JPS6250403A - Production of high-carbon chromium bearing steel - Google Patents

Production of high-carbon chromium bearing steel

Info

Publication number
JPS6250403A
JPS6250403A JP19038185A JP19038185A JPS6250403A JP S6250403 A JPS6250403 A JP S6250403A JP 19038185 A JP19038185 A JP 19038185A JP 19038185 A JP19038185 A JP 19038185A JP S6250403 A JPS6250403 A JP S6250403A
Authority
JP
Japan
Prior art keywords
less
steel
content
bearing steel
carbon chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19038185A
Other languages
Japanese (ja)
Other versions
JPS6331525B2 (en
Inventor
Toshiyasu Onishi
大西 稔泰
Kiyoshi Shiaku
塩飽 潔
Shozo Kawasaki
川崎 正蔵
Yasuo Suzuki
康夫 鈴木
Nobuhiro Ueno
上野 伸熹
Kenji Doi
土井 健司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP19038185A priority Critical patent/JPS6250403A/en
Publication of JPS6250403A publication Critical patent/JPS6250403A/en
Publication of JPS6331525B2 publication Critical patent/JPS6331525B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/005Manufacture of stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To produce a high-carbon chromium bearing steel which has a high fatigue life and is ultra-clean by decreasing S, P, Ti and O to specific contents by a preliminary treatment, converter refining and out of furnace refining of a molten iron and executing electromagnetic stirring in continuous casting. CONSTITUTION:P is decreased to <=0.010wt% and S to <=0.007wt% in the preliminary treatment of the molten iron and thereafter Cr is added to the molten steel in a converter at the full amt. of the content of Cr in the product or the amt. approximate to the full amt. under slag minimum blowing in said furnace. Ti is thereby oxidized away and is decreased to <=10ppm. The O in the molten steel is then decreased to 10ppm by out of furnace refining and electromagnetic stirring is executed in a casting mold and at the end period of solidification in the stage of continuous casting to decrease the central segregation of an ingot. The clean steel having <=0.010wt% P, <=0.005wt% S, <=10ppm Ti and <=8ppm O is finally obtd.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は高炭素クロム軸受鋼の製造方法に関し、さらに
詳しくは、超清浄、即ち、高疲労寿命を有する高炭素ク
ロム軸受鋼の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a method for manufacturing high carbon chromium bearing steel, and more particularly, to a method for manufacturing high carbon chromium bearing steel that is ultra-clean, that is, has a high fatigue life. .

[従米扶術1 従来において、超清浄の軸受鋼は真空溶解法により製造
されてお暑)、そして、電気炉精錬や転炉精錬後に炉外
精錬を行ない、連続鋳造・インゴット鋳造する方法では
安定した超清浄鋼を製造することは不可能であった。
[Jumei Fujutsu 1: Conventionally, ultra-clean bearing steel has been produced by the vacuum melting method, and it has been produced using an electric furnace refining method or a converter refining method followed by outside furnace refining, followed by continuous casting or ingot casting. It was not possible to produce ultra-clean steel with high purity.

また、従来においては、Crを添加するのは溶鋼処理中
であり、Cr源からのTiピックアップの問題と加熱す
る処理時間が長いので再酸化する可能性が非常に高いと
いう問題と連続鋳造の場合中心偏析が非常に大きbとい
う問題があった。
In addition, in the past, Cr was added during molten steel processing, which caused problems such as picking up Ti from the Cr source, and a high possibility of re-oxidation due to the long heating process time, and in the case of continuous casting. There was a problem that center segregation was extremely large.

[発明が解決しようとする問題点1 本発明は上記に説明したような種々の問題点に鑑みなさ
れたものであり、本発明者が鋭意研究の結果、軸受鋼の
疲労寿命に対して悪影響を与える有害物のP、S、Ti
、Oの量を極めて少なくし、かつ、中心偏析をも著しく
減することができる高疲労寿命で超清浄の高炭素クロム
軸受鋼の製造方法を開発したのである。
[Problem to be solved by the invention 1 The present invention has been made in view of the various problems as explained above, and as a result of intensive research, the present inventor has found that it has an adverse effect on the fatigue life of bearing steel. Harmful substances P, S, Ti
We have developed a method for producing ultra-clean, high-carbon chromium bearing steel with a long fatigue life, which can significantly reduce the amount of O and center segregation.

[問題点を解決するための手段1 本発明に係る高炭素クロム軸受鋼の製造方法の特徴とす
るところは、溶銑予備処理においてPO0010田[%
以下、S 00007w1%以下に低減してか呟転炉に
おいてスラグミニマム吹錬下で製品Cr含有量の全景を
炉中添加することによすT1101111111以下に
低減し、次いで、炉外精錬によす028ρ1〕口)以下
に低減した溶湯を、連続鋳造に際して鋳型内および凝固
末期に電磁撹拌を行ない鋳片の中心偏析を低減し、最終
的にP 00O1Ou+L%以下、S 0.005wt
%以下、T i Lop(n++以下、O5ppto以
下の清浄鋼とすることにある。
[Means for Solving the Problems 1] The method for manufacturing high carbon chromium bearing steel according to the present invention is characterized by
Hereinafter, the overall Cr content of the product is reduced to below S 00007w1%, and then reduced to below T1101111111 by adding in the furnace under slag minimum blowing in a converter, and then subjected to out-of-furnace refining. During continuous casting, the molten metal reduced to below 0.028ρ1] is electromagnetically stirred in the mold and at the final stage of solidification to reduce center segregation of the slab, and finally P 00O1Ou+L% or below, S 0.005wt
% or less, T i Lop (n++ or less, and O5 ppto or less).

本発明に係る高炭素クロム軸受鋼の製造方法について以
下詳細に説明する。
The method for manufacturing high carbon chromium bearing steel according to the present invention will be described in detail below.

即ち、本発明に係る高炭素クロム袖受鋼の製造方法は、
溶銑予備処理→転炉精錬→炉外精錬→連続鋳造に際し釧
型内畳疑固末ルj撹拌を電磁攪拌を行なう工程において
、夫々の工程において輸受鋼に有害な物質を除去し、が
っ、中心偏析を低減する大量製産か可能である超清浄の
高疲労寿命の高炭素クロム軸受鋼の製造方法である。
That is, the method for manufacturing high carbon chromium sleeve steel according to the present invention is as follows:
During the process of hot metal pretreatment → converter refining → outside furnace refining → electromagnetic stirring during continuous casting, substances harmful to imported steel are removed in each process. , a method for producing ultra-clean, high-fatigue-life, high-carbon chromium bearing steel that reduces center segregation and is mass-producible.

以下、本発明に係る高炭素クロム軸受鋼の製造方法にお
ける夫々の工程について説明する。
Hereinafter, each step in the method for manufacturing high carbon chromium bearing steel according to the present invention will be explained.

溶銑予備処理においては、PおよびSの含有量を著しく
低減する脱燐、脱硫黄を行ない、第1図(a)(b)に
示すように、少なくとらP含有量は0.010u1%以
下およびS含有量を0.007wt%以下に低減し、転
炉におけるスラグミニマム吹錬を可能とするものである
In hot metal pretreatment, dephosphorization and desulfurization are performed to significantly reduce the P and S contents, and as shown in Figure 1 (a) and (b), the P content is at least 0.010u1% or less. This reduces the S content to 0.007 wt% or less and enables minimum slag blowing in the converter.

転炉においては、スラグミニマム吹錬下で軸受鋼中のO
r含有量の全量を転炉で炉中添加することにより、Cr
源の中に含有されているTiを酸化除去して、10pp
I11以下(第2図(a)では5.6wt%)とする。
In a converter, O in bearing steel is removed under minimum slag blowing.
By adding the entire r content in the converter, Cr
By oxidizing and removing Ti contained in the source, 10pp
I11 or less (5.6 wt% in FIG. 2(a)).

この時スラグ量か少ないとCrの歩留りが向上し、また
、Ti含有量の多い低級のFeCr合、金をCr源とし
て用いても、Tiか酸化除去で外る。
At this time, if the amount of slag is small, the yield of Cr will improve, and even if a low grade FeCr alloy or gold with a high Ti content is used as a Cr source, Ti will be removed by oxidation.

このように、Ti含有量が極めて少なくなると、第2図
(b)に示すスラスト形転勤疲労試験磯による軸受とし
ての性能、即ち、寿命(B、、)が非常に優れたものと
なる。因に、おの第2図(b)において、Ti含有量が
10ppmを越えるとB I Oが極端に短かくなるこ
とがわかる。
As described above, when the Ti content becomes extremely low, the performance as a bearing, that is, the life (B, ), as shown in FIG. Incidentally, in FIG. 2(b), it can be seen that when the Ti content exceeds 10 ppm, the B IO becomes extremely short.

炉外精錬は、前工程においてCrを添加するため脱酸を
主に行なうものであり、02含有量を8111][11
以下(第3図では6.4pO「n)となるように処理全
行なら。
Ex-furnace refining mainly performs deoxidation in order to add Cr in the previous step, and the 02 content is reduced to 8111][11
If all rows are processed so that the value is below (6.4 pO'n in Figure 3).

このようにして最終的には、第1図〜第3図に示すよう
にP 0.010wt%以下、S 0.006wt%以
下、Ti 10ppm以下、OSqqm以下の清浄鋼が
得られる。
In this way, as shown in FIGS. 1 to 3, clean steel with P of 0.010 wt% or less, S of 0.006 wt% or less, Ti of 10 ppm or less, and OSqqm or less is obtained.

連続鋳造に際して鋳型内および凝固末期における電磁攪
拌において、連続鋳造は造塊工程に比べ溶湯注入時の再
酸化防止を行なうことができ、かつ、TD使用による介
在物の低減および鋳型内の溶鋼の電磁撹拌による介在物
の浮上分離を行ない、さらに、鋳型内とぜ疑固末期にお
ける電磁撹拌により鋳片の中心偏析を問題のない水準に
主で軽減し、従って、この二度の溶鋼に対する電磁撹拌
により介在物を除去すると共に中心偏析を著しく低減さ
せるものである。即ち、高炭素クロム軸受鋼においては
、マツシーゾーンの非常に広い鋼種であり、凝固末期に
はブリッジングか゛でき易く、このブリッジングの形成
を阻止し、均一凝固を行なわせるためには、’t8湯の
凝固末期における電磁撹拌が必要である。また、この電
Mi撹拌を時期は残存溶鋼プール厚さが40〜80mm
の時点か非常に有効である。
During continuous casting, in electromagnetic stirring inside the mold and at the final stage of solidification, continuous casting can prevent re-oxidation during pouring of molten metal compared to the ingot making process, and can reduce inclusions by using TD and reduce electromagnetic stirring of molten steel in the mold. The inclusions are floated and separated by stirring, and the center segregation of the slab is mainly reduced to a non-problematic level by electromagnetic stirring in the mold during the final stage of solidification. This removes inclusions and significantly reduces center segregation. In other words, high-carbon chromium bearing steel has a very wide mushy zone and is prone to bridging at the final stage of solidification. Electromagnetic stirring is required at the final stage of solidification. In addition, this electric Mi stirring should be performed when the thickness of the remaining molten steel pool is 40 to 80 mm.
It is very effective at this point.

第・1図(a)に鋳型内における電磁撹拌と第4図(b
)に鋳型内子溶湯凝固末期の二度の電磁撹拌の鋳片にお
ける偏析度の比較を示しであるが、第2図(1))に示
す鋳型内+溶湯凝固末期における電磁撹拌の二度による
場合が偏析度ΔC= 1.3であって、鋳型内のみの場
合に比して、偏析度は1/2以下になっており優れてい
ることがわかる。
Figure 1 (a) shows the electromagnetic stirring inside the mold and Figure 4 (b).
) shows a comparison of the degree of segregation in the slab after electromagnetic stirring twice at the final stage of solidification of the molten metal inside the mold. The degree of segregation ΔC is 1.3, and the degree of segregation is 1/2 or less compared to the case only in the mold, which is excellent.

このような、各工程を結合することによって、超清浄の
高疲労寿命の高炭素クロム紬受鋼を安定して大量に生産
することができる。
By combining these various processes, it is possible to stably produce a large amount of ultra-clean, high-carbon chromium pongee steel with a long fatigue life.

[実 施 例1 本発明に係る高炭素クロム軸受鋼の製造方法の実施例を
説明する。
[Example 1] An example of the method for manufacturing high carbon chromium bearing steel according to the present invention will be described.

実施例 溶銑予備処理 溶銑予備処理炉において、CaO系脱燐剤23kg/屯
添加し、同時に、ソーブ灰系脱硫黄剤10kg/屯添加
して溶銑を処理した。
EXAMPLE Hot metal pretreatment In a hot metal pretreatment furnace, 23 kg/tonne of a CaO-based dephosphorizing agent was added, and at the same time, 10 kg/tonne of a sorb ash-based desulfurizing agent was added to treat the hot metal.

[P]  ”  0,006uIt%および[S]  
=  0.004iut%となり、転炉におけるスラグ
ミニマム吹錬が可能となった。このP、Sの量はJIS
SUJ2および5AE(A IS I) 52100の
軸受鋼の両規格のP含有量≦0.025wL%、S含有
量≦0.025wt%より逼かに低い含有量となってい
る。
[P]” 0,006uIt% and [S]
= 0.004 iut%, making it possible to carry out minimum slag blowing in the converter. The amounts of P and S are JIS
The content is much lower than the P content≦0.025wL% and the S content≦0.025wt% of both SUJ2 and 5AE (AIS I) 52100 bearing steel standards.

転炉処理(上下吹転炉) スラグ50kg/屯を使用し、Fe−Cr合金を添加し
、Cr歩留り90%で[CrJ含有量は1,30wt%
となった。
Converter treatment (top and bottom blowing converter) Using 50 kg/ton of slag, adding Fe-Cr alloy, with a Cr yield of 90% [CrJ content is 1.30 wt%
It became.

また、Ti含有量も転炉出鋼後10ppm以下になって
いた。
Moreover, the Ti content was also 10 ppm or less after steel tapping in the converter.

炉外精錬 02含有量を6ppL11にまで低減し、次いで、次工
程の連続鋳造を行なった。
The O2 content in the out-of-furnace refining was reduced to 6 ppL11, and then the next step of continuous casting was performed.

連続鋳造 鋳型内および凝固末期において、電磁撹拌を二度行なっ
た。
Electromagnetic stirring was performed twice in the continuous casting mold and at the end of solidification.

製造された軸受鋼の成分は、 C1,00wt%、Si 0.25wL%、Mn 0.
32u+L%、P 0.005Illt%、S 0.0
0buL%、Cu 0.01wt%、Ni  0.01
u+L%、  Cr  1,45wL%、  0 6p
pm、T i 10ppm であった。
The components of the produced bearing steel are: C1.00wt%, Si 0.25wL%, Mn 0.
32u+L%, P 0.005Illt%, S 0.0
0buL%, Cu 0.01wt%, Ni 0.01
u+L%, Cr 1.45wL%, 0 6p
pm, T i was 10 ppm.

このようにして製造された軸受鋼の転勤疲労が命を第5
図に示す。
Transfer fatigue of bearing steel manufactured in this way can be life-threatening.
As shown in the figure.

試験条件 負荷   500kg/市2 速度   11000rp 潤滑油  井60spindle oil・ 縦断面、
 ○ 横断面 この第5図からも、縦、横共に疲労寿命は殆んど同等で
あt)優れていることがわかる。
Test conditions Load: 500 kg/city 2 Speed: 11,000 rpm Lubricating oil Well: 60 spindle oil・Vertical section,
○ Cross section It can also be seen from this Figure 5 that the fatigue life is almost the same in both the vertical and horizontal directions, which is excellent.

[発明の効果1 以上説明したように、本発明に係る高炭素クロム軸受鋼
の製造方法は上記の構成であるから、超清浄の軸受鋼を
製造することができ、さらに、得られた軸受鋼は転勤疲
労寿命を延長できる優れた効果を有するものである。
[Effects of the Invention 1] As explained above, since the method for manufacturing high carbon chromium bearing steel according to the present invention has the above configuration, ultra-clean bearing steel can be manufactured, and furthermore, the obtained bearing steel has the excellent effect of extending the fatigue life due to transfer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)(b)は溶銑予備処理によるPおよびSの
低減を示す図、第2図(a)(b)は転炉におけるTi
の低減とTi含有量とB 10との関係を示す図、第3
図は炉外精錬によるo2量の低減を示す図、第4図(a
)(b)は鋳型内電磁撹拌と鋳型内+溶湯凝固末期の二
度の電磁撹拌との偏析度を示す図、第5図は疲労寿命と
累積破損確率との関係を示す図である。 −く θ       1 V             閃 Blo AQ(xlo ) 才3図 U  24 6 81012 P、、。 偏析水(ムCIysctシ・) T醤礒1塁確忰(%) 手続補正書(自発) 昭和61年11月19日 特許庁長官 黒 1)明 雄 殿         4
1、事件の表示 昭和60年特許願第190381号 2 発明の名称 高炭素クロム軸受鋼の製造方法 3、補正をする者 事件との関係  特許出願人 住所 神戸市中央区脇浜町1丁目3番18号名称 (1
19)  株式会社 神戸製鋼所住所 東京都江東区南
砂2丁目2番15号藤和東陽町コープ901号 5、補正命令の日付 (自発) 6、補正の対象 (1)明細書の特許請求の範囲の欄 (2)明細書の発明の詳細な説明の欄 (3)明細書の図面の簡単な説明の欄 7、補正の内容 別紙の通り (1)特許請求の範囲を次の用に補正する。 [溶銑予備処理においてP 0.010wt%以下、S
0.007vt%以下に低減してから、転炉においてス
ラグミニマム吹錬下で製品Cr含有量の全mもしくは全
量に近い量を炉中添加すると共にTilOppm以下に
低減し、次いで、炉外精錬によりO。 +oppm以下に低減した溶湯を、連続鋳造に際して鋳
型内および凝固末期に電磁撹拌を行ない鋳片の中心偏析
を低減し、最終的にP 0.010wt%以下、S 0
.005wt%以下、Ti 10ppm以下、08pp
m以下の清浄鋼とすることを特徴とする高炭素クロム軸
受鋼の製造方法。」 (2)明細書第3頁6行行の「大きb」を「大きい」と
補正する。 (3)明細書第3頁6行の「溶湯」を1溶鋼」に補正す
る。 (4)明細書第3頁15行の「凝固末期撹拌を」を「凝
固末期に」と補正する。 (5)明細書第3頁18行の「大量製産」を「大m生産
」と補正する。 (6)明細書第4頁18行の「おの」を「こめ」とhl
i正する。 (7)明細書第5頁6行のrS 0.006wt%以下
、」をIs 0.005wt%以下、」と補正する。 (8)明細書第5頁7行のro 8qqm以下」をr0
8ppm以下」と補正する。 (9)明細書第3頁6行行、同第6頁6行および同第9
頁7行の「溶湯」を「溶鋼」と補正する。
Figures 1 (a) and (b) show the reduction of P and S by hot metal pretreatment, and Figures 2 (a) and (b) show the reduction of Ti in the converter.
Figure 3 showing the relationship between the reduction in Ti content and B10.
The figure shows the reduction of O2 amount by out-of-furnace refining, Figure 4 (a
) (b) is a diagram showing the degree of segregation between electromagnetic stirring inside the mold and twice electromagnetic stirring inside the mold + at the end of solidification of the molten metal, and FIG. 5 is a diagram showing the relationship between fatigue life and cumulative failure probability. -kuθ 1 V FlashBlo AQ(xlo) Year 3 Figure U 24 6 81012 P,,. Segregated water (MUCIysctshi) T soybean 1st base confirmation (%) Procedural amendment (voluntary) November 19, 1985 Commissioner of the Patent Office Black 1) Mr. Akihiro 4
1. Indication of the case 1985 Patent Application No. 190381 2 Name of the invention Process for manufacturing high carbon chromium bearing steel 3. Person making the amendment Relationship to the case Patent applicant address 1-3-18 Wakihama-cho, Chuo-ku, Kobe City Issue name (1
19) Kobe Steel, Ltd. Address: 901-5 Fujiwa Toyocho Co-op, 2-2-15 Minamisuna, Koto-ku, Tokyo Date of amendment order (voluntary) 6. Subject of amendment (1) Scope of claims in the specification Column (2) Detailed description of the invention in the specification (3) Brief description of the drawings in the specification Column 7 Contents of the amendment As shown in the attached sheet, (1) The claims are amended as follows. [In hot metal pretreatment, P 0.010wt% or less, S
After reducing the Cr content to 0.007vt% or less, add the entire Cr content of the product or an amount close to the total amount in the converter under slag minimum blowing in the furnace and reduce it to TilOppm or less, and then refining outside the furnace. O. During continuous casting, the molten metal reduced to +oppm or less is subjected to electromagnetic stirring in the mold and at the final stage of solidification to reduce center segregation of the slab, resulting in P of less than 0.010 wt% and S0
.. 005wt% or less, Ti 10ppm or less, 08pp
1. A method for producing high carbon chromium bearing steel, characterized in that the steel is made of clean steel with a molecular weight of less than m. (2) "Large b" on page 3, line 6 of the specification is corrected to "large." (3) "Molten metal" on page 3, line 6 of the specification is corrected to "1 molten steel." (4) "Agitation at the end of coagulation" on page 3, line 15 of the specification is corrected to "at the end of coagulation." (5) "Mass production" on page 3, line 18 of the specification is corrected to "large m production." (6) “Ono” on page 4, line 18 of the specification is changed to “kome” (hl)
i Correct. (7) "rS 0.006 wt% or less" on page 5, line 6 of the specification is corrected to "Is 0.005 wt% or less." (8) "ro 8qqm or less" on page 5, line 7 of the specification is r0
8 ppm or less”. (9) Page 3, line 6 of the specification, page 6, line 6, and line 9 of the specification
Correct "molten metal" in line 7 of page to "molten steel."

Claims (1)

【特許請求の範囲】[Claims] 溶銑予備処理においてP0.010wt%以下、S0.
007wt%以下に低減してから、転炉においてスラグ
ミニマム吹錬下で製品Cr含有量の全量を炉中添加する
と共にTi10ppm以下に低減し、次いで、炉外精錬
によりO_210ppm以下に低減した溶湯を、連続鋳
造に際して鋳型内および凝固末期に電磁撹拌を行ない鋳
片の中心偏析を低減し、最終的にP0.010wt%以
下、S0.005wt%以下、Ti10ppm以下、O
8ppm以下の清浄鋼とすることを特徴とする高炭素ク
ロム軸受鋼の製造方法。
In hot metal pretreatment, P0.010wt% or less, S0.
After reducing the Cr content to 0.07 wt% or less, the entire Cr content of the product was added in the converter under slag minimum blowing and Ti was reduced to 10 ppm or less, and then the molten metal was reduced to O_210 ppm or less by out-of-furnace refining. During continuous casting, electromagnetic stirring is performed inside the mold and at the final stage of solidification to reduce center segregation of the slab, resulting in P0.010wt% or less, S0.005wt% or less, Ti10ppm or less, O
A method for producing high carbon chromium bearing steel, characterized in that the steel has a clean content of 8 ppm or less.
JP19038185A 1985-08-29 1985-08-29 Production of high-carbon chromium bearing steel Granted JPS6250403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19038185A JPS6250403A (en) 1985-08-29 1985-08-29 Production of high-carbon chromium bearing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19038185A JPS6250403A (en) 1985-08-29 1985-08-29 Production of high-carbon chromium bearing steel

Publications (2)

Publication Number Publication Date
JPS6250403A true JPS6250403A (en) 1987-03-05
JPS6331525B2 JPS6331525B2 (en) 1988-06-24

Family

ID=16257223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19038185A Granted JPS6250403A (en) 1985-08-29 1985-08-29 Production of high-carbon chromium bearing steel

Country Status (1)

Country Link
JP (1) JPS6250403A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014012302A1 (en) * 2012-07-19 2014-01-23 中国科学院金属研究所 Method for controlling a segregation of steel ingots by purification of molten steel
CN103667928A (en) * 2013-11-29 2014-03-26 莱芜钢铁集团有限公司 Cold shortness resistant N80 petroleum pipe steel and manufacturing method thereof
CN109402327A (en) * 2018-11-22 2019-03-01 江阴兴澄特种钢铁有限公司 A kind of external refining production method of super clean high-carbon-chromium bearing steel
CN109943685A (en) * 2019-02-20 2019-06-28 江阴兴澄特种钢铁有限公司 A kind of external refining production method of hypoxemia low titanium high-carbon-chromium bearing steel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572813A (en) * 1980-06-07 1982-01-08 Nippon Steel Corp Production of decarbonized and melted stainless steel
JPS59104417A (en) * 1982-12-06 1984-06-16 Nippon Steel Corp Preparation of stainless steel
JPS60137560A (en) * 1983-12-27 1985-07-22 Kobe Steel Ltd Continuous casting method of high-carbon chromium bearing steel
JPS60190381A (en) * 1984-03-13 1985-09-27 Nippon Kogaku Kk <Nikon> Color border detector for ink sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572813A (en) * 1980-06-07 1982-01-08 Nippon Steel Corp Production of decarbonized and melted stainless steel
JPS59104417A (en) * 1982-12-06 1984-06-16 Nippon Steel Corp Preparation of stainless steel
JPS60137560A (en) * 1983-12-27 1985-07-22 Kobe Steel Ltd Continuous casting method of high-carbon chromium bearing steel
JPS60190381A (en) * 1984-03-13 1985-09-27 Nippon Kogaku Kk <Nikon> Color border detector for ink sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014012302A1 (en) * 2012-07-19 2014-01-23 中国科学院金属研究所 Method for controlling a segregation of steel ingots by purification of molten steel
CN103667928A (en) * 2013-11-29 2014-03-26 莱芜钢铁集团有限公司 Cold shortness resistant N80 petroleum pipe steel and manufacturing method thereof
CN109402327A (en) * 2018-11-22 2019-03-01 江阴兴澄特种钢铁有限公司 A kind of external refining production method of super clean high-carbon-chromium bearing steel
CN109402327B (en) * 2018-11-22 2020-09-01 江阴兴澄特种钢铁有限公司 External refining production method of ultrapure high-carbon chromium bearing steel
CN109943685A (en) * 2019-02-20 2019-06-28 江阴兴澄特种钢铁有限公司 A kind of external refining production method of hypoxemia low titanium high-carbon-chromium bearing steel

Also Published As

Publication number Publication date
JPS6331525B2 (en) 1988-06-24

Similar Documents

Publication Publication Date Title
US20080257106A1 (en) Process for Producing a High-Cleanliness Steel
EP0236505A1 (en) Case-hardening steel and process for its production
CN112063916A (en) Preparation method of magnesium-based high-sulfur free-cutting steel
CN110592461B (en) Smelting method of alloy structural steel 45CrNi
CN1059371A (en) The electroslag remelting technique of the low aluminium of control
JPS6250403A (en) Production of high-carbon chromium bearing steel
CN109666863A (en) Preparation method, crankshaft material, crankshaft, engine and the application of crankshaft material
US3607227A (en) Production of spheroidal graphite irons
JP2523516B2 (en) Method for manufacturing case-hardening steel with excellent rolling fatigue
JP2855333B2 (en) Modification method of molten steel slag
JPS63161113A (en) Method for refining steel
JP3820686B2 (en) Melting method of low nitrogen stainless steel
JPS5970710A (en) Production of highly clean steel
SU390148A1 (en) METHOD OF MANUFACTURE QUIET CARBON
JPS592736B2 (en) Cr↓-Mo steel for pressure vessels
US1695594A (en) Steel and method of making the same
KR100356161B1 (en) Manufacturing method of high clean steel for two piece can
SU580228A1 (en) Method of melting bearing steel
JPH0645818B2 (en) Bearing steel manufacturing method
SU1381167A1 (en) Method of producing metal-rolling rolls
SU1497230A1 (en) Method of producing ball-bearing steel
CN114807517A (en) Method for increasing nitrogen content in nitrogen-containing steel
SU1120022A1 (en) Method of alloying steel with nitrogen
CN114921614A (en) Method for increasing nitrogen content in low-alloy high-strength steel
JPH0247215A (en) Manufacture of extremely low carbon steel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees