JPS6251211A - Gas introducing apparatus for reaction chamber - Google Patents

Gas introducing apparatus for reaction chamber

Info

Publication number
JPS6251211A
JPS6251211A JP19153685A JP19153685A JPS6251211A JP S6251211 A JPS6251211 A JP S6251211A JP 19153685 A JP19153685 A JP 19153685A JP 19153685 A JP19153685 A JP 19153685A JP S6251211 A JPS6251211 A JP S6251211A
Authority
JP
Japan
Prior art keywords
gas
wafer
impeller
reaction chamber
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19153685A
Other languages
Japanese (ja)
Inventor
Nobutoshi Tsuzura
葛篭 伸年
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAINAMITSUKU INTERNATL KK
Original Assignee
DAINAMITSUKU INTERNATL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAINAMITSUKU INTERNATL KK filed Critical DAINAMITSUKU INTERNATL KK
Priority to JP19153685A priority Critical patent/JPS6251211A/en
Publication of JPS6251211A publication Critical patent/JPS6251211A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To uniform a thin film formed on a wafer without rotating the susceptor, by stirring entering gas with a variable speed impeller, to regulate the flow rate and path of the gas. CONSTITUTION:On the top of a reaction chamber 1, an impeller chamber 2 is provided, on the top of which an output shaft 4 of a rotary introducing member 3 is mounted vertically. At the lower end of the output shaft 4, an impeller 5 is fixed. Gas is introduced as shown by the arrows 9, 10 while the motor is started and thus the output shaft 4 of the rotary introducing member 3 is rotated at a given rotating speed. At this time, the entering gas is blown toward the wafer 7 as shown by the arrows 14, 15. In this case, by varying the rotating speed of the impeller 5, the nature of the whirled flow can be varied, so that the gas flow contacting the upper face of the wafer can be uniformed to uniform a thin film formed on the wafer.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はウェハーの膜厚分布をコントロールすること
を目的としたもので、ウェハーの製造分野に属する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is directed to controlling the film thickness distribution of a wafer, and belongs to the field of wafer manufacturing.

(従来の技術) 現在反応室へのガスの導入は、ノズル等を用いているが
、ノズルの形状によってガス流線や、ガスの混合状態又
はよどみ等が1次的に決まるおそれがあった。またキャ
リヤーガスによって反応ガスをウニ3バー近傍まで強制
的に送り出J−といった方法をとっているが1、この場
合にウェハーの薄膜分布は不均一となり勝であり、サセ
プターを回転して膜厚の不均一を補正している。
(Prior Art) Currently, a nozzle or the like is used to introduce gas into a reaction chamber, but there is a risk that the shape of the nozzle will primarily determine the gas flow line, gas mixing state, stagnation, etc. Another method is to use a carrier gas to force the reaction gas to the vicinity of the 3 bars, but in this case the thin film distribution on the wafer becomes uneven, so the susceptor is rotated to increase the thickness of the film. The non-uniformity is corrected.

(発明により解決すべき問題点) 前記従来の方法によれば、ノズルの形状等によってガス
流線、ガス混合状態又はよどみが定まってしまって補円
が困難であった。また従来の方法によれば、薄膜が不均
一になるのを補正する為にサセプターを回転させている
が、サセプターの回転には下部に回転機構を設けなけれ
ばならないのみならず、熱雷対を設けなければならない
なとの揚台に、構造が複雑になる問題点があった。
(Problems to be Solved by the Invention) According to the above-mentioned conventional method, the gas flow line, gas mixing state, or stagnation is fixed depending on the shape of the nozzle, etc., and it is difficult to obtain a complementary circle. In addition, according to the conventional method, the susceptor is rotated to correct the non-uniformity of the thin film, but in order to rotate the susceptor, not only must a rotation mechanism be installed at the bottom, but also a thermal lightning pair must be installed. There was a problem with the lifting platform that would have to be installed, which would complicate the structure.

(問題点を解決づ−べき手段) 然るにこの発明は、流入したガスを速1α可変の羽根車
にJ:って撹拌し、ガスの流速および流路を(IF意に
調節して、ウェハーの厚さを一定にしたので、サセプタ
ーの回転は不必要となる。従ってサセプター下部の機構
が著しく簡易化されると共に、ガス流の流動状態につい
て微妙な調節が可能となつ lこ。
(Means to Solve the Problem) However, in this invention, the inflowing gas is stirred by an impeller with a variable speed of 1α, and the flow rate and flow path of the gas are adjusted as desired (IF). Since the thickness is constant, there is no need to rotate the susceptor.Therefore, the mechanism at the bottom of the susceptor is significantly simplified, and the flow state of the gas flow can be finely adjusted.

前記にお【)る羽根車に固定翼を絹み合せてガスの流動
方向を安定させ、羽根車の回転数を調節してガスの流速
J3よび拡散状態を調節J゛ることが可能どなった。ま
たサセプターに熱電対を取付(プたり、熱源を取(Nl
 lプる場合においても構造が頗る簡易化された。
It is now possible to stabilize the direction of gas flow by interlacing a fixed blade with the impeller described above, and to adjust the rotational speed of the impeller to adjust the flow velocity J3 and the diffusion state of the gas. Ta. Also, attach a thermocouple to the susceptor and remove the heat source (Nl).
The structure has also been significantly simplified even when the

(発明の作用) 即ちこの発明にJ:れば、反応室の上部にガスの流動調
節装置を設けたので、ガスの流速、流動方向、流量等を
任意に調節し、ウェハーの造膜状態を制御し1qる効果
がある。またサセプターの構造= 3− を簡易化することができるので設備費を低減することが
できる。
(Function of the Invention) That is, according to this invention, since a gas flow control device is provided at the upper part of the reaction chamber, the flow rate, flow direction, flow rate, etc. of the gas can be arbitrarily adjusted to control the film forming state of the wafer. It has the effect of controlling 1q. Furthermore, since the structure of the susceptor can be simplified, equipment costs can be reduced.

次にこめ発明の実施例について説明1−る。Next, embodiments of the present invention will be explained.

(実施例1) 第1図は縦型反応室にこの発明を応用した揚台を示す。(Example 1) Figure 1 shows a lifting platform to which this invention is applied to a vertical reaction chamber.

反応室1の上部に羽根車室2を連設し、前記羽根車室2
の頂部には、回転導入材3の出力軸4が縦設され、出力
軸4の下端に羽根車5が固定されている。前記羽根車室
2の側壁であって、羽根車より上方には、ガス流入口6
.6aが聞[]シており、ガス室の下方には、ウェハー
7を載μる為にサセプタ−8が設置されている。前記に
おいて、−ガスを第1図中矢示9.10のように導入す
るど共に、モータ11を始動し、プーリー12.13を
介して回転導入材3の出力軸1を所定の回転数で回転す
れば、流入したガスは第1図中矢示14.15のように
ウェハー7に向って吹きつりられる。
An impeller chamber 2 is connected to the upper part of the reaction chamber 1, and the impeller chamber 2
An output shaft 4 of the rotation introduction member 3 is vertically installed at the top of the rotor, and an impeller 5 is fixed to the lower end of the output shaft 4. On the side wall of the impeller chamber 2, above the impeller, there is a gas inlet 6.
.. A susceptor 8 is installed below the gas chamber on which a wafer 7 is placed. In the above, - gas is introduced as shown by arrow 9.10 in FIG. Then, the inflowing gas is blown toward the wafer 7 as shown by arrows 14 and 15 in FIG.

この場合にガスは羽根車5の回転と、羽根16の形状等
によって、旋回流どなってウェハー7上に吹ぎつ(プら
れるが、回転数を変えることにJ:す、旋回流の性質を
変化させることができる。何れにしても、ウェハーの上
面に接触するガス流は均等化されるので、ウェハーに生
じる薄膜は均一厚さになる。
In this case, the gas is blown onto the wafer 7 as a swirling flow depending on the rotation of the impeller 5 and the shape of the blades 16. In either case, the gas flow contacting the top surface of the wafer is equalized so that the resulting thin film on the wafer has a uniform thickness.

(実施例2) 第2図に示J゛実施例はり一セプター8上に多数の□ 
ウェハー7.7を載置した場合を示す。この場合におい
ても、反応室1内に生じる旋回ガス流は各ウェハーにほ
ぼ均等に接触するので、ウェハー上□ に生成する薄膜
は均一になる。
(Example 2) As shown in FIG.
The case where wafer 7.7 is placed is shown. Even in this case, the swirling gas flow generated within the reaction chamber 1 comes into contact with each wafer almost equally, so that the thin film formed on the wafers becomes uniform.

(実施例3) 第3図の実施例は、羽根車5ど、′ウェハー7との間に
ガス案内用の固定翼17を設置した場合を示す。
(Embodiment 3) The embodiment shown in FIG. 3 shows a case where a fixed blade 17 for guiding gas is installed between the impeller 5 and the wafer 7.

この場合には、ガス流が固定翼によって整流され゛、矢
示18.18のJ:うにウェハー7上へ吹きつ1jられ
る。
In this case, the gas flow is rectified by fixed vanes and blown onto the wafer 7 as indicated by arrows 18.18.

次に第4図は、固定!IQ’l 9と動翼20とを櫛歯
状に′wl嵌させた場合を示す。
Next, Figure 4 is fixed! A case is shown in which the IQ'l 9 and the rotor blade 20 are fitted in a comb-like shape.

この場合にガスはJ:り混合された旋回流どなってウェ
ハー7上に吹ぎつけられる。
In this case, the gas is blown onto the wafer 7 in the form of a mixed swirling flow.

(発明の効果) 即ちこの発明にJ:れば、ガス流入口とつ■バーとの間
に羽根車を介装したので、羽根車の回転制御によりガス
の流速、流量その伯の流動条件を変化させると共に、ガ
スをウェハー面へ均等に吹きつ【プる効果がある。従っ
てサセプターを回転させる必要がなくなり、キレリヤー
ガスの伍も少なくすみ構造の簡易化のみならず、湯度制
御の精密化が可能になるなど、ウェハーの品質を向上し
1qる効果もある。
(Effect of the invention) That is, according to the present invention, since an impeller is interposed between the gas inlet and the bar, the flow conditions of the gas flow rate and flow rate can be controlled by controlling the rotation of the impeller. It also has the effect of blowing the gas evenly onto the wafer surface. Therefore, there is no need to rotate the susceptor, and the amount of quench gas is reduced, which not only simplifies the corner structure, but also enables more precise control of the hot water temperature, which has the effect of improving the quality of the wafer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明を縦型ガス室に応用した場合の断面図
、第2図は同じくバッチ式ガス室に応用した場合の断′
面図、第3図および第4図は共に固定翼と動Wとを組み
合せた実施例の一部正面図である。 1・・・反応室      2・・・羽根車室5・・・
羽根車      6・・・ガス流入口= 6− 7・・・ウェハー     8・・・すはブタ−17,
19・・・固定翼
Figure 1 is a sectional view when this invention is applied to a vertical gas chamber, and Figure 2 is a sectional view when the invention is applied to a batch type gas chamber.
The plan view, FIG. 3, and FIG. 4 are both partial front views of an embodiment in which a fixed wing and a movable W are combined. 1... Reaction chamber 2... Impeller chamber 5...
Impeller 6... Gas inlet = 6- 7... Wafer 8... Stainless steel pipe 17,
19...Fixed wing

Claims (1)

【特許請求の範囲】 1 反応室の下部に、ウェハーを保持する為のサセプタ
ーが設置され、反応室の上部にガス流入口が設けられ、
前記サセプターとガス流入口との間に、ガスの流動調節
装置を設置したことを特徴とする反応室用ガス導入装置 2 ガス流入口は反応室の上部に連設した羽根車室壁へ
複数等間隔に設けた特許請求の範囲第1項記載の反応室
用ガス導入装置 3 流動調節装置は、回転数可変の羽根車とした特許請
求の範囲第1項記載の反応室用ガス導入装置4 流動調
節装置は、回転数可変の羽根車と、ガス流動案内用の固
定翼とを組み合せた特許請求の範囲第1項記載の反応室
用ガス導入装置
[Claims] 1. A susceptor for holding the wafer is installed in the lower part of the reaction chamber, a gas inlet is provided in the upper part of the reaction chamber,
A gas introduction device for a reaction chamber 2, characterized in that a gas flow control device is installed between the susceptor and the gas inlet. Gas introduction device 3 for a reaction chamber according to claim 1 provided at intervals. Gas introduction device 4 for a reaction chamber according to claim 1, wherein the flow regulating device is an impeller with variable rotation speed. The adjustment device is a gas introduction device for a reaction chamber according to claim 1, which combines an impeller with a variable rotation speed and a fixed blade for guiding gas flow.
JP19153685A 1985-08-30 1985-08-30 Gas introducing apparatus for reaction chamber Pending JPS6251211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19153685A JPS6251211A (en) 1985-08-30 1985-08-30 Gas introducing apparatus for reaction chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19153685A JPS6251211A (en) 1985-08-30 1985-08-30 Gas introducing apparatus for reaction chamber

Publications (1)

Publication Number Publication Date
JPS6251211A true JPS6251211A (en) 1987-03-05

Family

ID=16276299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19153685A Pending JPS6251211A (en) 1985-08-30 1985-08-30 Gas introducing apparatus for reaction chamber

Country Status (1)

Country Link
JP (1) JPS6251211A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4993360A (en) * 1988-03-28 1991-02-19 Kabushiki Kaisha Toshiba Vapor growth apparatus having a diffuser section containing a flow regulating member
US6797108B2 (en) * 2001-10-05 2004-09-28 Applied Materials, Inc. Apparatus and method for evenly flowing processing gas onto a semiconductor wafer
WO2019043129A1 (en) * 2017-08-31 2019-03-07 Katholieke Universiteit Leuven Rotor gas accelerator system and methods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4993360A (en) * 1988-03-28 1991-02-19 Kabushiki Kaisha Toshiba Vapor growth apparatus having a diffuser section containing a flow regulating member
US6797108B2 (en) * 2001-10-05 2004-09-28 Applied Materials, Inc. Apparatus and method for evenly flowing processing gas onto a semiconductor wafer
WO2019043129A1 (en) * 2017-08-31 2019-03-07 Katholieke Universiteit Leuven Rotor gas accelerator system and methods

Similar Documents

Publication Publication Date Title
KR100267520B1 (en) Primary flow cvd apparatus and method
KR0160287B1 (en) Reactant gas injection for ic processing
JP2000331939A (en) Film-forming device
US4632058A (en) Apparatus for uniform chemical vapor deposition
US4848272A (en) Apparatus for forming thin films
JPS6251211A (en) Gas introducing apparatus for reaction chamber
JP2641351B2 (en) Variable distribution gas flow reaction chamber
JP3359474B2 (en) Horizontal heat treatment equipment
JPS59112614A (en) Vapor growth apparatus
JP3397467B2 (en) Substrate processing equipment
JP2918871B1 (en) Silicon semiconductor wafer etching method
JP2618443B2 (en) Vapor phase growth equipment
JP2859164B2 (en) Semiconductor device manufacturing equipment
KR102144094B1 (en) Microwave chamber with blades
JP2004134625A (en) Method and apparatus for manufacturing semiconductor device
KR102228969B1 (en) Microwave chamber with rotating susceptor
JPH07263351A (en) Vapor growth device
EP0330708B1 (en) Apparatus for forming thin films
JPS62150711A (en) Vapor phase growth
JPS63125622A (en) Method for continuous cooling of steel strip in heat treatment stage
JP3393176B2 (en) Vapor phase growth equipment
JPS61257429A (en) Gas jet cooler
JPH11145066A (en) Vapor phase thin film growing device and growing method thereof using the same
JP3249458B2 (en) Heat treatment equipment
JPH03166377A (en) Electron cyclotron resonance plasma cvd device