JPS6253208B2 - - Google Patents

Info

Publication number
JPS6253208B2
JPS6253208B2 JP55061497A JP6149780A JPS6253208B2 JP S6253208 B2 JPS6253208 B2 JP S6253208B2 JP 55061497 A JP55061497 A JP 55061497A JP 6149780 A JP6149780 A JP 6149780A JP S6253208 B2 JPS6253208 B2 JP S6253208B2
Authority
JP
Japan
Prior art keywords
dehydration
cake
slurry
pressure
dehydrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55061497A
Other languages
Japanese (ja)
Other versions
JPS55149800A (en
Inventor
Hiroaki Sato
Masanori Eto
Sho Yokoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP6149780A priority Critical patent/JPS55149800A/en
Publication of JPS55149800A publication Critical patent/JPS55149800A/en
Publication of JPS6253208B2 publication Critical patent/JPS6253208B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B9/00Presses specially adapted for particular purposes
    • B30B9/02Presses specially adapted for particular purposes for squeezing-out liquid from liquid-containing material, e.g. juice from fruits, oil from oil-containing material
    • B30B9/04Presses specially adapted for particular purposes for squeezing-out liquid from liquid-containing material, e.g. juice from fruits, oil from oil-containing material using press rams

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Filtration Of Liquid (AREA)
  • Press Drives And Press Lines (AREA)
  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、各種の汚泥、その他難過性の泥状
物などのスラリーを加圧脱水する方法、特に難脱
水性のスラリーを効果的に脱水する方法に関する
ものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a method for pressurized dewatering of slurries such as various sludges and other difficult-to-dewater slurries, and in particular, a method for effectively dewatering slurries that are difficult to dewater. It's about how to do it.

〔従来技術〕[Prior art]

この種のスラリーの脱水方法に関しては、従来
から真空過、加圧過、遠心分離など、数多く
の工夫・改良がなされているが、原理的には圧力
差(加圧および減圧)や遠心力を利用した方法で
脱水処理が行われている。しかし、スラリーはそ
の性状によつて異なるが、脱水が困難なものが多
い。
Many dehydration methods for this type of slurry have been devised and improved, such as vacuum filtration, pressure filtration, and centrifugation, but in principle, pressure differences (pressurization and depressurization) and centrifugal force are Dehydration treatment is performed using the method used. However, although slurry differs depending on its properties, many slurries are difficult to dehydrate.

そのため、スラリーの脱水を簡単な方法で効率
よく行うことは難しく、機械的に複雑化した脱水
装置を用いたいろいろな方法で脱水が行われてい
る。
Therefore, it is difficult to efficiently dewater the slurry using a simple method, and dewatering is performed by various methods using mechanically complicated dewatering equipment.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の方法では、たとえば水酸
化アルミニウムの如きスラリー中の粒子が極めて
小さいような場合、スラリーの過または脱水を
効率よく行うことは難しい。すなわち、スラリー
の脱水は原理的に圧力差や遠心力を利用したもの
であるから、装置的(機械的)にいかに工夫して
も、スラリー中の粒子の細孔内の水または粒子が
極めて小さいために粒子と粒子との間が細孔と同
じような作用をしているときの粒子間に存在する
水を、スラリーから脱水するには限界があつて、
十分なる脱水効果を得ることができない。
However, with conventional methods, it is difficult to efficiently filtrate or dewater a slurry when the particles in the slurry, such as aluminum hydroxide, are extremely small. In other words, since slurry dehydration basically uses pressure differences and centrifugal force, no matter how much equipment (mechanical) devising is done, the water or particles in the pores of the particles in the slurry are extremely small. Therefore, there is a limit to how water existing between particles can be dehydrated from slurry when the particles act like pores.
A sufficient dehydration effect cannot be obtained.

たとえば、フイルター・プレスに圧搾機構を備
え、ダイヤフラムによつてスラリーを圧搾して脱
水する方法がある。この方法は圧搾により粒子間
の間隙を小さくして、スラリーの含水率を低下さ
せようとするものであるが、粒子間液を十分に取
り除くことは困難である。また、遠心力を利用し
て脱水する方法は、スラリー中の水を遠心力によ
つて粒子から引き離すものであるが、粒子が微細
な場合には、動力を多量に必要とする割には水を
効果的に脱水することはできない。
For example, there is a method in which a filter press is equipped with a squeezing mechanism and a diaphragm is used to squeeze the slurry to dehydrate it. This method attempts to reduce the water content of the slurry by reducing the gaps between particles by squeezing, but it is difficult to sufficiently remove the interparticle liquid. In addition, the method of dewatering using centrifugal force uses centrifugal force to separate the water in the slurry from the particles. cannot be effectively dehydrated.

このように、従来の脱水方法は、いずれの方法
も多量の動力を必要とし、かつ安全上から堅牢な
機械を備えたものであるにもかかわらず、スラリ
ーの含水率の低減はわずかであり満足すべき脱水
効果を得るには至らなかつたし、処理能力もあま
り高められず設備費や運転費が多大となるなど実
用上問題となることが多い。
In this way, although all conventional dewatering methods require a large amount of power and are equipped with robust machinery for safety reasons, the reduction in water content of the slurry is small and satisfactory. However, it is not possible to obtain the desired dehydration effect, and the processing capacity cannot be improved much, resulting in large equipment costs and operating costs, which often poses practical problems.

本発明は、これら従来の欠点を適確に排除しよ
うとするもので、脱水が困難なスラリーを効果的
に脱水し、脱水速度を大幅に増大させ、著しく低
含水率の脱水ケーキを得る有効な処理方法を提供
することを目的とするものである。
The present invention seeks to precisely eliminate these conventional drawbacks, and provides an effective method for effectively dewatering difficult-to-dewater slurries, significantly increasing the dewatering rate, and obtaining a dehydrated cake with significantly lower water content. The purpose is to provide a processing method.

また本発明の他の目的は安定した能率的処理を
保証し、且つ経済的な運転維持費で大量処理に適
した脱水方法とすることにある。
Another object of the present invention is to provide a dewatering method that guarantees stable and efficient processing and is suitable for large-scale processing with economical operation and maintenance costs.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のスラリー脱水方法は、スラリーを予備
脱水したのち、生成した湿ケーキを振幅が0.1μ
m〜10μmの超音波によつて振動させながら、脱
水圧力を0.5Kgf/cm2〜100Kgf/cm2に設定して加
圧脱水することによつて脱水ケーキの含水率を飛
躍的に低下させることを特徴とするものである。
In the slurry dehydration method of the present invention, after preliminary dehydration of the slurry, the generated wet cake is
Dramatically reduce the water content of the dehydrated cake by performing pressurized dehydration by setting the dehydration pressure at 0.5 Kgf/cm 2 to 100 Kgf/cm 2 while vibrating with ultrasonic waves of m to 10 μm. It is characterized by:

スラリーを加圧脱水する際に、スラリーを超音
波によつて振動させながら加圧脱水する方法(特
願昭54−042887)がある。この方法は、スラリー
の脱水に有効であるが、試料の状態がスラリーの
状態から脱水ケーキになるまで超音波を長時間照
射するものであるため、超音波の照射に要するエ
ネルギーが多い場合がある。また、スラリー状の
試料を超音波で振動させながら加圧脱水すると、
試料の性状や脱水装置の型式によつては試料がリ
ークする問題がある。
There is a method (Japanese Patent Application No. 54-042887) in which the slurry is dehydrated under pressure while being vibrated by ultrasonic waves. This method is effective for dehydrating slurry, but because the ultrasonic waves are irradiated for a long time until the sample changes from a slurry state to a dehydrated cake, the energy required for ultrasonic irradiation may be large. . In addition, when a slurry sample is dehydrated under pressure while being vibrated with ultrasonic waves,
Depending on the properties of the sample and the model of the dehydrator, there is a problem that the sample may leak.

本発明では、予備脱水によつてスラリーを湿ケ
ーキの状態にした後、この湿ケーキを超音波で振
動させながら加圧脱水するので、超音波の照射に
必要なエネルギーを最小限にすることができる。
また、前記湿ケーキは流動性が低いために、超音
波を照射しながら加圧脱水する工程において試料
がリークすることは殆んどない。
In the present invention, after the slurry is made into a wet cake state through preliminary dehydration, this wet cake is dehydrated under pressure while being vibrated with ultrasonic waves, so that the energy required for ultrasonic irradiation can be minimized. can.
Furthermore, since the wet cake has low fluidity, there is almost no leakage of the sample during the process of pressurized dehydration while irradiating with ultrasonic waves.

本発明における前記湿ケーキとは、沈殿濃縮し
たスラリーをさらに濃縮機あるいは機械脱水機で
脱水したものを言う。この湿ケーキを得るための
濃縮機としては、加圧浮上装置、遠心濃縮機など
があり、一方、機械脱水機としては、フイルター
プレス、ロールプレス、真空過機あるいは遠心
分離機などがある。本発明の要旨は、このような
濃縮機からの湿ケーキあるいは機械脱水機で生成
した湿ケーキを、さらに前記所定の条件下で振動
させながら加圧脱水することにある。また、同一
装置でスラリーを湿ケーキにした後超音波を照射
しながら加圧脱水してもよい。たとえば、フイル
タープレス内に超音波振動板を設け、過工程が
終了して生成した湿ケーキに超音波を照射しなが
ら湿ケーキを圧搾することもできる。
In the present invention, the wet cake refers to a slurry obtained by further dewatering the precipitated and concentrated slurry using a concentrator or a mechanical dehydrator. Concentrators for obtaining this wet cake include pressure flotation devices and centrifugal concentrators, while mechanical dehydrators include filter presses, roll presses, vacuum filtration machines, and centrifugal separators. The gist of the present invention is to further dehydrate the wet cake from such a concentrator or the wet cake produced by a mechanical dehydrator under pressure while vibrating under the predetermined conditions. Alternatively, the slurry may be made into a wet cake using the same apparatus, and then subjected to pressure dehydration while being irradiated with ultrasonic waves. For example, it is also possible to provide an ultrasonic diaphragm in the filter press and squeeze the wet cake while irradiating it with ultrasonic waves.

本発明において脱水圧力を0.5Kgf/cm2〜100Kg
f/cm2に、超音波の振幅を0.1μm〜10μmにそ
れぞれ限定した根拠は、以下のとおりである。
In the present invention, the dewatering pressure is set to 0.5Kgf/cm 2 to 100Kg.
The basis for limiting the amplitude of ultrasonic waves to f/cm 2 and 0.1 μm to 10 μm is as follows.

まず、汚泥の加圧脱水においては、実験結果か
ら脱水圧力が0.5Kgf/cm2未満であると超音波振
動の効果が殆ど無く、脱水後のケーキ含水率が高
いし、また、脱水圧力を100Kgf/cm2より高圧に
しても、このような高圧条件下では超音波振動の
効果も殆どなく、このような高圧条件下で脱水す
ること自体、実用上不可能であることが明らかと
なつたからである。
First, in pressurized dehydration of sludge, experimental results show that if the dehydration pressure is less than 0.5Kgf/ cm2 , there is almost no effect of ultrasonic vibration and the moisture content of the cake after dewatering is high. Even if the pressure is higher than / cm2 , there is almost no effect of ultrasonic vibration under such high pressure conditions, and it has become clear that dehydration itself is practically impossible under such high pressure conditions. be.

一方、超音波の振幅が0.1μm未満であると、
超音波振動が弱く脱水圧力のみの効果しか得られ
ず、スラリーに含まれる粒子を超音波振動によつ
て密に充填させて脱水後のケーキを低含水率にす
ることが困難であり、超音波の振幅が10μmより
大であると、超音波振動が強過ぎてケーキがろ過
面からもれて脱水が不可能になるし、電気エネル
ギーの消費量も非常に多くなり実用的でなくなる
からである。
On the other hand, if the amplitude of the ultrasonic wave is less than 0.1 μm,
Ultrasonic vibrations are weak and can only produce the effect of dewatering pressure, and it is difficult to make the particles contained in the slurry densely packed by ultrasonic vibrations and reduce the moisture content of the dehydrated cake. If the amplitude is greater than 10 μm, the ultrasonic vibration will be too strong and the cake will leak from the filtration surface, making dehydration impossible, and the amount of electrical energy consumed will be extremely high, making it impractical. .

すなわち脱水圧力と超音波振動との相乗効果
は、一定の条件を満足して初めて得られるもので
あり、汚泥粒子間の空隙率を小さくし、汚泥粒子
を密な充填状態に保持しながら圧搾すると、水分
が移動して抜け易くなり低含水率に脱水すること
が可能となるのである。
In other words, the synergistic effect of dewatering pressure and ultrasonic vibration can only be obtained when certain conditions are satisfied.If the porosity between sludge particles is reduced and the sludge particles are kept in a densely packed state while being compressed, This makes it easier for water to move and escape, making it possible to dehydrate to a low water content.

本発明の実施態様を図面を参照して脱水工程に
用いる好適な装置にもとづいて説明すると、第1
図において透水性部材例えば多孔板3のあるピス
トン2を滑動自在に嵌合したシリンダ1内下部に
湿ケーキAと接触して超音波発振器6、振動子5
に連結した機械振動増幅器即ちホーン4が配備さ
れ、湿ケーキAはピストン2により加圧されると
ともに前記ホーン4から超音波振動を受け、湿ケ
ーキAから分離した水分は多孔板3を通りピスト
ン2の中空室を経て系外に移行するようになつて
いる。前記超音波振動は、発振器6で発生した高
周波電気振動が振動子5で超音波振動に変換され
た後ホーン4を媒体として湿ケーキAに与えられ
る。
The embodiments of the present invention will be described based on a preferred apparatus used in the dehydration process with reference to the drawings.
In the figure, a water-permeable member such as a piston 2 with a perforated plate 3 is slidably fitted into the inner lower part of a cylinder 1 in contact with a wet cake A, and an ultrasonic oscillator 6 and a vibrator 5
A mechanical vibration amplifier or horn 4 connected to the piston 2 is provided, and the wet cake A is pressurized by the piston 2 and receives ultrasonic vibration from the horn 4, and the water separated from the wet cake A passes through the perforated plate 3 to the piston 2. It is designed to migrate outside the system through the hollow chamber of the system. The ultrasonic vibration is applied to the wet cake A using the horn 4 as a medium after converting high frequency electric vibration generated by the oscillator 6 into ultrasonic vibration by the vibrator 5.

この場合、湿ケーキAはシリンダ1内でスラリ
ーSをピストン2で加圧して生成させてもよい
し、スラリーSを他の脱水機で予備脱水して生成
した湿ケーキAをシリンダ1内に供給してもよ
い。
In this case, the wet cake A may be generated by pressurizing the slurry S with the piston 2 in the cylinder 1, or the wet cake A generated by preliminary dehydration of the slurry S with another dehydrator may be supplied into the cylinder 1. You may.

第2図に示す具体例は第1図に示す装置を連続
化した一例で、圧搾板7,8,9に開口部を設け
て、スラリーSは無端状に走行する布10の上
に供給され、重力過を受けたのち圧搾板7上で
停止し、圧搾板7によつて上下から圧搾される。
圧搾終了後圧搾板7は上下へ離れ、圧搾されて生
成した湿ケーキAは再び圧搾板8によつて圧搾さ
れる。
The specific example shown in FIG. 2 is a continuous version of the apparatus shown in FIG. After being subjected to gravity, it stops on the pressing plate 7, and is squeezed from above and below by the pressing plate 7.
After the pressing is finished, the pressing plate 7 is moved upward and downward, and the wet cake A produced by pressing is pressed again by the pressing plate 8.

つぎに湿ケーキAは圧搾板9によつて上下から
圧搾されるとともにホーン4によつて超音波振動
を受ける。この際、湿ケーキA中の水分は、超音
波による振動と圧搾によつて効果的に脱水されて
液受槽12に集まる。圧搾終了後、圧搾板9は
上下へ離れ、十分に脱水されたケーキは左側へ移
動して左端より排出され、必要に応じてケーキ剥
離機構13で剥離される。布10は洗浄機構1
1により洗浄されたのち脱水作業に供されるよう
になつている。
Next, the wet cake A is compressed from above and below by a pressing plate 9 and subjected to ultrasonic vibrations by a horn 4. At this time, the water in the wet cake A is effectively dehydrated by ultrasonic vibration and squeezing and collects in the liquid receiving tank 12. After the pressing is completed, the pressing plate 9 is separated vertically, and the cake that has been sufficiently dehydrated moves to the left side and is discharged from the left end, and is peeled off by a cake peeling mechanism 13 as necessary. Cloth 10 is cleaning mechanism 1
After being cleaned by step 1, it is subjected to dehydration work.

また、第3図例は、フイルタープレスに応用す
るもので、布10を張装しうるフイルタープレ
スの板14に形成した室内に板状の振動子5
を配備したものである。スラリーSは汚泥導入孔
15から室内に圧入されて過され湿ケーキA
を生成し、さらに湿ケーキAは高圧流体導入孔1
6から導入された高圧気体又は圧力水の作用を受
けたダイヤフラム17の膨張によつて圧搾を受け
るとともに振動子5によつて超音波振動を受け
る。この場合、超音波を圧搾開始と同時に照射し
てもよいし、一定時間圧搾脱水だけを行つた後超
音波照射を開始してもよい。湿ケーキA中の水分
は、超音波による振動と圧搾によつて効果的に脱
水されて液口18から排出されるようになつて
いる。
The example in FIG. 3 is applied to a filter press, and a plate-shaped vibrator 5 is installed in a chamber formed in a plate 14 of the filter press on which a cloth 10 can be stretched.
It is equipped with The slurry S is forced into the room from the sludge introduction hole 15 and is passed through the wet cake A.
The wet cake A is formed through the high pressure fluid introduction hole 1.
The diaphragm 17 expands under the action of the high-pressure gas or water introduced from the diaphragm 6 and is compressed, and also receives ultrasonic vibration from the vibrator 5. In this case, ultrasonic waves may be irradiated at the same time as the pressing starts, or ultrasonic irradiation may be started after only pressing and dehydration has been performed for a certain period of time. The moisture in the wet cake A is effectively dehydrated by ultrasonic vibration and squeezing and is discharged from the liquid port 18.

なお振動工程で使用する超音波の周波数はスラ
リーの性状によつて適宜選べるが、通常1kHz〜
1MHzの範囲内で使用するのがよい。また出力は
スラリー性状により適宜設定するとよく、大きい
出力が効果的である。さらに前記振動子5として
は、磁歪振動子、圧電振動子、電歪振動子などが
あるが、通常は磁歪振動子または電歪振動子を使
用する。ホーン4の形状として、エキスポネンシ
ヤル・ホーン、コニカルホーン、段付ストレー
ト・ホーンがあるが、いずれの形状のホーンでも
よい。
The frequency of the ultrasonic waves used in the vibration process can be selected depending on the properties of the slurry, but it is usually 1 kHz or more.
It is best to use it within the 1MHz range. Further, the output may be appropriately set depending on the properties of the slurry, and a large output is effective. Further, the vibrator 5 may be a magnetostrictive vibrator, a piezoelectric vibrator, an electrostrictive vibrator, etc., but usually a magnetostrictive vibrator or an electrostrictive vibrator is used. The shape of the horn 4 includes an exponential horn, a conical horn, and a stepped straight horn, but any shape of the horn may be used.

〔実施例〕〔Example〕

実施例 1 下水処理プロセスより発生する活性汚泥(濃度
1.9%、PH6.9)にカチオン性の高分子凝集剤サン
フロツク450(三洋化成工業製)を7mg/g−DS
(DSは乾燥固形物を意味する)添加した。この試
料を予備脱水せずに第1図の装置に投入して、ホ
ーン4から周波数14.5kHz、振幅2μmの超音波
を照射しながらピストン2で20Kgf/cm2の圧力を
かけて5分間加圧脱水した。このときに生成した
脱水ケーキの含水率は76.5%で、乾燥固形物1t当
たりに消費された超音波照射エネルギーは
210kwhであつた。
Example 1 Activated sludge (concentration
1.9%, PH6.9) and 7 mg/g-DS of the cationic polymer flocculant Sunfloc 450 (manufactured by Sanyo Chemical Industries).
(DS means dry solids) was added. This sample was put into the apparatus shown in Figure 1 without preliminary dehydration, and while irradiating ultrasonic waves with a frequency of 14.5 kHz and an amplitude of 2 μm from the horn 4, a pressure of 20 Kgf/cm 2 was applied with the piston 2 for 5 minutes. Dehydrated. The moisture content of the dehydrated cake produced at this time was 76.5%, and the ultrasonic irradiation energy consumed per 1 ton of dry solids was
It was 210kwh.

また、超音波を照射しないで上記と同一の条件
で加圧脱水したときに生成したケーキの含水率は
80.3%であつた。
In addition, the moisture content of the cake produced when pressure dehydration was performed under the same conditions as above without irradiating ultrasonic waves was
It was 80.3%.

ついで、本発明に基づき前記高分子凝集剤を添
加した試料をあらかじめベルトプレス型の脱水機
で予備脱水し、生成したケーキ(含水率81.6%)
を第1図の装置に投入して、ホーン4から周波数
14.5kHz、振幅2μmの超音波を照射しながらピ
ストン2で20Kgf/cm2の圧力をかけて5分間加圧
脱水した。このときに生成した脱水ケーキの含水
率は75.4%で、乾燥固形物1t当たりに消費された
超音波照射エネルギーは84kwhであつた。
Next, the sample to which the polymer flocculant was added according to the present invention was preliminarily dehydrated using a belt press type dehydrator to produce a cake (water content 81.6%).
into the device shown in Figure 1, and the frequency is output from horn 4.
Pressure dehydration was performed for 5 minutes by applying a pressure of 20 Kgf/cm 2 with piston 2 while irradiating ultrasonic waves of 14.5 kHz and amplitude of 2 μm. The water content of the dehydrated cake produced at this time was 75.4%, and the ultrasonic irradiation energy consumed per 1 ton of dry solids was 84 kwh.

また、この場合に、同一の加圧脱水状態で、超
音波を照射しないで脱水したときに生成したケー
キの含水率は79.3%であつた。また、次に前記高
分子凝集剤を添加した試料を予めベルトプレス型
脱水機で予備脱水し生成したケーキ(含水率81.6
%)を周波数14.5kHz、振幅0.06μmの超音波を
照射しながら脱水したときに生成したケーキの含
水率は79.1%であり、また周波数19.5kHz、振幅
13μmの超音波を照射しながら脱水したときには
ろ布から試料が漏れて脱水不可能であつた。
Further, in this case, when dehydration was performed under the same pressure dehydration conditions without irradiating ultrasonic waves, the moisture content of the cake produced was 79.3%. Next, a cake (moisture content: 81.6
%) was dehydrated while irradiating ultrasonic waves with a frequency of 14.5 kHz and an amplitude of 0.06 μm.The moisture content of the cake produced was 79.1%.
When dehydration was performed while irradiating 13 μm ultrasonic waves, the sample leaked from the filter cloth and dehydration was impossible.

実施例 2 浄水処理プロセスより発生する浄水場汚泥(濃
度4.6%、PH6.9)に消石灰を20%加えた。この試
料を第1図の装置に投入して、ホーン4から周波
数19.5kHz、振幅1.5μmの超音波を照射しなが
らピストン2で15Kgf/cm2の圧力をかけて6分間
加圧脱水した。このときに生成した脱水ケーキの
含水率は61.0%で、乾燥固形物1t当たりに消費さ
れた超音波照射エネルギーは250kwhであつた。
Example 2 20% slaked lime was added to water treatment plant sludge (concentration 4.6%, pH 6.9) generated from the water treatment process. This sample was placed in the apparatus shown in FIG. 1, and was dehydrated under pressure for 6 minutes by applying a pressure of 15 Kgf/cm 2 with the piston 2 while irradiating ultrasonic waves with a frequency of 19.5 kHz and an amplitude of 1.5 μm from the horn 4. The moisture content of the dehydrated cake produced at this time was 61.0%, and the ultrasonic irradiation energy consumed per 1 ton of dry solids was 250 kwh.

また、この場合、超音波を照射しないで同一の
条件で加圧脱水したときに生成したケーキの含水
率は、70.5%であつた。
Further, in this case, the moisture content of the cake produced when pressure dehydration was performed under the same conditions without irradiation with ultrasonic waves was 70.5%.

ついで、本発明に基づき消石灰を添加した試料
をあらかじめ真空過して予備脱水し、生成した
ケーキ(含水率82.1%)を第1図の装置に投入し
て、ホーン4から周波数19.5kHz、振幅1.5μm
の超音波を照射しながらピストン2で15Kgf/cm2
の圧力をかけて3分間加圧脱水した。このときに
生成した脱水ケーキの含水率は59.2%で、乾燥固
形物1t当たりに消費された超音波照射エネルギー
は125kwhであつた。
Next, the sample to which slaked lime has been added according to the present invention is preliminarily dehydrated by passing it through a vacuum, and the resulting cake (water content 82.1%) is put into the apparatus shown in FIG. μm
15Kgf/cm 2 with piston 2 while irradiating ultrasonic waves.
Pressure dehydration was applied for 3 minutes. The moisture content of the dehydrated cake produced at this time was 59.2%, and the ultrasonic irradiation energy consumed per 1 ton of dry solids was 125 kwh.

また、この場合、同一の加圧脱水条件で、超音
波を照射しないで脱水したときに生成したケーキ
の含水率は、69.1%であつた。
Furthermore, in this case, the moisture content of the cake produced when dehydration was performed under the same pressure dehydration conditions without irradiating ultrasonic waves was 69.1%.

次に、消石灰を添加した試料をあらかじめ真空
ろ過して予備脱水し、生成したケーキ(含水率
82.1%)を第1図の装置に投入して、ホーン4か
ら周波数19.5kHz、振幅1.5μmの超音波を照射
しながらピストン2で0.3Kgf/cm2あるいは120Kg
f/cm2の圧力を加えて3分間加圧脱水した。その
結果、低圧である0.3Kgf/cm2の圧力の場合、超
音波振動を与えた場合(脱水ケーキの含水率81.5
%)と与えない場合(脱水ケーキの含水率81.6
%)に生成する脱水ケーキの含水率に、ほとんど
差はなかつた。また、高圧である120Kgf/cm2
圧力の場合にも、超音波振動を与えた場合(脱水
ケーキの含水率53.5%)と与えない場合(脱水ケ
ーキの含水率53.8%)に生成する脱水ケーキの含
水率に、ほとんど差はなく、脱水初期にろ布から
の試料の漏れが生じた。
Next, the sample to which slaked lime was added was vacuum filtered and dehydrated in advance, and the resulting cake (water content
82.1%) into the apparatus shown in Figure 1, and while irradiating ultrasonic waves with a frequency of 19.5 kHz and an amplitude of 1.5 μm from the horn 4, the piston 2 emits 0.3 Kgf/cm 2 or 120 Kg.
Pressure dehydration was carried out for 3 minutes by applying a pressure of f/cm 2 . As a result, in the case of a low pressure of 0.3 Kgf/ cm2 , and when ultrasonic vibration was applied (the moisture content of the dehydrated cake was 81.5
%) and without (moisture content of dehydrated cake 81.6
%), there was almost no difference in the moisture content of the dehydrated cake produced. In addition, even at a high pressure of 120 Kgf/cm 2 , the dehydrated cake that is generated when ultrasonic vibration is applied (water content of dehydrated cake is 53.5%) and when it is not applied (water content of dehydrated cake is 53.8%). There was almost no difference in the water content of the samples, and the sample leaked from the filter cloth at the early stage of dehydration.

実施例 3 下水処理プロセスより発生する混合生汚泥(濃
度4.5%、PH7.1)にカチオン性の高分子凝集剤サ
ンフロツク450(三洋化成工業製)を7mg/g−
DSを加えた。この汚泥を第2図の装置で、本発
明に基づきすべての周波数14.5kHz、振幅1.7μ
mの超音波振動を行いながら、第1段目において
3Kgf/cm2、第2段目において9Kgf/cm2、第3
段目において15Kgf/cm2、の圧力をかけて、それ
ぞれ1分間加圧脱水した。このときに生成した脱
水ケーキの含水率は64.3%で、乾燥固形物1t当た
りに消費された超音波照射エネルギーは510kwh
であつた。
Example 3 7 mg/g of a cationic polymer flocculant Sunfloc 450 (manufactured by Sanyo Chemical Industries) was added to mixed raw sludge (concentration 4.5%, pH 7.1) generated from a sewage treatment process.
Added DS. This sludge was processed using the apparatus shown in Fig. 2 at all frequencies of 14.5kHz and amplitude of 1.7μ based on the present invention.
While performing ultrasonic vibration of m, 3Kgf/cm 2 in the first stage, 9Kgf/cm 2 in the second stage, and
In each stage, a pressure of 15 Kgf/cm 2 was applied to perform dehydration under pressure for 1 minute each. The moisture content of the dehydrated cake produced at this time was 64.3%, and the ultrasonic irradiation energy consumed per 1 ton of dry solids was 510 kwh.
It was hot.

また、この場合、超音波を照射しないで同一の
条件で加圧脱水したときに生成したケーキの含水
率は73.4%であつた。
Furthermore, in this case, the moisture content of the cake produced when pressure dehydration was performed under the same conditions without irradiation with ultrasonic waves was 73.4%.

ついで、同一の汚泥を第2図の装置で、第3段
目だけを上記と同じ超音波振動を行つて同一加圧
条件で脱水した。このときに生成した脱水ケーキ
の含水率は65.2%で乾燥固形物1t当たりに消費さ
れた超音波照射エネルギーは170kwhであつた。
Next, the same sludge was dewatered using the apparatus shown in FIG. 2 under the same pressure conditions by subjecting only the third stage to the same ultrasonic vibration as above. The water content of the dehydrated cake produced at this time was 65.2%, and the ultrasonic irradiation energy consumed per 1 ton of dry solids was 170 kwh.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来脱水が困難で低水分の脱
水ケーキまでにすることができないスラリーをま
ず予備脱水して湿ケーキとなし、しかるのち、こ
の湿ケーキを超音波振動と加圧の相乗作用によつ
て効果的に脱水して低水分の脱水ケーキにするこ
とができると共に、安定した脱水処理が可能であ
り運転管理も簡易でその作業性も著しく良好とな
り、しかも処理設備も複雑且つ堅牢なものを用い
ることなく省エネルギー対策上にも有効な設備で
処理でき、さらに処理能力も大幅に高めることが
容易で低コストで脱水処理作業ができる利益があ
る。
According to the present invention, a slurry that is conventionally difficult to dewater and cannot be reduced to a dehydrated cake with low moisture content is first pre-dehydrated to form a wet cake, and then this wet cake is processed by the synergistic effect of ultrasonic vibration and pressurization. In addition to effectively dewatering the cake into a low-moisture dehydrated cake, it also enables stable dehydration treatment, simple operation management, and extremely good workability. It has the advantage of being able to process with equipment that is effective in terms of energy conservation without using any equipment, and that it is easy to significantly increase the processing capacity and dewatering can be done at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に用いられる脱水装置の
一例を示す縦断面図、第2図は他の例の系統説明
図、第3図はさらに他の例の縦断面図である。 A……湿ケーキ、S……スラリー、1……シリ
ンダ、2……ピストン、3……多孔板、4……ホ
ーン、5……振動子、6……超音波発振器、7,
8,9……圧搾板、10……布、11……洗浄
機構、12……液受槽、13……ケーキ剥離機
構、14……板、15……汚泥導入孔、16…
…高圧流体導入孔、17……ダイヤフラム、18
……液口。
FIG. 1 is a longitudinal cross-sectional view showing an example of a dewatering device used in carrying out the present invention, FIG. 2 is a system explanatory diagram of another example, and FIG. 3 is a longitudinal cross-sectional view of still another example. A... Wet cake, S... Slurry, 1... Cylinder, 2... Piston, 3... Perforated plate, 4... Horn, 5... Vibrator, 6... Ultrasonic oscillator, 7,
8, 9... Pressing plate, 10... Cloth, 11... Washing mechanism, 12... Liquid receiving tank, 13... Cake peeling mechanism, 14... Board, 15... Sludge introduction hole, 16...
...High pressure fluid introduction hole, 17...Diaphragm, 18
...liquid mouth.

Claims (1)

【特許請求の範囲】 1 スラリーを予備脱水したのち、生成した湿ケ
ーキを振幅が0.1μm〜10μmの超音波によつて
振動させながら、脱水圧力を0.5Kgf/cm2〜100Kg
f/cm2に設定して加圧脱水することを特徴とする
スラリーの脱水方法。 2 前記振動工程が、超音波の周波数を1kHz〜
1MHzに設定して処理されるものである特許請求
の範囲第1項記載の脱水方法。
[Claims] 1. After preliminary dehydration of the slurry, the resulting wet cake is vibrated by ultrasonic waves with an amplitude of 0.1 μm to 10 μm, while the dewatering pressure is set to 0.5 Kgf/cm 2 to 100 Kg.
A slurry dehydration method characterized by pressurized dehydration at a setting of f/cm 2 . 2 The vibration step increases the frequency of the ultrasonic waves from 1kHz to
The dehydration method according to claim 1, wherein the dehydration method is performed by setting the frequency to 1MHz.
JP6149780A 1980-05-09 1980-05-09 Dehydrating method of slurry Granted JPS55149800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6149780A JPS55149800A (en) 1980-05-09 1980-05-09 Dehydrating method of slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6149780A JPS55149800A (en) 1980-05-09 1980-05-09 Dehydrating method of slurry

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP4288779A Division JPS55134619A (en) 1979-04-09 1979-04-09 Dehydrating method for slurry

Publications (2)

Publication Number Publication Date
JPS55149800A JPS55149800A (en) 1980-11-21
JPS6253208B2 true JPS6253208B2 (en) 1987-11-09

Family

ID=13172786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6149780A Granted JPS55149800A (en) 1980-05-09 1980-05-09 Dehydrating method of slurry

Country Status (1)

Country Link
JP (1) JPS55149800A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193792A (en) * 1983-04-19 1984-11-02 Hitachi Metals Ltd High pressure dehydrating device for sludge
JPH01307500A (en) * 1988-06-03 1989-12-12 Ishigaki Kiko Kk Method and device for thickening sludge
IT1285508B1 (en) * 1996-01-31 1998-06-08 Saitec Srl PROCEDURE AND EQUIPMENT FOR PRESSING MATERIALS
GB201113007D0 (en) 2011-07-28 2011-09-14 Q Chip Ltd Bead collection device and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985668A (en) * 1972-12-22 1974-08-16
JPS5332473A (en) * 1976-09-07 1978-03-27 Chugai Ro Kogyo Kaisha Ltd Belt filter system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834974U (en) * 1971-08-25 1973-04-26
JPS51126059U (en) * 1975-04-07 1976-10-12
JPS5380880U (en) * 1976-12-07 1978-07-05

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4985668A (en) * 1972-12-22 1974-08-16
JPS5332473A (en) * 1976-09-07 1978-03-27 Chugai Ro Kogyo Kaisha Ltd Belt filter system

Also Published As

Publication number Publication date
JPS55149800A (en) 1980-11-21

Similar Documents

Publication Publication Date Title
US5049248A (en) Liquid separation process for suspensions by a pulsating electrical current
CN101708941B (en) Secondary pressurizing and dehydrating method for sludge
US4802964A (en) Liquid separation process for suspensions by a pulsating electrical current
Ensminger et al. Acoustic and electroacoustic methods of dewatering and drying
JPS6253208B2 (en)
US3348599A (en) Apparatus for dewatering and dehydrating slimes and the like
JPS6231964B2 (en)
JP6635270B2 (en) Sludge dewatering method
JPS6155407B2 (en)
US3812971A (en) An apparatus for dehydrating a slurry
JPS6369518A (en) Pressurized electric permeation dehydrator
Muralidhara et al. Electro-acoustic dewatering (EAD) a novel approach for food processing, and recovery
JPS6140324Y2 (en)
KR20130018279A (en) Solid-liquid separation method
JPS5850196A (en) Dehydrating method
JPS6032943Y2 (en) Sludge dewatering equipment
Muralidhara* et al. Dewatering of Hamburg's dredged material by electroacoustic dewatering
JPS6041357Y2 (en) Sludge dewatering equipment
CN214861563U (en) Water-containing solid waste filter-pressing dehydration test device
JPS6355968B2 (en)
JP7255073B2 (en) How to wash the dehydrated cake
JPS6041351Y2 (en) Sludge dewatering equipment
EP1147824B1 (en) Ultrasound device for improving the solid-liquid separation process in suspensions
CN113230723A (en) Method for filter-pressing dehydration test of water-containing solid waste
JP2012135736A (en) Sludge dehydration system and sludge dehydration method