JPS625140A - Temperature-measuring apparatus for molten metal using multi-channel photo detector - Google Patents

Temperature-measuring apparatus for molten metal using multi-channel photo detector

Info

Publication number
JPS625140A
JPS625140A JP60144932A JP14493285A JPS625140A JP S625140 A JPS625140 A JP S625140A JP 60144932 A JP60144932 A JP 60144932A JP 14493285 A JP14493285 A JP 14493285A JP S625140 A JPS625140 A JP S625140A
Authority
JP
Japan
Prior art keywords
molten metal
temperature
light
optical fiber
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60144932A
Other languages
Japanese (ja)
Inventor
Koichi Sakai
弘一 酒井
Yutaka Nakano
豊 仲野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Oxygen Industries Ltd
Original Assignee
Osaka Oxygen Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Oxygen Industries Ltd filed Critical Osaka Oxygen Industries Ltd
Priority to JP60144932A priority Critical patent/JPS625140A/en
Publication of JPS625140A publication Critical patent/JPS625140A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0037Radiation pyrometry, e.g. infrared or optical thermometry for sensing the heat emitted by liquids
    • G01J5/004Radiation pyrometry, e.g. infrared or optical thermometry for sensing the heat emitted by liquids by molten metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/05Means for preventing contamination of the components of the optical system; Means for preventing obstruction of the radiation path
    • G01J5/051Means for preventing contamination of the components of the optical system; Means for preventing obstruction of the radiation path using a gas purge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0806Focusing or collimating elements, e.g. lenses or concave mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • G01J5/0821Optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
    • G01J5/601Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature using spectral scanning

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To measure the internal temperature of a molten metal using a multi- channel photodetector and a refraction grating accurately, by blowing a gas against the surface of a dip tube after dipped into a molten metal to introduce a heat radiation light to an optical fiber through a lens removing a slag. CONSTITUTION:A dip tube 6 is dipped into a molten metal 8, a clean gas is introduced from a gas introduction port 2 to be blown against the surface of the molten metal 8 and a heat radiation light of the molten metal 9 is introduced to a lens 3 to remove a slag existing on the surface of the metal 8. The light is introduced to a prism or a refraction grating 5 with an optical fiber 4 and the refracted light is amplified with an image intensifier 9. Then, the light is converted into an electricity with a multi-channel photo detector 10 such as photodiode array to be accumulated by a capacitor of a photodiode array. Then, as temperature the analog signal accumulated is converted into digital with an ADC11 and outputted with a data processor 12.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は多チャンネル光検出器?使用した溶融金属の温
度測定装置に関する。
[Detailed Description of the Invention] Industrial Application Field Is the present invention a multi-channel photodetector? This article relates to the molten metal temperature measuring device used.

溶融金属の温度測定は、ゼーベック効果を利用した熱電
対による方法と、温度による光の放射エネルギー?測定
する光温度計の2方法が主流である。
How to measure the temperature of molten metal by using a thermocouple that utilizes the Seebeck effect, or by measuring the radiant energy of light depending on the temperature? There are two main methods of measurement: a photothermometer.

熱電対による方法は、溶融金属内部の温度X測定でき、
精度もよく、鉄鋼、及び非鉄精錬工程では、欠くことの
できない測温方法となってい6つしかし、この方法は、
溶融金属中に熱電対を浸漬するため、1度の測温に、1
個の熱電対乞消耗する点で、資源保存の面から他の測温
方法の要求が強まっている。
The thermocouple method can measure the temperature inside the molten metal,
It has good accuracy and has become an indispensable temperature measurement method in steel and non-ferrous refining processes.
Because the thermocouple is immersed in the molten metal, one temperature measurement requires one
Since individual thermocouples are becoming worn out, there is a growing demand for other temperature measurement methods from the perspective of resource conservation.

光温度は、熱放射光を利用する方法であり、資源保存の
面ですぐれた測温方法である。しかし従来の光砿度計は
単んに溶融金属の表面から発生する熱放射光に基づいて
温度?測定する。しかし浴融金属の表面にはスラグ層が
存在しており、そのスラグ層の温度と溶融金属内部の温
度とは異なり。
Optical temperature is a method that uses thermal radiation, and is an excellent temperature measurement method in terms of resource conservation. However, traditional optical hydrometers simply measure the temperature based on the thermal radiation emitted from the surface of the molten metal. Measure. However, a slag layer exists on the surface of the bath molten metal, and the temperature of the slag layer is different from the temperature inside the molten metal.

スラグ層の表面温度の測定では不十分である。また、溶
融金属表面の温度と内部の温度は焼分、温度差?生じろ
。さらに従来の光温度計は1波長又は2波長に対する放
射エネルギー?測定し温度に換算するため、放射光のエ
ネルギー変動?おさえろことができなかった。
Measuring the surface temperature of the slag layer is insufficient. Also, is the temperature on the surface of the molten metal and the temperature inside the molten metal different from each other due to sintering? Wake up. Furthermore, does the conventional optical thermometer have radiant energy for one wavelength or two wavelengths? Energy fluctuations in synchrotron radiation to be measured and converted into temperature? I couldn't hold it back.

本発明の発明者は、溶融金属の内部の温度?正確に測定
するため各種の研究?行ない1本発明に至った。
The inventor of this invention is concerned with the temperature inside molten metal? Various studies for accurate measurement? As a result, we have arrived at the present invention.

本発明は、中空な筒状管の上部にレンズ及び光ファイバ
ーが固定され、前記筒状管内へ気体を導入する導入O?
設け、その筒状管の下端には消耗型の溶融金属浸漬管が
取付けられており、装置全体および/または1円筒管?
昇降する昇降手段が設けられており、光ファイバーから
の溶融金属の熱放射光を回折するプリズムまたは回折格
子6ンけ、そのプリズム又は回折格子に引続いて1分光
器イメージインテンシファイア、広い波長範囲の光ン一
度に光電変換するための多チャンネル型光検出器、フォ
トダイオードプレイのコンデンサー蓄電されたアナログ
信号?ディジタル変換するためのADC変換器およびデ
ータ処理装置からなる溶融金属の温度測定装置に関する
In the present invention, a lens and an optical fiber are fixed to the upper part of a hollow cylindrical tube, and an introduction O?
A consumable molten metal immersion tube is attached to the lower end of the cylindrical tube, and the whole apparatus and/or one cylindrical tube?
A lifting means for raising and lowering is provided, and 6 prisms or diffraction gratings are provided to diffract the thermal radiation of the molten metal from the optical fiber, followed by 1 spectrometer image intensifier, and a wide wavelength range. Multi-channel photodetector for photoelectric conversion of light at once, analog signal stored in capacitor of photodiode play? The present invention relates to a molten metal temperature measuring device comprising an ADC converter for digital conversion and a data processing device.

図面によって本発明?説明子る。第1図は本発明の好ま
しい装置の、概略図である。1は筒状体である。その筒
状体は紙、耐火セラミック、鋼管等の各種金属管、プラ
スチック、無機複合材料から構成できる。2は気体導入
口である。61は溶融金属の熱放射光乞集めるレンズで
ある。4はその熱放射光を回折格子5に伝送するための
光ファイバーである。、6は消耗型の溶融金属浸漬管で
あり。
Invention based on drawings? Explainer. FIG. 1 is a schematic diagram of a preferred apparatus of the present invention. 1 is a cylindrical body. The cylindrical body can be constructed from paper, refractory ceramics, various metal tubes such as steel tubes, plastics, and inorganic composite materials. 2 is a gas inlet. 61 is a lens that collects thermal radiation of molten metal. 4 is an optical fiber for transmitting the thermal radiation to the diffraction grating 5. , 6 is a consumable type molten metal immersion tube.

それのホルダー7によって筒状体1に取付けられる。浸
漬管6の材質は筒状体の材質と同じある。
It is attached to the cylindrical body 1 by its holder 7. The material of the immersion tube 6 is the same as that of the cylindrical body.

しかし両者は別々の材質のものから作られても良い。紙
管?直接溶鋼に浸漬すると紙管中に含まれる水分の急激
な蒸発等によりスプラッシュが発生し、これが測定に与
えろ影響が大きい。このため。
However, both may be made from different materials. Paper tube? When directly immersed in molten steel, splash occurs due to rapid evaporation of water contained in the paper tube, which has a large effect on measurements. For this reason.

溶鋼に浸漬する部分?セラミックによりコーティングし
、あるいは、先端部分乞スプラッシュの出ない物質1例
えば、多孔質セラミック?用いて。
The part that is immersed in molten steel? Is it coated with ceramic or a material that does not cause splash at the tip part 1, for example, porous ceramic? make use of.

測温誤差?軽減した。Temperature measurement error? Reduced.

レンズの材質として可視域では、プラスチック製及石英
製等、赤外域では、ゲルマニウム製等が適する。
Suitable materials for the lens include plastic and quartz in the visible range, and germanium and the like in the infrared range.

筒状管の長さは、温度測定対象金属、また測定環境によ
って異なる。筒状管の材質も同様である。
The length of the cylindrical tube varies depending on the metal whose temperature is to be measured and the measurement environment. The same applies to the material of the cylindrical tube.

考慮すべきことは、レンズの熱影響による。伸び縮み、
防じん対策等である。レンズの材質は、可視から赤外域
の波長をよく透過するものであり。
What needs to be considered is the thermal effect of the lens. expansion and contraction,
This includes dust prevention measures. The material of the lens is one that transmits wavelengths from the visible to infrared range well.

焦点距離は1円筒管下端までの距離と光ファイバまでの
距離から考えろ。光フアイバ端面とレンズの光軸がずれ
ないようにすることも必要である。
Think about the focal length from the distance to the bottom of the cylindrical tube and the distance to the optical fiber. It is also necessary to prevent the optical axis of the optical fiber end face and the lens from shifting.

必要ならば筒状体1および浸漬管6乞昇降する昇降装f
f1l設ける。昇降装置は、溶鋼内に、浸漬管6を自動
的に浸漬させる装置であるが1人間が。
If necessary, a lifting device f for raising and lowering the cylindrical body 1 and the immersion tube 6
f1l will be provided. The lifting device is a device that automatically immerses the immersion tube 6 into molten steel, but only one person can do it.

こね?おこなっても構わない。8は溶融金属である。9
はイメージインテンシファイアである。
Knead? It's okay to do it. 8 is molten metal. 9
is an image intensifier.

分光器6は、一度に可視から赤外の波長範囲の光を分光
する必要性から、小型分光器?用いた。
Spectrometer 6 is a small spectrometer because of the need to separate light in the visible to infrared wavelength range at once. Using.

本発明での計測値では回折格子は、逆線分散が12.8
 nm/111のものt使用した。フォトダイオードア
レイは、512chで、チャンネルの間隔は25μm°
である。また、イメージインテンシファイア?、フォト
ダイi−ドアレイ前部に設置したものである。イメージ
インテンシファイアとは。
According to the measured values in the present invention, the diffraction grating has an inverse linear dispersion of 12.8.
A sample with a wavelength of nm/111 was used. The photodiode array has 512 channels, and the channel spacing is 25 μm°.
It is. Also, an image intensifier? , which is installed in front of the photodiode i-door array. What is an image intensifier?

光電変換面を前部に設け、ここで、光電変換をおこし、
中部に、高電EEχ印加した電子増幅管?設け、電子を
増幅し、後部に、螢光面を設け、電子?再び、光に変換
するもの1:r:首う口また。イメージインテンシファ
イアは、入射する光の位置と出射する光の位置が、変化
しないように配慮されている。このイメージインテンシ
ファイア?用いろと光を1万倍程度増幅することができ
1本発明は測定温度範囲?広げることに成功した。この
多チャンネル光検出器10と、プリズムまたは、回折格
子6ン組み合わせることにより、従来、1波長あるいは
2波長の光強度しか測定できなかった光温度計?、プリ
ズムまたは1回折格子の分散度と、 。
A photoelectric conversion surface is provided at the front, where photoelectric conversion occurs,
An electron amplifier tube with high electric current EEχ applied in the middle part? A fluorescent surface is provided at the rear to amplify the electrons. Again, things that convert into light 1: r: neck and mouth again. The image intensifier is designed so that the position of the incident light and the position of the emitted light do not change. This image intensifier? When used, light can be amplified by about 10,000 times. 1. What is the measurement temperature range of the present invention? succeeded in expanding it. By combining this multi-channel photodetector 10 with 6 prisms or diffraction gratings, a photothermometer that conventionally could only measure the light intensity of one or two wavelengths can be used. , the dispersion of the prism or one diffraction grating, and .

ブリズ、ムまたは回折格子から検出器までの距離によっ
て、6る広い波長範囲にわたり、光強度?測定できろ。
Depending on the distance from the beam, beam or grating to the detector, the light intensity can be varied over a wide range of wavelengths. You can measure it.

この方法により従来の光温度計よr+情度のよい温度測
定が可能となった。光検出器のみでは、低温度300℃
〜700°C程度では比強度が微弱なため、イメージイ
ンテンシファイアと呼ばれる、多チャンネル側光電子増
幅管?使用すべきである。11はアナグロデイジタル変
換器であり、12はデータ処理装置である。16および
14は線である。
This method makes it possible to measure temperature more sensitively than with conventional optical thermometers. With only a photodetector, the temperature is as low as 300℃
Since the specific intensity is weak at around 700°C, a multi-channel photoelectron amplifier tube called an image intensifier is used. Should be used. 11 is an analog/digital converter, and 12 is a data processing device. 16 and 14 are lines.

本発明の装置?使用して溶融金属の温度測定は下記のよ
うにして行なう。
The device of the present invention? The temperature of molten metal is measured as follows.

まず最初に浸漬管6?溶融金属中に浸漬する。First of all, dip tube 6? Immersion into molten metal.

この場合筒状体1の気体導入口2から清浄な気体?導入
する。その気体は実質上水分およびちり乞含んでいない
ことが望ましい。この気体は二酸化炭素、−酸化炭素、
窒素、アルゴン、ヘリウム。
In this case, is clean gas coming from the gas inlet 2 of the cylindrical body 1? Introduce. Desirably, the gas is substantially free of moisture and dust. This gas is carbon dioxide, -carbon oxide,
Nitrogen, argon, helium.

空気等が好ましい。この気体ン溶融金属の表面へ吹き付
けしつつ、その浸漬管?溶融金属中数拾α〜数m浸漬し
、又は気体?吹き付けて溶融金属表面に存在する。スラ
グ2除去し、溶融金属の熱放射光乞レンズろに導く。そ
の光乞光ファイバー4でプリズム又は回折格子5に導く
。その回折光χイメージインテンシファイアで増幅する
。次ぎに広い波長範囲の光乞例えばフォトダイオードア
レイ等の多チャンネル光検出器によって光電変換し、フ
ォトダイオードプレイのコンデンサーによって蓄電し、
その後蓄電され、その後蓄電されたアナログ信号?ディ
ジタル変換し、コンピューターへ伝達し、データ処理装
置で、温度として出力する。
Air etc. are preferable. While blowing this gas onto the surface of the molten metal, the dip tube? Immersed in molten metal for several meters to several meters, or in gas? Present on molten metal surfaces by spraying. The slag 2 is removed and the molten metal is guided through a heat radiation filter. The optical fiber 4 guides the light to a prism or a diffraction grating 5. The diffracted light is amplified by a χ image intensifier. Next, the light in a wide wavelength range is converted into electricity by a multi-channel photodetector such as a photodiode array, and the electricity is stored by a capacitor in the photodiode play.
Analog signal that is then stored and then stored? It is converted into digital data, transmitted to a computer, and output as temperature by a data processing device.

ディジタル信号から温度への変換する方法は、あらかじ
め作成されている検量線?用い、または光電変換面の波
長光特性1分光器の波長、光特性など?考慮した補正を
加えることが必要である。
Is there a way to convert a digital signal to temperature using a pre-created calibration curve? What are the wavelength and optical characteristics of the photoelectric conversion surface?1 The wavelength and optical characteristics of the spectrometer? It is necessary to make corrections that take this into consideration.

光ファイバーの後に第2図に示すような積分球?おき、
光のゆらぎ?極力少なくすることも有用である。第2図
において4は元ファイバーであり。
An integrating sphere like the one shown in Figure 2 after the optical fiber? Ok,
Fluctuation of light? It is also useful to reduce it as much as possible. In Figure 2, 4 is the original fiber.

21は積分球であり、22はレンズであn、5は分光器
である。
21 is an integrating sphere, 22 is a lens, and 5 is a spectroscope.

第6図に本発明により、得られた測温結果を記載する。FIG. 6 shows the temperature measurement results obtained according to the present invention.

横軸に波長?とり、縦軸にフォトダイオードアレイの蓄
積電荷の値tアナログーディジタル変換した値つまり、
光強度?とったものである。
Wavelength on the horizontal axis? The vertical axis shows the accumulated charge value of the photodiode array t, the analog-to-digital converted value, that is,
Light intensity? This is what I took.

この図から、温度と波長と比強度には相関関係があり、
この図中の曲線により、波長と光強度の測定?おこない
、温度に換算する。このように。
From this figure, there is a correlation between temperature, wavelength, and specific intensity.
Measurement of wavelength and light intensity by the curve in this figure? and convert it to temperature. in this way.

光強度と波長による温度測定が、精度よく測定できる。Temperature measurement using light intensity and wavelength can be performed with high accuracy.

本発明の効果 (1)溶融金属に浸漬する部分には従来の消耗型の測温
計のような測定器具が存在しないので浸漬管は数回の測
定にも使用できる。又、連続的な測温も可能である。
Advantages of the present invention (1) Since there is no measuring instrument such as a conventional consumable thermometer in the part that is immersed in the molten metal, the immersion tube can be used for several measurements. Continuous temperature measurement is also possible.

(11)浸漬管馨浸漬の際、清浄なガス?吹き付けるの
で1表面のスラグは排除され、内部の溶融金属の温度が
測定できる。
(11) Is there clean gas when dipping the dipping tube? Since it is sprayed, slag on one surface is removed and the temperature of the molten metal inside can be measured.

(叩 1波長ではなく、広い範囲の波長ヶ測定に使用す
るので、正確な測定値が得らねる。
(Note: Because it is used to measure a wide range of wavelengths rather than just one wavelength, accurate measurements cannot be obtained.

Q■  光ファイバーは何Kmでも伸ばせる、従ってプ
リズム又は回折格子以後の装置は1台あれば良く、測定
用の筒状台?数台?組合せて使用できろ。
Q■ Optical fiber can be extended for many kilometers, so only one device is required after the prism or diffraction grating, and is it a cylindrical table for measurement? A few? Can be used in combination.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の概略図、第2図は積分球の概略図、そ
して第3図は波長と相対強度との関係乞示すグラフであ
る。 特許出願人 大阪酸素工業株式会社 (外5名) 手続補正書 昭和60年11月7日
FIG. 1 is a schematic diagram of the present invention, FIG. 2 is a schematic diagram of an integrating sphere, and FIG. 3 is a graph showing the relationship between wavelength and relative intensity. Patent applicant Osaka Sanso Kogyo Co., Ltd. (5 others) Procedural amendment November 7, 1985

Claims (1)

【特許請求の範囲】[Claims] 中空な筒状管の上部にレンズ及び光ファイバーが固定さ
れ、前記筒状管内へ気体を導入する導入口を設け、その
筒状管の下端には消耗型の溶融金属浸漬管が取付けられ
ており、光ファイバーからの溶融金属の熱放射光を回折
するプリズムまたは回折格子を設け、そのプリズム又は
回折格子に引続いて、分光器イメージインテンシフアイ
ア、広い波長範囲の光を一度に光電変換するための多チ
ャンネル型光検出器、フォトダイオードアレイのコンデ
ンサー、蓄電されたアナログ信号をディジタル変換する
ためのADC変換器およびデータ処理装置からなる溶融
金属の温度測定装置。
A lens and an optical fiber are fixed to the upper part of a hollow cylindrical tube, an inlet for introducing gas into the cylindrical tube is provided, and a consumable molten metal immersion tube is attached to the lower end of the cylindrical tube, A prism or a diffraction grating is provided to diffract the thermal radiation of the molten metal from an optical fiber, followed by a spectrometer image intensifier, and a multiplicity of lights for photoelectrically converting a wide wavelength range of light at once. A molten metal temperature measurement device consisting of a channel type photodetector, a photodiode array capacitor, an ADC converter for digitally converting the stored analog signal, and a data processing device.
JP60144932A 1985-07-02 1985-07-02 Temperature-measuring apparatus for molten metal using multi-channel photo detector Pending JPS625140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60144932A JPS625140A (en) 1985-07-02 1985-07-02 Temperature-measuring apparatus for molten metal using multi-channel photo detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60144932A JPS625140A (en) 1985-07-02 1985-07-02 Temperature-measuring apparatus for molten metal using multi-channel photo detector

Publications (1)

Publication Number Publication Date
JPS625140A true JPS625140A (en) 1987-01-12

Family

ID=15373548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60144932A Pending JPS625140A (en) 1985-07-02 1985-07-02 Temperature-measuring apparatus for molten metal using multi-channel photo detector

Country Status (1)

Country Link
JP (1) JPS625140A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044475A1 (en) * 2001-10-30 2003-05-30 Techint Compagnia Tecnica Internazionale S.P.A. Device and method for discrete and continuous measurement of the temperature of molten metal in a furnace or recipient for its production or treatment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044475A1 (en) * 2001-10-30 2003-05-30 Techint Compagnia Tecnica Internazionale S.P.A. Device and method for discrete and continuous measurement of the temperature of molten metal in a furnace or recipient for its production or treatment
US7140765B2 (en) 2001-10-30 2006-11-28 Techint Compagnia Tecnica Internazionale S.P.A. Device and method for discrete and continuous measurement of the temperature of molten metal in a furnace or recepient for its production or treatment

Similar Documents

Publication Publication Date Title
US4576486A (en) Optical fiber thermometer
Dils High‐temperature optical fiber thermometer
CA1158887A (en) Surface temperature measuring apparatus for object within furnace
US5310260A (en) Non-contact optical techniques for measuring surface conditions
US5387309A (en) Process for the measurement of the thickness and refractive index of a thin film on a substrate, and an apparatus for carrying out the process
JPH0641883B2 (en) Temperature measuring device
WO1992019944A1 (en) Non-contact optical techniques for measuring surface conditions
IT9019833A1 (en) MEASUREMENTS AND TEMPERATURE CONTROL FOR PHOTOTHERMAL PROCESSES
WO2000005570A1 (en) Hydrogen gas and temperature fiber optic sensor system
Cezairliyan et al. Simultaneous measurements of normal spectral emissivity by spectral radiometry and laser polarimetry at high temperatures in millisecond-resolution pulse-heating experiments: Application to molybdenum and tungsten
EP0425229A1 (en) High temperature sensor
JPS625140A (en) Temperature-measuring apparatus for molten metal using multi-channel photo detector
Cascajero et al. High spatial resolution optical fiber two color pyrometer with fast response
Dils et al. Measurement of the silver freezing point with an optical fiber thermometer: proof of concept
JPS60133327A (en) Method for measuring temperature in furnace in hot hydrostatic-pressure applying apparatus using closed-end pipe
Austin et al. An instrument for the measurement of spectral attenuation coefficient and narrow angle volume scattering function of ocean waters
US4815098A (en) Method of measuring furnace temperature in hot isostatic pressing unit and device for measuring same
JPS6266130A (en) Minute cavity radiator device
KR20020066343A (en) An apparatus and method of manufacturing optical waveguides
RU152830U1 (en) DEVICE FOR OPTICAL MEASUREMENT OF TEMPERATURE OF COMBUSTION PRODUCTS
Farries Spontaneous Raman temperature sensor
Kreider Fiber-optic thermometry
RU1778557C (en) Thermometer
Tong et al. Performance improvement of radiation-based high-temperature fiber-optic sensor by means of curved sapphire fiber
Núñez-Cascajero et al. Effect of the Fiber's Core Size on a Two Color Pyrometer