JPS6251766A - Sample feed pump - Google Patents

Sample feed pump

Info

Publication number
JPS6251766A
JPS6251766A JP19286585A JP19286585A JPS6251766A JP S6251766 A JPS6251766 A JP S6251766A JP 19286585 A JP19286585 A JP 19286585A JP 19286585 A JP19286585 A JP 19286585A JP S6251766 A JPS6251766 A JP S6251766A
Authority
JP
Japan
Prior art keywords
suction
valve
piezoelectric element
discharge
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19286585A
Other languages
Japanese (ja)
Inventor
Sunao Miyazaki
直 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Japan Spectroscopic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Spectroscopic Co Ltd filed Critical Japan Spectroscopic Co Ltd
Priority to JP19286585A priority Critical patent/JPS6251766A/en
Publication of JPS6251766A publication Critical patent/JPS6251766A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a sample to be intermittently fed by a pump and to enhance its capacity, by constituting suction and delivery valves of the piezo-electric element pump, which feeds the sample in an analyzer for a high speed liquid chromatograph or the like, by expanding and contracting piezo-electric elements. CONSTITUTION:A pump forms upper and bottom wall surfaces of its central chamber 11 respectively by piezo-electric elements 12, 12. Said pump constitutes its suction valve 14 and delivery valve 16 of piezo-electric elements 13, 15 pro vided in each upper and bottom wall surface, and the pump actuates these piezo-electric elements 13, 15 so as to perform valve action by expansion and contraction. And the pump, applying sinusoidal wave AC voltage to its piezo-elec tric elements 12 while square wave AC voltage to each piezo-electric element 13, 15 of the suction valve 14 and the delivery valve 16, is actuated.

Description

【発明の詳細な説明】 発明の目的 産業上の利用分野 本発明は高速液体クロマトグラフやフロー測定等の分析
装置で試料を送るポンプに関し、特に圧電素子の膨張収
縮を利用した高能力の試料送りボンデに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention Industrial Application Field The present invention relates to a pump for feeding a sample in an analytical device such as a high performance liquid chromatograph or a flow measurement device, and in particular to a pump for feeding a sample using expansion and contraction of a piezoelectric element. It's about Bonde.

従来技術 高速液体クロマトグラフやフロー測定等の分析装置では
試料を間欠的又は連続的に高速でカラムやフローセル等
に送り込む必要があり、そのための小型、軽量且つ高性
能ないわゆるマイクロポンプが種々開発されている。そ
の一つとして圧電素子を利用したポンプが知られている
Conventional technology Analyzers such as high-performance liquid chromatographs and flow measurements require the sample to be sent to columns, flow cells, etc. intermittently or continuously at high speed, and various small, lightweight, and high-performance so-called micropumps have been developed for this purpose. ing. As one such pump, a pump using a piezoelectric element is known.

第1図はその原理を示すもので、圧電素子1の両面に例
えば商用交流電源2から電圧を加えると、その両端が節
、中央が最大変位を生じる腹となって振動する。従って
、第2 (a) 、 (b)図に示すように、一定容量
の室3の一壁面(第2(a)図)又は両壁万(第2(b
)図)を圧電素子1で形成しこれに交流電圧を加えれば
、圧電素子の振動つまり膨張収縮に伴って室内空間の容
積が変化し、室の入口と出口に逆上弁を設ければポンプ
として作用する。
FIG. 1 shows the principle. When voltage is applied to both sides of the piezoelectric element 1 from, for example, a commercial AC power source 2, the piezoelectric element 1 vibrates with nodes at both ends and an antinode at the center where the maximum displacement occurs. Therefore, as shown in FIGS. 2(a) and 2(b), one wall (FIG. 2(a)) or both walls (second (b)
) is formed using a piezoelectric element 1 and an alternating current voltage is applied to it. The volume of the indoor space changes as the piezoelectric element vibrates, that is, expands and contracts. If reverse valves are installed at the inlet and outlet of the chamber, the pump It acts as.

発明が解決しようとする問題点 こうした圧電素子ポンプは商用電源と流量調節器を組合
せて連続的な流れを生じるフロー測定等ではおる程度の
成果を収めているが、高速液体クロマトグラフのように
試料を間欠的に送る場合には呈の入口と出口が逆上弁で
構成されているため流れがサイン波状に変化し、そのま
までは試料と試料の間に完全な休止期間を置いた間欠送
りに適用できない。従って本発明は、上記周知のポンプ
を改良することにより、圧電素子を利用した間欠的な試
料送りポンプを提供すると共に、更にその能力を高める
ことを目的としている。
Problems to be Solved by the Invention These piezoelectric element pumps have achieved a certain degree of success in flow measurements that generate continuous flow by combining a commercial power source and a flow rate controller, but they do not work well with samples like high-performance liquid chromatographs. When feeding intermittently, the inlet and outlet of the sample are constructed with reverse valves, which causes the flow to change in a sine wave pattern, making it suitable for intermittent feeding with a complete rest period between samples. Can not. Therefore, an object of the present invention is to provide an intermittent sample feeding pump using a piezoelectric element by improving the above-mentioned well-known pump, and to further increase its performance.

発明の構成 問題点を解決するための手段 すなわち本発明は、吸引口、吐出口及びこれら両口と連
通ずる一定容量の室を有し、該室の少なくとも一壁面を
圧電素子で形成して正編膨張可能とし、各圧電素子に印
加する電圧を制御することにより吸引、吐出を反復して
行なうポンプにおいて、上記吸引口と吐出口に圧電素子
の膨張収縮によって開閉する弁を設けたことを特徴とし
、この弁は吸引口及び吐出口をそれぞれ限定する各一定
容量部の少なくとも一壁面を圧電素子で形成し、印加電
圧による該圧電素子の膨張による他壁面との面接触によ
って流路を閉じ、該圧電素子の収縮によって流路を開く
ことで弁機能を発揮する。
The present invention has a suction port, a discharge port, and a chamber of a constant capacity that communicates with both of these ports, and at least one wall of the chamber is formed with a piezoelectric element. A pump that is capable of expansion and expansion and repeatedly performs suction and discharge by controlling the voltage applied to each piezoelectric element, characterized in that the suction port and the discharge port are provided with valves that open and close according to the expansion and contraction of the piezoelectric element. In this valve, at least one wall surface of each constant volume portion defining the suction port and the discharge port is formed of a piezoelectric element, and the flow path is closed by surface contact with another wall surface due to expansion of the piezoelectric element due to an applied voltage, The valve function is achieved by opening the flow path by contraction of the piezoelectric element.

更に上記吸引弁、中央室及び吐出弁を、試料吸引工程、
試料移動工程及び試料吐出工程の順次で反復制御し、特
に一定の位相差を持つ相似の交電電圧を各圧電素子へ印
加して上記制御を行なうことによりポンプの能力が高め
られる。
Furthermore, the above-mentioned suction valve, central chamber and discharge valve are used in the sample suction process,
The performance of the pump can be increased by repeatedly controlling the sample moving step and the sample discharging step in sequence, and in particular by performing the above control by applying similar alternating current voltages with a certain phase difference to each piezoelectric element.

実施例 以下図面を参照しながら、本発明の好ましい実施例につ
いて詳しく説明する。
EXAMPLES Preferred embodiments of the present invention will be described in detail below with reference to the drawings.

本発明によれば、従来周知の圧電素子を用いた前記ポン
プの入口及び出口における弁も圧電素子を利用して形成
される。K 3 (a) 、 (b)図は本発明による
弁の構成を示す図で、図中4は第2図に示した中央の室
(以下中央室と呼ぶ)3に連通ずる吸引口又は吐出口を
限定する一定容量部である。@3(ミスではこの一定容
量部4の一壁面が圧電素子1で形成され、第3(b)図
では一定容量部4の両壁面が圧電素子1で形成され、こ
れら圧電素子1に交流電圧を印加すれば圧電素子は振動
し、図中点線のように膨張収縮を繰返す、従って、第3
(a)図では圧電素子1が収縮して対向壁面に面接触す
るとき流路が閉じる一方、圧電素子1が膨張すると流路
が開(ことによって弁機能を果す。又第3(b)図では
両圧電累子1が収縮して両者が面接触するとき流路が閉
じる一方、両圧電素子が膨張すると流路が開くことによ
って弁機能を果す。
According to the present invention, the valves at the inlet and outlet of the pump using piezoelectric elements, which are known in the art, are also formed using piezoelectric elements. K 3 (a) and (b) are diagrams showing the configuration of the valve according to the present invention, in which 4 is a suction port or discharge port communicating with the central chamber (hereinafter referred to as the central chamber) 3 shown in FIG. It is a constant volume section that limits the outlet. @3 (In the case of a mistake, one wall surface of this constant capacitance section 4 is formed by the piezoelectric element 1, and in FIG. When applied, the piezoelectric element vibrates and expands and contracts repeatedly as shown by the dotted line in the figure.
In Figure 3(a), when the piezoelectric element 1 contracts and comes into surface contact with the opposing wall surface, the flow path closes, while when the piezoelectric element 1 expands, the flow path opens (thereby performing a valve function. Also, in Figure 3(b)) In this case, when both piezoelectric elements 1 contract and come into surface contact, the flow path closes, while when both piezoelectric elements expand, the flow path opens, thereby performing a valve function.

第4図はこのような弁を備えた本発明のrs?ンプの一
例を示しており、図中11は中央室でその上下壁面がそ
れぞれ圧電素子12で形成さね。
FIG. 4 shows the rs? of the present invention equipped with such a valve. In the figure, reference numeral 11 denotes a central chamber, the upper and lower walls of which are each formed by piezoelectric elements 12.

ている。又吸入口を限定する一定容量部の同じく上下壁
面がそれぞれ圧電素子13で形成され、吸引弁14を構
成する。更に吐出口を限定する一定容量部の上下壁面が
それぞれ圧電素子15で形成され、吐出弁15を構成す
る。
ing. Also, the upper and lower wall surfaces of the constant volume portion defining the suction port are each formed with a piezoelectric element 13, and constitute a suction valve 14. Furthermore, the upper and lower wall surfaces of the constant volume portion that defines the discharge port are each formed by a piezoelectric element 15, and constitute a discharge valve 15.

第5図は本発明によるポンプの別の実施例を示しており
、基本的構成は第4図と同じなので、対応部分は同一番
号で表わしである。この実施例では第4図の例と異り、
吸引弁14と吐出弁16が中央室11と直接隣接してい
す一定長の通路を経て中央室11に連結されており、吸
引弁14と吐出弁161Z)流路が中央冨11の流路に
対し直交している。
FIG. 5 shows another embodiment of the pump according to the invention, the basic construction of which is the same as in FIG. 4, and corresponding parts are designated by the same numbers. In this embodiment, unlike the example shown in FIG.
The suction valve 14 and the discharge valve 16 are directly adjacent to the central chamber 11 and are connected to the central chamber 11 through a passage of a certain length, and the flow path of the suction valve 14 and the discharge valve 161Z is connected to the flow path of the central chamber 11. It is orthogonal to

謳4,5図の実施例では吸引弁14と吐出弁16を中央
室11と独立した形で設けたが、第6図のように中央室
11内に組込んで構成することもできる。つまり第6図
の構成では、中央室11の上下両壁面がそれぞれ3つの
圧電素子12.13及び15によって形成され、圧電素
子13.13が実質上の吸引弁、圧電素子15゜15が
実質上の吐出弁を各々構成する。そのためこの例では、
対向面の圧電素子が収縮時面接触する必要がある。この
ような実施例でも、第4.5図の場合と同様の機能が得
られる。
In the embodiment shown in FIGS. 4 and 5, the suction valve 14 and the discharge valve 16 are provided independently of the central chamber 11, but they may also be incorporated into the central chamber 11 as shown in FIG. In other words, in the configuration shown in FIG. 6, the upper and lower walls of the central chamber 11 are each formed by three piezoelectric elements 12, 13 and 15, and the piezoelectric element 13, 13 is essentially a suction valve, and the piezoelectric element 15, 15 is essentially a suction valve. discharge valves respectively. So in this example,
It is necessary for the piezoelectric elements on the opposing surfaces to be in surface contact when contracted. Even in such an embodiment, the same functions as in the case of FIG. 4.5 can be obtained.

次に第7〜10図を参照して、本発明によるポンプの動
作を説明する。
Next, the operation of the pump according to the present invention will be explained with reference to FIGS. 7 to 10.

まず第1の動作方式として、第8図に示すように中央室
の圧電素子にサイン波状の交流電圧1Bを印加し、吸引
弁と吐出弁に矩形波状の交流電圧18.19を印加する
。図中プラスの電圧で各圧電素子は膨張し、従って各弁
及び中央室は開く、令弟8図に示すごとく交流電圧18
の1サイクルを(イ)〜(へ)に6分割し全ての電圧が
マイナスの一状態にある(へ)の位置から出発するもの
とする。つまりこの状態では、吸引弁、中央室及び吐出
弁が閉じている。尚第7図において左側は吸引弁、真中
は中央室、右側は吐出弁を表わし、縦軸は各々の変位量
で上方レベルが開、下方レベルが閉に相当する。中央室
内では圧電素子が収縮しても流路が実際に閉じるとは限
らないが、便宜上開閉という表現を用いる。(イ)では
吸引弁が開いて、吸引工程が始まる。(→では中央室が
続いて開き吸引工程が終了する。(ハ)では中央室が開
いたまま吸引弁が閉じ、吸引試料、は全て中央室内に含
まれ試料移動工程が始まる。
First, as a first operation method, as shown in FIG. 8, a sine wave AC voltage 1B is applied to the piezoelectric element in the central chamber, and a rectangular wave AC voltage 18.19 is applied to the suction valve and the discharge valve. In the figure, each piezoelectric element expands with a positive voltage, and therefore each valve and the central chamber open. As shown in Figure 8, the AC voltage 18
It is assumed that one cycle of is divided into six parts (A) to (E), and starts from the position (E) where all the voltages are in one negative state. That is, in this state, the suction valve, the central chamber and the discharge valve are closed. In FIG. 7, the left side represents the suction valve, the middle side represents the central chamber, and the right side represents the discharge valve, and the vertical axis corresponds to the upper level being open and the lower level being closed at each displacement amount. In the central chamber, even if the piezoelectric element contracts, it does not necessarily mean that the channel actually closes, but for convenience, the term "opening and closing" is used. In (a), the suction valve opens and the suction process begins. (In →, the central chamber opens and the suction process ends. In (c), the suction valve closes while the central chamber remains open, and the aspirated sample is all contained in the central chamber, and the sample transfer process begins.

に)では中央室が開いたままで吐出弁が開き、試料が吐
出弁へ移動して試料移動工程が終了する。
In (b), the discharge valve is opened while the central chamber remains open, and the sample moves to the discharge valve, completing the sample transfer process.

(ホ)では吐出弁が開いたまま中央室が閉じ、吐出工程
が始まる。(へ)では吐出弁が閉じ、吐出工程が終了し
て最初の工程へ戻る。上記のサイクル中、(イ)(ロ)
が試料吸引工程、(う←)が試料移動工程。
In (E), the central chamber closes while the discharge valve remains open, and the discharge process begins. In (v), the discharge valve closes, the discharge process is completed, and the process returns to the first process. During the above cycle, (a) (b)
is the sample suction process, and (u←) is the sample movement process.

(ホ)(へ)が試料吐出工程で、(ホ)(へ)でのみ試
料が吐出されるので、間欠送りにより適したポンプが得
られる。
(E) and (F) are sample discharge steps, and since the sample is discharged only in (E) and (F), a pump suitable for intermittent feeding can be obtained.

次に第2の動作方式として、第10図に示すように一定
の位相差(30°)だけ相互にズした相似のサイン波状
の交流電圧20.21及び22が吸引弁、中央室及び吐
出弁の各圧電素子に加えられる。 @7 、8図の方式
と同じく1サイクルを(イ)〜(へ)に分割して考える
と、0)では吸引弁が最大限に開き吸引工程がここで終
了する。
Next, as a second operation method, as shown in Fig. 10, similar sinusoidal AC voltages 20, 21 and 22 shifted from each other by a certain phase difference (30°) are applied to the suction valve, the central chamber and the discharge valve. is applied to each piezoelectric element. @7 If one cycle is divided into (a) to (f) in the same manner as in the system shown in Figs. 8, at 0), the suction valve opens to the maximum extent and the suction process ends here.

(ロ)では中央室が開き、吸引試料がそこへ移動する。In (b), the central chamber opens and the aspirated sample moves there.

ぐうでは吐出弁が開き、吸引試料が更にそこへ移動する
。に)では吐出弁が開いたまま吸引弁が閉じ、試料が吐
出される。に)では中央室が閉じ、試料は吐出され続け
られる一方で吸引が始まる。(へ)では吐出弁が閉じ、
吸引が続けながら吐出工程が終了して最終の工程へ戻る
。上記のサイクル中、0)が試料の吸引1視、(ロ)e
→が移動工程、に)が吐出工程、(ホ)(へ)が吸引と
吐出の同時工程で、に)〜に)の工程において試料は吐
出されるが立上り立下りが急勾配下されているため、こ
の方式では第7,8図の方式と比ベポンプ能力を改善し
ながら間欠的な試料送りが可能となる。
The discharge valve opens and the aspirated sample moves further there. ), the suction valve closes while the discharge valve remains open, and the sample is discharged. ), the central chamber is closed and aspiration begins while the sample continues to be dispensed. At (to), the discharge valve closes,
While suction continues, the discharge process is completed and the process returns to the final process. During the above cycle, 0) is sample suction 1, (b) e
→ is the movement process, ni) is the discharge process, (e) and ``e'' are the simultaneous suction and discharge processes, and the sample is discharged in the process of ni) to ni), but the rise and fall are steep. Therefore, this method enables intermittent sample feeding while improving the pumping capacity compared to the methods shown in FIGS. 7 and 8.

第9.10図に示した方式による本発明のポンプで試料
として水を用い、交流電圧として商用電源50 m 6
0 Hzを用いた場合の流量(横軸;ml/分)と圧力
(縦軸: h/cm勺の関係について得られた結果を第
11図に示す。
The pump of the present invention according to the method shown in Figure 9.10 uses water as a sample and uses a commercial power supply of 50 m 6 as an alternating voltage.
FIG. 11 shows the results obtained regarding the relationship between the flow rate (horizontal axis; ml/min) and pressure (vertical axis: h/cm) when using 0 Hz.

発明の効果 以上述べたよ5に本発明によれば、圧電素子を用い吸引
弁及び吐出弁を構成することによって間欠的な試料送り
に適した圧電素子型ポンプが得られ、しかもポンプ能力
を高めることができる。
Effects of the Invention As described above, according to the present invention, a piezoelectric element type pump suitable for intermittent sample feeding can be obtained by configuring the suction valve and the discharge valve using piezoelectric elements, and the pump capacity can be increased. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は圧電素子を利用したポンプの原理を説明するた
めの図、第2(荀、(b)図はvfJポンプの基本構成
を説明するための図−g 3 (a) 、 (b)図は
本発明で用いる弁の基本構成を説明するための図、第4
図は本発明によるポンプの構成の一実施例を示す図、第
5図は別の実施例を示す図、r!c6 (a) 、 (
b)図は更に別の実施例を示す図、tgr。 8図は本発明によるポンプの一つの動作方法を説明する
ための図、第9,10図は別の動作方法を説明するため
の図、i@11図は本発明によるポンプの流量と圧力の
関係を示す図である。 1.12,13,15・・・圧電素子、2・・・交流電
圧源、3,11・・・中央室、4・・・中央室出入口の
一定容量部、13・・・吸引弁、16・・・吐出弁、1
7.20〜22・・・サイン波状交流電圧、18゜19
・・・矩形波状交流電圧。 出 願 人  日本分光工業株式会社 代 埋 人   丸  山  拳  雄第  1  図 第   4   図 第  3  図  ml!2   図 <3)           (a) 第   3   図   第   2   図(b) 
           (b)俤5図 第  6  図 ta) rb) 第   7   図 Cへ) L−一一一一一一−−−−−−」第   8 
 図 第   9  図
Figure 1 is a diagram to explain the principle of a pump using a piezoelectric element, Figure 2 (b) is a diagram to explain the basic configuration of a vfJ pump. Figure 4 is a diagram for explaining the basic configuration of the valve used in the present invention.
The figure shows one embodiment of the configuration of the pump according to the present invention, and FIG. 5 shows another embodiment. c6 (a), (
b) The figure shows yet another embodiment, tgr. Figure 8 is a diagram for explaining one operating method of the pump according to the present invention, Figures 9 and 10 are diagrams for explaining another operating method, and Figure i@11 is a diagram for explaining the flow rate and pressure of the pump according to the present invention. It is a figure showing a relationship. 1.12, 13, 15...Piezoelectric element, 2...AC voltage source, 3, 11...Central chamber, 4...Constant volume part at central chamber entrance/exit, 13...Suction valve, 16 ...Discharge valve, 1
7.20~22...Sine wave AC voltage, 18°19
... Rectangular wave AC voltage. Applicant: JASCO Corporation Representative: Ken Yu Maruyama Figure 1 Figure 4 Figure 3 ml! 2 Figure <3) (a) Figure 3 Figure 2 (b)
(b) 5 Figure 6 Figure 6 ta) rb) Figure 7 To C) L-11111----'' No. 8
Figure 9

Claims (6)

【特許請求の範囲】[Claims] (1)吸引口、吐出口及びこれら両口と連通する一定容
量の室を有し、該室の少なくとも一壁面を圧電素子で形
成して圧縮膨張可能とし、各圧電素子に印加する電圧を
制御することにより吸引、吐出を反復して行なうポンプ
において、上記吸引口と吐出口に圧電素子の膨張収縮に
よって開閉する弁を設けたことを特徴とする試料送りポ
ンプ。
(1) It has a suction port, a discharge port, and a chamber with a constant capacity that communicates with both of these ports, and at least one wall of the chamber is made of a piezoelectric element so that it can be compressed and expanded, and the voltage applied to each piezoelectric element is controlled. 1. A sample feeding pump that repeatedly performs suction and discharge by repeatedly performing suction and discharge, characterized in that the suction port and the discharge port are provided with valves that are opened and closed by expansion and contraction of a piezoelectric element.
(2)前記吸引口及び吐出口をそれぞれ限定する各一定
容量部の少なくとも一壁面を圧電素子で形成し、印加電
圧による該圧電素子の膨張による他壁面との面接触によ
って流路を閉じ、該圧電素子の収縮によって流路を開き
吸引口及び吐出口に弁機能を持たせたことを特徴とする
特許請求の範囲第(1)項記載の試料送りポンプ。
(2) At least one wall surface of each constant volume portion defining the suction port and the discharge port is formed of a piezoelectric element, and the flow path is closed by surface contact with another wall surface due to expansion of the piezoelectric element by an applied voltage. The sample feeding pump according to claim 1, wherein the flow path is opened by contraction of the piezoelectric element, and the suction port and the discharge port have a valve function.
(3)圧電素子を備えて成る上記吸引弁、中央室及び吐
出弁が試料吸引工程、試料移動工程及び試料吐出工程を
経て吸引及び吐出を反復して行なうことを特徴とする特
許請求の範囲第(1)項記載の試料送りポンプ。
(3) The above-mentioned suction valve, central chamber, and discharge valve each including a piezoelectric element repeatedly perform suction and discharge through a sample suction process, a sample movement process, and a sample discharge process. The sample feed pump described in (1).
(4)前記吸引弁と吐出弁に矩形波状の交流電圧、中央
室に交流電圧を印加して前記工程順序で制御を行なうこ
とを特徴とする特許請求の範囲第(3)項記載の試料送
りポンプ。
(4) Sample feeding according to claim (3), characterized in that control is performed in the process sequence by applying a rectangular wave AC voltage to the suction valve and the discharge valve and an AC voltage to the central chamber. pump.
(5)前記吸引弁、吐出弁及び中央室に一定の位相差を
持つ相似の交流電圧を印加して、前記工程順序で制御を
行なうことを特徴とする特許請求の範囲第(3)項記載
の試料送りポンプ。
(5) According to claim (3), the control is performed in the process sequence by applying similar AC voltages having a certain phase difference to the suction valve, the discharge valve, and the central chamber. sample feeding pump.
(6)前記中央室の少なくとも一壁面を形成する圧電素
子が中央室内で複数の節を持ち吸引弁と吐出弁を中央室
の内部に組込んだことを特徴とする特許請求の範囲第(
1)項記載の試料送りポンプ。
(6) The piezoelectric element forming at least one wall surface of the central chamber has a plurality of nodes within the central chamber, and a suction valve and a discharge valve are incorporated inside the central chamber.
Sample feed pump described in section 1).
JP19286585A 1985-08-31 1985-08-31 Sample feed pump Pending JPS6251766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19286585A JPS6251766A (en) 1985-08-31 1985-08-31 Sample feed pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19286585A JPS6251766A (en) 1985-08-31 1985-08-31 Sample feed pump

Publications (1)

Publication Number Publication Date
JPS6251766A true JPS6251766A (en) 1987-03-06

Family

ID=16298257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19286585A Pending JPS6251766A (en) 1985-08-31 1985-08-31 Sample feed pump

Country Status (1)

Country Link
JP (1) JPS6251766A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974381A (en) * 1982-10-20 1984-04-26 Ricoh Co Ltd Pressurizing device of electric distortion chip
JPS5987286A (en) * 1982-11-11 1984-05-19 Ricoh Co Ltd Electric strain element pump
JPS5990786A (en) * 1982-09-30 1984-05-25 ウイリアム・ニコラス・ロウレス Gas compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990786A (en) * 1982-09-30 1984-05-25 ウイリアム・ニコラス・ロウレス Gas compressor
JPS5974381A (en) * 1982-10-20 1984-04-26 Ricoh Co Ltd Pressurizing device of electric distortion chip
JPS5987286A (en) * 1982-11-11 1984-05-19 Ricoh Co Ltd Electric strain element pump

Similar Documents

Publication Publication Date Title
US5336062A (en) Microminiaturized pump
Cabuz et al. The dual diaphragm pump
US6720710B1 (en) Micropump
US9011663B2 (en) Electrowetting-based valving and pumping systems
US5362213A (en) Micro-pump and method for production thereof
US5836750A (en) Electrostatically actuated mesopump having a plurality of elementary cells
US9995412B2 (en) Long-throw microfluidic actuator
EP1212532A1 (en) Dual diaphragm pump
US5472577A (en) Fluid pumping system based on electrochemically-induced surface tension changes
WO2008055256A2 (en) Method and apparatus for real-time feedback control of electrical manipulation of droplets on chip
KR20020068096A (en) Micropump actuated by the movement of liquid drop induced by continuous electrowetting
JP2006515059A (en) Microfluidic device and method in which sample processing is electrochemically activated
JP4221184B2 (en) Micro chemical chip
JPH09287571A (en) Micropump
WO1997025531A1 (en) Micropump with sonic energy generator
JPS6251766A (en) Sample feed pump
JPH0486388A (en) Passage structure of piezoelectric micropump
JPH0354383A (en) Piezoelectric pump
JP2007032408A (en) Peristaltic type piezoelectric micropump and its drive method
Stehr et al. The selfpriming VAMP
JPH01219369A (en) Trace quantity pumping plant
CN115350395A (en) Variable flow direction&#39;s piezoelectricity valveless pump and controlling means thereof
JP4206849B2 (en) Micro pump and manufacturing method thereof
US20190017629A1 (en) Long-Throw Microfluidic Actuator
CN109882381B (en) Double-vibrator driven self-excited pump