JPS6252323A - Microwave oven - Google Patents

Microwave oven

Info

Publication number
JPS6252323A
JPS6252323A JP19111885A JP19111885A JPS6252323A JP S6252323 A JPS6252323 A JP S6252323A JP 19111885 A JP19111885 A JP 19111885A JP 19111885 A JP19111885 A JP 19111885A JP S6252323 A JPS6252323 A JP S6252323A
Authority
JP
Japan
Prior art keywords
microwave oven
microwave
discharge lamp
waveguide
microwaves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19111885A
Other languages
Japanese (ja)
Inventor
Kenji Yoshizawa
憲治 吉沢
Takashi Okada
岡田 任史
Koji Hishiyama
菱山 弘司
Katsuo Murakami
勝男 村上
Tadashi Yanagi
正 柳
Masakazu Taki
正和 滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19111885A priority Critical patent/JPS6252323A/en
Publication of JPS6252323A publication Critical patent/JPS6252323A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Ovens (AREA)

Abstract

PURPOSE:To provide a stable illumination with small change in intensity of electric discharge and emission of an electric discharge lamp by installing the electric discharge lamp which contains ionization medium and is placed in a wave guide tube through which microwaves are fed into a microwave oven. CONSTITUTION:Microwaves generated in a magnetron 1 are fed into a microwave oven's inside 20 through a coupling hole 8. At the microwave oven's inside 20 a microwave electromagnetic field is formed and a discharge lamp 3 installed in a wave guide tube 7 performs electric discharge and emission with those microwaves and illuminates the microwave oven's inside through a light passing window 12. Intensity difference of the microwave electromagnetic field is large in the oven 5 inside, however, in the wave guide tube intensity varies up to about 1.5 times at most and then electric power required for microwave absorption in the lamp 3 varies 2 times at most. Therefore, the variation in brightness is not so large to human eyes.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電子レンジ、とくに庫内照明用としてマイク
ロ波エネルギーで放電する放電ランプを用いた電子レン
ジに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a microwave oven, and particularly to a microwave oven using a discharge lamp that discharges with microwave energy for interior lighting.

〔従来の技術〕[Conventional technology]

従来、電子レンジの庫内の照明には電球が用いらnてき
た。又、アイデアとしてはマイクロ波エネルギーで放電
する放電ランプを庫内に設けたものも提案されている。
Conventionally, light bulbs have been used for lighting inside microwave ovens. Furthermore, an idea has been proposed in which a discharge lamp that discharges with microwave energy is provided inside the refrigerator.

この例として特開昭60−33427号公報に示さn友
ものかあり、第1図にその構成図を示す。第7図におい
て(1)はマイクロ波を発生させるマイクロ波発生源で
、マグネトロン、(2)は電子レンジ筺体、(イ)は電
子レンジ庫内。
An example of this is disclosed in Japanese Unexamined Patent Publication No. 60-33427, and FIG. 1 shows its configuration. In FIG. 7, (1) is a microwave generation source that generates microwaves, which is a magnetron, (2) is a microwave oven housing, and (A) is an inside of the microwave oven.

(3)は可電離媒体を封入し九放電ランプで無電極低圧
水銀ランプ、(4)は石英ガラスパルプ、(5)は石英
カラスパルプ(4)の内壁の一部に塗布さnた蛍光体。
(3) is an electrodeless low-pressure mercury lamp sealed with an ionizable medium and is a discharge lamp; (4) is quartz glass pulp; (5) is quartz glass pulp; phosphor coated on a part of the inner wall of (4); .

(6)は取り付は金具である。(6) is attached using metal fittings.

次に動作について説明する。電源を投入するとマグネト
ロン(1)からマイクロ波が放射さn電子レンジ庫内(
21にマイクロ波電磁界が生じ、このマイクロ波電界に
より無電極低圧水銀ランプ(3)が放電する。この時、
無電極医圧水銀ランプ(3)を覆うガラスパルプ(4)
の内壁VC塗布さnた蛍光体(5)が可視光で蛍光発光
し、庫内を照明する。このように。
Next, the operation will be explained. When the power is turned on, microwaves are emitted from the magnetron (1) inside the microwave oven (
A microwave electromagnetic field is generated at 21, and the electrodeless low pressure mercury lamp (3) is discharged by this microwave electric field. At this time,
Glass pulp (4) covering electrodeless medical pressure mercury lamp (3)
The phosphor (5) coated with VC on the inner wall of the refrigerator emits visible light to illuminate the inside of the refrigerator. in this way.

電子レンジのマイクロ波を用いて無電極低圧水銀ランプ
を放電・発光させるため、電球を用いるものに比較すn
ば配線が必要なく、s外にスペースも必要としない等の
利点がめる。
Electrodeless low-pressure mercury lamps use microwaves from microwaves to discharge and emit light, so compared to those using light bulbs.
The advantages include that no wiring is required and no space is required outside the s.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の装置は上述のように構成さ几てお
り1図示はしなかったが、被原熱物を均一に加熱するた
めに被加熱物を回転させたタ、マイクロ波をスターラフ
アンによシ攪拌したりするため、庫内のマイクロ波電界
強度が大きく変動し無電極低圧水銀ランプの放電・発光
の強度も大きく変動したり8時には放電が停止したすす
ることがあった。さらには電子レンジ庫内のマイクロ波
電界強度は被加熱物のマイクロ波損失の大きさによって
も大きく異なる。例えば、被加熱物か冷凍食品のように
マイクロ波損失が小さいものの時は水2ノのよりにマイ
クロ波損失が大きい時に比較して、庫内のマイクロ波電
界強度は数倍にもなる。
However, the conventional device is constructed as described above, and although it is not shown in the figure, in order to uniformly heat the raw material, the material to be heated is rotated, and the microwave is transmitted by a stirrer fan. Due to stirring, the microwave electric field strength inside the refrigerator fluctuated greatly, and the intensity of discharge and light emission from the electrodeless low-pressure mercury lamp also fluctuated greatly, and the discharge sometimes stopped at 8 o'clock. Furthermore, the microwave electric field strength inside the microwave oven varies greatly depending on the magnitude of the microwave loss of the object to be heated. For example, when the microwave loss is small, such as an object to be heated or frozen food, the microwave electric field strength inside the refrigerator is several times as large as when the microwave loss is large, such as water.

よって、被加熱物により無電極低圧水銀ランプの放電・
発光強度6すなわち明るさが大きく変動したり、あるい
は被加熱物のマイクロ波損失が大きい時には庫内のマイ
クロ波電磁界が弱く放電しない。といった不都合があっ
た。現在までマイクロ波エネルギーで放電する放電ラン
プを用いた電子レンジが夾用に供しなかったのはまさに
こルらの理由のためであった。
Therefore, the discharge of the electrodeless low-pressure mercury lamp due to the heated object
When the emission intensity 6, that is, the brightness, fluctuates greatly, or when the microwave loss of the object to be heated is large, the microwave electromagnetic field inside the refrigerator is weak and no discharge occurs. There were some inconveniences. It is precisely for these reasons that until now microwave ovens using discharge lamps that discharge with microwave energy have not been put into use.

この発明は上記のような問題点を解消するためになさf
′Lfcもので、たとえ被加熱物が移動したり変化して
も放電・発光強度の変化が少なく明るさがほぼ一定な電
子レンジな得ることを目的とする。
This invention was made to solve the above problems.
The object of the present invention is to provide a microwave oven in which the intensity of discharge and light emission does not change much even if the object to be heated moves or changes, and the brightness is almost constant.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る電子レンジは、マイクロ波を電子レンジ
庫内に導波管な通して給電し、放電ランプをこの導波管
中に設ケ念ものである。
In the microwave oven according to the present invention, microwaves are fed into the microwave oven through a waveguide, and a discharge lamp is installed in the waveguide.

〔作用〕[Effect]

この発明における放電ランプは、電子レンジ庫内よシも
マイクロ波電界の変動の少ない導波管中にあるため、放
電・発光強度の変化が小さくなる。
The discharge lamp of the present invention is located in a waveguide in which the microwave electric field fluctuates less, both inside and outside the microwave oven, so that changes in discharge and light emission intensity are small.

〔実施例〕〔Example〕

以下、この発明の一実施例を図に従って説明する。第1
図はこの発明の一実施例による電子レンジを示す構成図
であ90図において、(3)は円筒形の放電ランプ、(
7)はマグネトロンで発生するマイクロ波を伝搬させる
導波管、(8)は導波管(7)と電子レンジ筺体(2)
との結合孔で、この結合孔(81ヲ通してマイクロ波が
電子レンジ庫内(2)K給電さnる。
An embodiment of the present invention will be described below with reference to the drawings. 1st
Figure 90 is a block diagram showing a microwave oven according to an embodiment of the present invention. In Figure 90, (3) is a cylindrical discharge lamp;
7) is a waveguide that propagates the microwaves generated by the magnetron, and (8) is the waveguide (7) and microwave oven housing (2).
The microwave is supplied to the inside of the microwave oven (2) through this coupling hole (81).

(9aλ(9b)は被加熱物、 (IIは被加熱物(9
(10) (9”)をのせて回すターンテーブル、α9
はターンテーブル駆動用モータ、 (16は導波管内に
設けらnた放電ランプ(3)の下付近の庫壁t2υにあ
ゆら一1″した多数の孔で構成さnる光透過窓である。
(9aλ(9b) is the object to be heated, (II is the object to be heated (9
(10) Turntable with (9”) on it, α9
is a motor for driving the turntable, (16 is a light transmitting window consisting of a number of holes arranged around 1" in the chamber wall t2υ near the bottom of the discharge lamp (3) installed in the waveguide. .

この電子レンジの動作は次のようでおる。マグネトロン
(1)で発生さルたマイクロ波は導波管(7)を伝搬し
、結合孔(8)によシミ子しンジ庫内(至)に照射され
、電子レンジ庫内cXJKマイクロ波電磁界を形成する
。この時、導波管(7)中の放電ランプ(3)は伝搬す
るマイクロ波により放電・発光し光透過窓ttaから電
子レンジ庫内を照明する。一方、電子レンジ庫内に形成
さnたマイクロ波電界により被加熱物(9a)、 (9
b)が誘電加熱さ詐る。ここで電子レンジ庫内(至)に
形成さ几たマイクロ波電界強度の空間分布は均一ではな
く、かなりの強弱がある几め。
The operation of this microwave oven is as follows. The microwave generated by the magnetron (1) propagates through the waveguide (7) and is irradiated into the inside of the microwave oven through the coupling hole (8). form a world. At this time, the discharge lamp (3) in the waveguide (7) discharges and emits light due to the propagating microwave, illuminating the inside of the microwave oven through the light transmission window tta. On the other hand, the object to be heated (9a), (9
b) is caused by dielectric heating. Here, the spatial distribution of the microwave electric field strength formed inside the microwave oven is not uniform, but has considerable strength and weakness.

被加熱物(9a)、 (9b)のマイクロ波吸収電力が
不均一、すなわち加熱が不均一になる。よって通常。
The microwave absorption power of the objects to be heated (9a) and (9b) becomes non-uniform, that is, the heating becomes non-uniform. So usually.

ターンテーブル(10)により被加熱物(9aλ(9”
)を回転させ、被加熱物(9a)、 (9b)のマイク
ロ波吸収を力の時間積分ができるだけ均一になるように
している。この実施例では示さなかったが、給電孔(8
)の出口付近に電波攪拌のためのスターラフアンを設け
、こnにより電子レンジ庫内(2)の電界分布を変化さ
せ場所による電界の時間平均をできるだけ均一にする方
法がとらすることもある。いずnの場合でも、庫内の電
界分布は時間的に大きく変動しており、被加熱物のマイ
クμ波損失の相違を考慮すればこの変化は数倍にも達す
る。このような庫内に放電ランプを置けば明るさは大き
く変動し時には点滅する。
The object to be heated (9aλ (9") is heated by the turntable (10)
) is rotated so that the microwave absorption of the objects to be heated (9a) and (9b) is made as uniform as possible over time integration of force. Although not shown in this example, the power supply hole (8
) may be used to provide a stirrer fan for radio wave stirring near the outlet of the microwave oven (2), thereby changing the electric field distribution inside the microwave oven (2) and making the time average of the electric field as uniform as possible depending on the location. In any case, the electric field distribution inside the refrigerator fluctuates greatly over time, and if the difference in the microwave loss of the object to be heated is taken into consideration, this change reaches several times. If a discharge lamp is placed inside such a refrigerator, the brightness will fluctuate greatly and sometimes blink.

一方、導波管(7)中はTl1floモードでマイクロ
波が伝搬しており、このモードは電子レンジ庫内(至)
の状態いかんKかかわらず不変でおる。又、電子レンジ
庫内−と導波管(7)との間のマイクロ波整合は完全で
ないため、導波管(7)中には定在波が生じる。この様
子を第2図に示す。第2図は電子レンジの上部を拡大し
て、導波管の軸方向における電界強度分布を示した説明
図である。このように導波管(7)の軸方向(2方向)
K電界の強弱が生じている。第3図は電子レンジ中に水
を入ルた11ビーカを2個人れてターンテーブルを回し
た時のマイクロ波インピーダンスの変化を示した特注図
である。アンテナの位置を基準面にと多給電方向に対す
るVI3WRを測定したもので6L この図でわかるよ
うにインピーダンスの位相変化は導波管の管内波長(λ
g)比でa1λg以内である。マイクロ波周波数245
0MHz、導波管の巾s5tmの時、管内波長λgは1
60mであるから、ターンテーブルか回っても、定在波
の山の位置は±I1m以内しか変動しない。又、vsw
uも1.3〜3.0の範囲でしか変動しない。すなわち
導波管中のある位置での電界強度はせいぜいt55倍程
しか変動しない。放電ランプ(3)のマイクロ波吸収電
力は放電ランプ(3)の位置の電界の2乗にほぼ比例す
る。よって放電ランプ(3)のマイクロ波吸収電力はせ
いぜい2倍程題しか変動しない。明るさの2倍の変化は
人間の目には七nはど大きな変化に感じない。
On the other hand, the microwave is propagating in the waveguide (7) in Tl1flo mode, and this mode is inside the microwave oven.
It remains unchanged regardless of the state of K. Furthermore, since the microwave matching between the inside of the microwave oven and the waveguide (7) is not perfect, standing waves are generated in the waveguide (7). This situation is shown in FIG. FIG. 2 is an explanatory diagram showing the electric field strength distribution in the axial direction of the waveguide by enlarging the upper part of the microwave oven. In this way, the axial direction (two directions) of the waveguide (7)
The strength of the K electric field varies. Figure 3 is a custom-made diagram showing the change in microwave impedance when two 11 beakers filled with water are placed in a microwave oven and the turntable is turned. The VI3WR measured in the multi-feed direction with the antenna position as the reference plane is 6L.
g) The ratio is within a1λg. microwave frequency 245
When the frequency is 0MHz and the width of the waveguide is s5tm, the guide wavelength λg is 1.
Since the distance is 60 m, even if the turntable rotates, the position of the peak of the standing wave will only change within ±I1 m. Also, vsw
u also varies only within the range of 1.3 to 3.0. That is, the electric field strength at a certain position in the waveguide varies by at most t55 times. The microwave absorption power of the discharge lamp (3) is approximately proportional to the square of the electric field at the position of the discharge lamp (3). Therefore, the microwave absorption power of the discharge lamp (3) fluctuates by at most twice as much. A doubling of the brightness does not seem like a big change to the human eye.

ところで、放電ランプはマイクロ波電界強度が一定の値
以上にならないと放電開始しない。よってできるだけ電
界′5IJi度が強い位t装置(のか望ましい。導波管
中では定在波の山の位置が電界強度が最も強い位置であ
る。又、被加熱物が異なっても上述のマイクロ波インピ
ーダンスの位相はせいぜい±0.1 λg程度しか変化
しない。すなわち定在波の山の位置も±lam程反しか
変化しない。例えは上述と同じ電子レンジで水275 
QQだけを被加熱物とした時のマイクロ波インピーダン
スは第4図のようでアク、水112個の時のものと位相
変化範囲の中心はQ、05λg程度しか違っていない。
By the way, a discharge lamp does not start discharging unless the microwave field strength exceeds a certain value. Therefore, it is desirable that the electric field is as strong as possible in the device.In the waveguide, the position of the peak of the standing wave is the position where the electric field strength is the strongest.Also, even if the object to be heated is different, the above-mentioned microwave The phase of the impedance changes by about ±0.1 λg at most.In other words, the position of the peak of the standing wave also changes by about ±lam.For example, in the same microwave oven as mentioned above, if the water
The microwave impedance when only QQ is used as the object to be heated is as shown in Fig. 4, and the center of the phase change range is Q, which differs by only about 05λg from that when 112 pieces of water and water are used.

このように、電子レンジ内の被加熱物が例えば水21の
時の導波管(7)中の定在波の電界の山の位置に放電ラ
ンプ(3)を置いておけば、この位置は被加熱物が変わ
ってもtlぼ電界の山の位置になり、常に放電ランプ(
3)の放電開始か容易な位置となる。
In this way, if the discharge lamp (3) is placed at the peak of the electric field of the standing wave in the waveguide (7) when the object to be heated in the microwave oven is water 21, for example, this position will be Even if the object to be heated changes, the position of the peak of the electric field will always be the same as that of the discharge lamp (
3) This is the position where it is easy to start the discharge.

ここで0発明者らKよる実験例を示す。放電ランプ(3
)としては管内径141111.外径iom、長さ10
5mmの円筒ソーダガラ、;1cAr;Ne= 8 ;
 2のガスi Q torrを封入し、内lid蛍光体
を塗布し九無電極放電ランプを用いた。導波管(7)の
巾が85瓢であるから、放電ランプ(3)の外寸が導波
管の巾以上で61)導波管(7)の両側面に穴?6げて
Here, we will show an example of an experiment conducted by the inventors. Discharge lamp (3
) is the pipe inner diameter of 141111. Outer diameter iom, length 10
5mm cylindrical soda glass; 1cAr; Ne=8;
A nine-electrodeless discharge lamp was used, which was filled with a gas of 2 Q torr and coated with an inner lid phosphor. Since the width of the waveguide (7) is 85 mm, the outer dimensions of the discharge lamp (3) must be greater than the width of the waveguide (61) Will there be holes on both sides of the waveguide (7)? Get 6.

放電ランプ(3)を支持することができる。この時。A discharge lamp (3) can be supported. At this time.

放電ランプ(3)ヲ導波管(7)の厚み方向、即ちY方
向の中央より下に設置すnば光透過窓tt3より取り出
せる光量が多くなり庫内C11を明るくすることができ
る。この例では放電ランプ(3)の中心軸か導波管(7
)の下面より 10 tmO暦に設置した。放電ランプ
(3)が導波管(7)の下面に接触するほど近づけnば
5放電ランプ(3)と導波管(7)の下面との間で気中
放電が起こり、放電ランプ(31の管壁が破損する恐n
があるため、放電ランプの位置はあまル下にできない。
If the discharge lamp (3) is installed below the center in the thickness direction of the waveguide (7), that is, in the Y direction, the amount of light that can be taken out from the light transmission window tt3 increases, making it possible to brighten the interior C11. In this example, the central axis of the discharge lamp (3) or the waveguide (7)
) was installed at 10 tmO calendar from the bottom surface. If the discharge lamp (3) is brought close enough to touch the lower surface of the waveguide (7), an air discharge will occur between the discharge lamp (3) and the lower surface of the waveguide (7), and the discharge lamp (31 There is a risk of damage to the pipe wall.
Because of this, the discharge lamp cannot be positioned too far down.

このように導波管(7)中に設置さ几た放電ランプ(3
)はマグネトロン(1)が動作すると同時に点灯し九。
The discharge lamp (3) installed in the waveguide (7) in this way
) lights up at the same time as the magnetron (1) operates.9.

被加熱物が水21の時にも、水5aoccyD時にも、
被加熱物がない時にも、ターンテーブルが回っているに
もかかわらず、lE内の明るさは目で見てもほとんど変
化しなかった。ところが同一のランプを電子レンジ庫内
(21に入nた時はランプの設置場所によっては点灯せ
ず、おるいは点滅し。
Both when the object to be heated is water 21 and when water 5aoccyD,
Even when there was no object to be heated, the brightness inside the 1E did not change much when seen with the naked eye, even though the turntable was rotating. However, when I put the same lamp inside the microwave oven (21), depending on where the lamp was installed, it would not turn on, or it would blink.

あるいは明るさが大巾に変化し、又、被加熱物が水2)
の時と水500 ccの時で大巾に明るさが異なり、庫
内照明用としては不適当であった。
Or the brightness changes drastically, and the object to be heated is water 2)
There was a huge difference in brightness between 500 cc and 500 cc of water, making it unsuitable for use as interior lighting.

一方、導波管(7)内に放電ランプ(3)があるときの
被加熱物へのマイクロ波電力のび少は次のようであつ九
。まず、放電ランプ(3)がない時、被加熱物水21の
マイクロ波吸収電力は、4110W、次に放電ランプ(
3)を導波管中に設けた時には4eowであった。すな
わち、放電ランプ(3)を設置することにより被加熱物
に吸収さnるマイクロ波電力が30W下がったことにな
るが、放電ランプ(3)がある時には別に設けらnでい
る庫内照明用の電球20〜30Wが不要であり、電子レ
ンジへの1′次電源入力からみた被加熱物のマイクロ波
電力吸収の効率にはほとんど変化がない。しかも庫内の
明るさは電球を用いた時より明るい。
On the other hand, when the discharge lamp (3) is inside the waveguide (7), the amount of microwave power applied to the heated object is as follows.9. First, when there is no discharge lamp (3), the microwave absorption power of the water to be heated 21 is 4110W, then the discharge lamp (3) is 4110W.
3) was provided in the waveguide, it was 4 eow. In other words, by installing the discharge lamp (3), the microwave power absorbed by the heated object was reduced by 30W, but when the discharge lamp (3) is installed, it is not necessary to separately install it for interior lighting. A light bulb of 20 to 30 W is not required, and there is almost no change in the efficiency of microwave power absorption of the heated object from the viewpoint of the 1' power input to the microwave oven. Moreover, the brightness inside the refrigerator is brighter than when using a light bulb.

以上のように導波管(7)内に放電ランプ(3)を設置
したものは庫内照明用として十分実用になるものでおっ
た。
As described above, the device in which the discharge lamp (3) was installed inside the waveguide (7) was sufficiently practical for lighting inside the refrigerator.

第5図はこの発明の他の実施例による′電子レンジを示
す構成図である。前記の実施例では放電ランプ(3)t
マイクロ波伝搬軸に垂直(X方向)K設けたが、この5
!施例では放電ランプ(3)を導波管(7)のマイクロ
波伝搬軸と平行(2方向)K設置している。(13aλ
(13b月末例えばテフロンのような誘電体でできたラ
ンプ支持部材である。このように設置さもた放電ランプ
(3)は長さがλgの2分の1以上あれば、定在波の山
の位置が必ず放電ランプ(3)にかかることにな〕設設
置筒にかかわらず放電開始が容易である。導波管(7)
中のマイクロ波は前述のように’rx1.)モードでお
る。
FIG. 5 is a block diagram showing a microwave oven according to another embodiment of the present invention. In the above embodiment, the discharge lamp (3)t
K was provided perpendicular to the microwave propagation axis (X direction), but this 5
! In the embodiment, the discharge lamp (3) is installed parallel (in two directions) to the microwave propagation axis of the waveguide (7). (13aλ
(The lamp support member is made of a dielectric material such as Teflon at the end of December 2013.) If the length of the discharge lamp (3) installed in this way is more than half of λg, the peak of the standing wave The position must be above the discharge lamp (3), so it is easy to start the discharge regardless of the installation tube.Waveguide (7)
As mentioned above, the microwave inside is 'rx1. ) mode.

第6図は第5図のVl−Vl線に沿った断面における。FIG. 6 is a cross section taken along the line Vl-Vl in FIG. 5.

導波管の巾方向の電界強度分布を示す説明図であり、電
界の絶対値IEflの分布は正弦的でおり、放電ランプ
(3)の位置を選ぶことによ逆放電ランプ(31のマイ
クロ波吸収電力?!:適蟲な値にすることができる。又
、この場合も、被加熱物の移動による放電ランプ(3)
の明るさの変動や、被加熱物の違いによる明るさの違い
も、電子レンジ庫内(至)に放電ランプがある場合に比
較して大巾に低減できる。なお放電ランプ(3)の長さ
がλgの2分の1以上のもので説明したが、こ1以下の
長さのものでも、導波管(7)中定在波の山の位置近傍
に設置すnば、放電開始が容易となるのは言うまでもな
い。
It is an explanatory diagram showing the electric field strength distribution in the width direction of the waveguide, and the distribution of the absolute value IEfl of the electric field is sinusoidal, and by selecting the position of the discharge lamp (3), the reverse discharge lamp (31 microwave Absorbed power?!: Can be set to an appropriate value.Also, in this case, the discharge lamp (3) due to the movement of the heated object
Fluctuations in the brightness of the microwave oven and differences in brightness due to differences in heated objects can be greatly reduced compared to when a discharge lamp is installed inside the microwave oven. In addition, although the length of the discharge lamp (3) is more than half of λg, even if the length is less than 1/2, the length of the discharge lamp (3) may be near the peak of the standing wave in the waveguide (7). Needless to say, once installed, it becomes easier to start the discharge.

又、第1図、第5図のものと共に、マイクロ波の電力が
大きいもの0例えば1裂であnは、必ずしも導波管中の
定住波の山の位置近傍に設置しないでも放電開始は容易
となり、明るさの変動中はいず1の位置でも山の位置と
ほぼ同じである。さらに、放電ランプ(3)は無電極の
ものモなくてもよく1例えば小屋の蛍光灯のようなもの
を用いてもよく、この場合は吸収電力は多くなるが、!
極によシマイクロ波電界が集中するため放電開始が容易
になる。又、実施例の無電極ランプに金属を埋め込んだ
ものでも放電開始か容易になる。又、放電ランプは導波
管の軸に対して斜めやねじ几の位#ILK設置してもよ
い。
In addition, as with the ones in Figures 1 and 5, microwaves with high power (00, for example, 1 crack) can easily start discharging even if they are not necessarily installed near the peak of the settled wave in the waveguide. Therefore, during the brightness fluctuation, any position is almost the same as the mountain position. Furthermore, the discharge lamp (3) does not have to be electrodeless; for example, a fluorescent lamp in a shed may be used; in this case, the absorbed power will be large, but!
The microwave electric field is concentrated at the poles, making it easier to start the discharge. Further, even if the electrodeless lamp of the embodiment is embedded with metal, it becomes easy to start the discharge. Further, the discharge lamp may be installed obliquely to the axis of the waveguide or in a screw hole position.

なお、上記実施例では、導波管が電子レンジの上部に設
けらnたものについて説明したが、導波管が電子レンジ
の側部や後部あるいは下部に設けらf′Lfcものでも
同様であるのは言うまでもない。
In the above embodiment, the waveguide is provided at the top of the microwave oven, but the same applies to the case where the waveguide is provided at the side, rear, or bottom of the microwave oven. Needless to say.

また、上記実施例では放電ランプは結合孔(8)の近傍
に光透過窓α2を設けて設置しfcか、結合孔(8)よ
り離nた場所でめってもよい。・ 〔発明の効果〕 以上のようにこの発明によf′Lば、マイクロ波を電子
レンジ庫内に導波管を通じて給電しにの導波管中に可電
離媒体を封入した放電ランプを設けたので、放電ランプ
の放電0発光強度の変化が少なくなり、庫内照明用にマ
イクロ波で点灯する放電ランプを用いた電子レンジを実
用的なものにする効果がある。
Further, in the above embodiment, the discharge lamp may be installed with the light transmission window α2 provided near the coupling hole (8), and may be installed at a location fc or at a location n away from the coupling hole (8).・ [Effect of the invention] As described above, according to the present invention, a discharge lamp having an ionizable medium sealed in the waveguide is provided to feed microwaves into the microwave oven through the waveguide. Therefore, the change in the discharge 0 emission intensity of the discharge lamp is reduced, which has the effect of making a microwave oven using a discharge lamp lit by microwaves for interior lighting practical.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による電子レンジを示す構
成図、第2図は導波管部を拡大し、マイクロ波伝搬軸方
向の電界強度分布を示す説明図。 第3図は電子レンジ中に被加熱物として水2!を入′f
′Lfc時のマイクロ波インピーダンスを示す特注図、
第4図は電子レンジ中に被加熱物として水275 cc
を入nた時のマイクロ波インピーダンスを示す特注図、
第5図はこの発明の他の実施例忙よる電子レンジを示す
構成図、第6図は第5図■−V1aK沿った断面におけ
る導波管巾方向の電界強度分布を示す説明図、及び第1
図は従来の電子レンジを示す構成図である。 (11・・・マグネトロン、(2)・・・電子レンジ筺
体、C11−・・電子レンジ庫内、シト・・庫壁、(3
)・・・放電ランプ、(7)・・・導波管、(8)・・
・結合孔、 I13・・・透過窓なお0図中、同一符号
は同−又は相当部分を示す。
FIG. 1 is a configuration diagram showing a microwave oven according to an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing an electric field intensity distribution in the direction of the microwave propagation axis, with a waveguide section enlarged. Figure 3 shows 2 pieces of water as an object to be heated in a microwave oven! Enter 'f
'Custom diagram showing microwave impedance at Lfc,
Figure 4 shows 275 cc of water being heated in a microwave oven.
A custom-made diagram showing the microwave impedance when
FIG. 5 is a block diagram showing a microwave oven according to another embodiment of the present invention, and FIG. 1
The figure is a configuration diagram showing a conventional microwave oven. (11...Magnetron, (2)...Microwave oven housing, C11-...Microwave oven interior, Cito...Choice wall, (3
)...discharge lamp, (7)...waveguide, (8)...
・Coupling hole, I13...Transmission window In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (10)

【特許請求の範囲】[Claims] (1)マイクロ波を発生させるマイクロ波発生源、上記
マイクロ波を伝搬させる導波管、上記マイクロ波が、上
記導波管と結合する結合孔を通して給電され、電子レン
ジ庫内にマイクロ波電磁界を形成する電子レンジ筺体、
及び上記導波管内に設けられ、可電離媒体を封入した放
電ランプを備えた電子レンジ。
(1) A microwave generation source that generates microwaves, a waveguide that propagates the microwaves, the microwaves are fed through a coupling hole that couples with the waveguide, and a microwave electromagnetic field is generated inside the microwave oven. microwave oven housing,
and a microwave oven including a discharge lamp provided in the waveguide and encapsulating an ionizable medium.
(2)放電ランプと電子レンジ庫内との間の庫壁に光透
過窓を設けたことを特徴とする特許請求の範囲第1項記
載の電子レンジ。
(2) The microwave oven according to claim 1, characterized in that a light transmitting window is provided in the wall between the discharge lamp and the inside of the microwave oven.
(3)光透光窓は庫壁の一部に設けられた多数の孔から
なることを特徴とする特許請求の範囲第2項記載の電子
レンジ。
(3) The microwave oven according to claim 2, wherein the light-transmitting window consists of a large number of holes provided in a part of the oven wall.
(4)導波管中のマイクロ波伝搬軸に垂直に円筒形の放
電ランプを設置したことを特徴とする特許請求の範囲第
1項ないし第3項のいずれかに記載の電子レンジ
(4) A microwave oven according to any one of claims 1 to 3, characterized in that a cylindrical discharge lamp is installed perpendicular to the microwave propagation axis in the waveguide.
(5)放電ランプの外寸の長さが導波管の巾以上である
ことを特徴とする特許請求の範囲第4項記載の電子レン
ジ。
(5) The microwave oven according to claim 4, wherein the outer length of the discharge lamp is greater than or equal to the width of the waveguide.
(6)導波管中のマイクロ波伝搬軸に平行に円筒形の放
電ランプを設置したことを特徴とする特許請求の範囲第
1項ないし第3項のいずれかに記載の電子レンジ。
(6) The microwave oven according to any one of claims 1 to 3, characterized in that a cylindrical discharge lamp is installed parallel to the microwave propagation axis in the waveguide.
(7)放電ランプの長さが導波管の管内波長の2分の1
以上であることを特徴とする特許請求の範囲第6項記載
の電子レンジ。
(7) The length of the discharge lamp is 1/2 of the wavelength inside the waveguide
A microwave oven according to claim 6, characterized in that the microwave oven has the above.
(8)導波管中のマイクロ波の定在波の電界が最大とな
る位置の近傍に放電ランプを設置したことを特徴とする
特許請求の範囲第1項ないし第7項のいずれかに記載の
電子レンジ。
(8) Claims 1 to 7, characterized in that the discharge lamp is installed near a position where the electric field of the microwave standing wave in the waveguide becomes maximum. microwave oven.
(9)放電ランプの中心が導波管の厚み方向の中央より
庫壁側に位置するように上記放電ランプを設置したこと
を特徴とする特許請求の範囲第1項ないし第8項のいず
れかに記載の電子レンジ。
(9) The discharge lamp is installed such that the center of the discharge lamp is located closer to the storage wall than the center of the waveguide in the thickness direction. Microwave oven as described in.
(10)放電ランプは無電極であることを特徴とする特
許請求の範囲第1項ないし第9項のいずれかに記載の電
子レンジ。
(10) The microwave oven according to any one of claims 1 to 9, wherein the discharge lamp is electrodeless.
JP19111885A 1985-08-30 1985-08-30 Microwave oven Pending JPS6252323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19111885A JPS6252323A (en) 1985-08-30 1985-08-30 Microwave oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19111885A JPS6252323A (en) 1985-08-30 1985-08-30 Microwave oven

Publications (1)

Publication Number Publication Date
JPS6252323A true JPS6252323A (en) 1987-03-07

Family

ID=16269164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19111885A Pending JPS6252323A (en) 1985-08-30 1985-08-30 Microwave oven

Country Status (1)

Country Link
JP (1) JPS6252323A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105737219A (en) * 2016-04-01 2016-07-06 广东美的厨房电器制造有限公司 Microwave oven

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105737219A (en) * 2016-04-01 2016-07-06 广东美的厨房电器制造有限公司 Microwave oven

Similar Documents

Publication Publication Date Title
US5594303A (en) Apparatus for exciting an electrodeless lamp with an increasing electric field intensity
US4189661A (en) Electrodeless fluorescent light source
US5498928A (en) Electrodeless high intensity discharge lamp energized by a rotating electric field
CN100409399C (en) Electrodeless lighting system
RU2278482C1 (en) Electrode-less lighting system
KR100464057B1 (en) Plasma lighting system
JP2977949B2 (en) Electrodeless HID lamp with microwave power coupler
CN100356504C (en) Electrodeless lighting system
KR100404474B1 (en) Resonator structure for microwave lighting system and method thereof
KR100498307B1 (en) Reluminescence acceleration apparatus for plasma lighting system
JPS6252323A (en) Microwave oven
US4745335A (en) Magnesium vapor discharge lamp
CN108538696B (en) Resonant cavity with adjustable microwave and plasma coupling rate and microwave plasma device
KR100464058B1 (en) Plasma lighting system
US20120274207A1 (en) Lamp
RU2604643C2 (en) Lighting means and method for operating same
JPS6252322A (en) Microwave oven
KR100724383B1 (en) Plasma lighting system
KR100619740B1 (en) Lighting system using plasma
JPS5923613B2 (en) High frequency discharge light source device
JP3178368B2 (en) High frequency electrodeless discharge lamp light reflector and high frequency electrodeless discharge lamp device
JP4147876B2 (en) Light source device
JPH10149803A (en) Microwave discharge lamp
KR100517924B1 (en) Reluminescence acceleration apparatus for plasma lighting system
JPH0461741A (en) Light source device with microwave discharge