight, and the total amount of slaked lime or cement or both is 15
A composition containing ~40% by weight, 5% to 35% by weight of magnesium hydroxide, and the balance % of pulp, asbestos, or both is molded in the presence of water, and the molded body is steam-cured at 40 to 100°C. This method is characterized by curing. In the present invention, the silica source containing 70% or more of amorphous silica and the respective weight% of slaked lime or cement or both of these are 20 to 50% by weight.
The reason why it is limited to 15 to 40% by weight is based on the C/S ratio required for the calcium silicate reaction, and is a normal blending amount. The reason for blending pulp, asbestos, or both is to ensure the flexibility, nailing workability, and papermaking efficiency of the product board material, and the blending amount is a normal blending amount. In the present invention, the reason why magnesium hydroxide is blended and the curing steam temperature is limited to 40 to 100°C are based on the above-mentioned unexpected findings. When using silica source, steam temperature 40-100
The bending strength of the product plate material can be significantly increased even by curing with low-pressure steam at ℃. The reason why the amount of magnesium hydroxide is limited to 5 to 35% by weight is that if it is less than 5% by weight, the above effects cannot be fully exhibited, and if it is more than 35% by weight, the bending strength will decrease as the amount added increases. Because it does. The silica source used in the present invention is typically ferrosilicon dust. Curing time is 100
8 hours for ℃ water vapor, 24 hours for 40℃ water vapor
time, ranging from 8 to 24 hours. Hereinafter, the present invention will be explained with reference to Examples and comparison with Comparative Examples. Examples 1 to 3 A plate-shaped body (thickness ; 10mm) (molding pressure; 100Kg/cm 2 ), and this molded body was heated with steam at 80℃.
It was steam cured for 20 hours and then naturally cured for 7 days. Comparative Examples 1 and 2 Magnesium hydroxide, ferrosilicon dust, slaked lime, and
A composition consisting of pulp and asbestos was used, and the molding and curing conditions were the same as in the examples. Comparative Examples 3 and 4 A composition consisting of magnesium hydroxide, diatomaceous earth, slaked lime, pulp, and asbestos as shown in the table was used as a blended composition, and the molding and curing conditions were the same as in the examples. The bending strength and absolute dry specific gravity of each of the above Example products and Comparative Example products were measured, and the results were as shown in the table. As is clear from the above description, according to the present invention, it is possible to improve the bending strength of a product plate material, and to obtain a lightweight inorganic plate. Curing can be performed using low-pressure steam at 40 to 100°C, and expensive autoclave equipment is not required. Therefore, according to the present invention, a lightweight calcium silicate hardened board with high bending strength suitable for building materials can be manufactured by low-pressure steam curing. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 無定形シリカを70%以上含むシリカ源が20〜
50重量%、消石灰又はセメントあるいはこれら両
者の総量が15〜40重量%、水酸化マグネシウムが
5〜35重量%、パルプ又は石綿あるいはこれら両
者の総量が残部%である組成物を水の存在下で成
形し、該成形体を40〜100℃の蒸気養生により硬
化させることを特徴とする無機質板の製造方法。
1 Silica source containing 70% or more of amorphous silica is 20~
50% by weight, 15-40% by weight of slaked lime or cement or both, 5-35% by weight of magnesium hydroxide, and the balance % by weight of pulp or asbestos or both in the presence of water. 1. A method for producing an inorganic board, which comprises molding and curing the molded body by steam curing at 40 to 100°C.
JP56181787A 1981-11-12 1981-11-12 Manufacture of inorganic board Granted JPS5884154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56181787A JPS5884154A (en) 1981-11-12 1981-11-12 Manufacture of inorganic board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56181787A JPS5884154A (en) 1981-11-12 1981-11-12 Manufacture of inorganic board

Publications (2)

Publication Number Publication Date
JPS5884154A JPS5884154A (en) 1983-05-20
JPS6253469B2 true JPS6253469B2 (en) 1987-11-10

Family

ID=16106860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56181787A Granted JPS5884154A (en) 1981-11-12 1981-11-12 Manufacture of inorganic board

Country Status (1)

Country Link
JP (1) JPS5884154A (en)

Also Published As

Publication number Publication date
JPS5884154A (en) 1983-05-20

Similar Documents

Publication Publication Date Title
US3501324A (en) Manufacturing aqueous slurry of hydrous calcium silicate and products thereof
JP3783734B2 (en) Calcium silicate plate manufacturing method
JPS6343335B2 (en)
US3634567A (en) Method of steam curing hydraulic setting calcareous cement and silica containing compositions
JP5190399B2 (en) Method for producing calcium silicate plate
JPH0525828B2 (en)
US4033783A (en) Method for making lime-silica insulation from perlite
JPS6253469B2 (en)
CN1358687A (en) Calcium silicate board and making method thereof
US3895096A (en) Method of producing hydrous calcium silicate products and the products thereof
CN1184458A (en) Calcium silicate plate and process for producing the plate
JPH0159225B2 (en)
JP3768262B2 (en) Calcium silicate plate manufacturing method
JP2515197B2 (en) Calcium silicate refractory coated board and its manufacturing method
JP2515195B2 (en) Calcium silicate refractory coated board and its manufacturing method
JP3750950B2 (en) Calcium silicate plate manufacturing method
JPS6374949A (en) Manufacture of calcium silicate formed body
JPS6243945B2 (en)
JP2825905B2 (en) Calcium silicate compact
JP3699742B2 (en) Method for producing calcium silicate plate
JP3699745B2 (en) Calcium silicate plate manufacturing method
JPH0338226B2 (en)
JPH08183649A (en) Inorganic building material
JPS6149264B2 (en)
JPH0437006B2 (en)