JPS6250229A - Transmission torque controlling device for four-wheel-drive vehicle - Google Patents

Transmission torque controlling device for four-wheel-drive vehicle

Info

Publication number
JPS6250229A
JPS6250229A JP19103585A JP19103585A JPS6250229A JP S6250229 A JPS6250229 A JP S6250229A JP 19103585 A JP19103585 A JP 19103585A JP 19103585 A JP19103585 A JP 19103585A JP S6250229 A JPS6250229 A JP S6250229A
Authority
JP
Japan
Prior art keywords
torque
control
transmission
distribution ratio
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19103585A
Other languages
Japanese (ja)
Inventor
Kenichi Watanabe
憲一 渡辺
Hideji Hiruta
昼田 秀司
Manabu Hikita
引田 学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP19103585A priority Critical patent/JPS6250229A/en
Priority to EP86111919A priority patent/EP0215352B1/en
Priority to DE8686111919T priority patent/DE3668586D1/en
Priority to US06/901,776 priority patent/US4709775A/en
Publication of JPS6250229A publication Critical patent/JPS6250229A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

PURPOSE:To keep a torque distribution ratio at a constant value as desired by controlling the transmitted torque amount of a power transmission means based on the measurement of such items as the difference in rotation speed between a front and a rear wheel, a car speed, and a body speed ratio. CONSTITUTION:Such signals as Sv, Sa, and SDELTAn from each of sensors are inputted into a controlling unit 14 so as to allow Sa to form a judgement as to whether a car is running straight ahead or is making a turn. Then such a control curve as 11, 12, and 13 of M1, or 14, 15, and 16 of M2, each of which corresponds to each of running conditions, is selected based on a car speed or a steering angle by means of a control map M1 or M2, or operation formulas. Then the selected curve is checked up with the signal SDELTAn for the difference in rotation speed so as to determine controlling electric current 'i'. Then a hydraulic pressure proportional to the current is supplied to a clutch 5 by a hydraulic valve 13 so that the clutch 5 is joined so as to transmit the torque Tr proportional to the joining force to a propeller shaft 6. With this, a torque distribution ratio between a front and a rear wheel can be kept at a desired value so as to improve the running performance.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、4輪駆動車の伝達トルク制御装置に関し、更
に詳細には、前後輪へのトルク配分比を一定に維持する
ことのできる4輪駆動車の伝達トルク制御装置に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a transmission torque control device for a four-wheel drive vehicle. The present invention relates to a transmission torque control device for a wheel drive vehicle.

(従来の技術) 4輪駆動車としては、例えば実開昭56−122630
号公報に示されているようにエンジン、トランスミッシ
ョン等からなるパワープラントに直接接続された第1駆
動軸と、パワープラントにクラッチ機構等の動力伝達手
段を介して接続された第2駆動軸とを備え、上記クラッ
チ機構の締結と解除を制御することによって、2輪駆動
と4輪駆動の切換えを行なうことができるものが知られ
ている。
(Prior art) As a four-wheel drive vehicle, for example,
As shown in the publication, a first drive shaft is directly connected to a power plant consisting of an engine, a transmission, etc., and a second drive shaft is connected to the power plant via a power transmission means such as a clutch mechanism. There is known a vehicle that can switch between two-wheel drive and four-wheel drive by controlling the engagement and release of the clutch mechanism.

(発明が解決しようとする問題点) 4輪駆動車における前後輪へのトルク配分比の調整は、
例えば上述の2輪駆動と4輪駆動の切換えを行なうクラ
ッチ機構の締結力を調節し、このクラッチ機構の伝達ト
ルク量を制御することによって行なうことができる。と
ころが、この機構により前後輪のトルク配分1ヒを調整
したときには、パワープラント出力トルクが変動した場
合には、−11記クラツチの機構の締結力を調整し、そ
の伝達トルク量を変動させてやらなければトルク配分比
を一定に保つことはできない。これは、クラッチ機構の
伝達トルクが、その締結力の変動によってのみ変動する
からである。
(Problem to be solved by the invention) Adjustment of the torque distribution ratio between the front and rear wheels in a four-wheel drive vehicle is as follows:
For example, this can be done by adjusting the engagement force of a clutch mechanism that switches between two-wheel drive and four-wheel drive as described above, and controlling the amount of torque transmitted by this clutch mechanism. However, when the torque distribution between the front and rear wheels is adjusted using this mechanism, if the power plant output torque fluctuates, the tightening force of the clutch mechanism described in -11 must be adjusted to vary the amount of transmitted torque. Otherwise, the torque distribution ratio cannot be kept constant. This is because the transmission torque of the clutch mechanism varies only due to variations in its engagement force.

パワープラント出力トルクの変動に伴ないクラッチ機構
の伝達トルク量を制御するには、例えばパワープラント
出力トルクをトルク検出器を用いて検出し、この検出攪
に基づきクラッチ機構の締結力を調整してやればよい。
In order to control the amount of torque transmitted by the clutch mechanism due to fluctuations in the power plant output torque, for example, the power plant output torque can be detected using a torque detector, and the engagement force of the clutch mechanism can be adjusted based on this detected fluctuation. good.

ところが、」1記トルク検出器は極めて高価なものであ
り、このため装置全体が高価なものとなってしまうとい
う問題がある。
However, the torque detector described in item 1 is extremely expensive, and therefore, there is a problem in that the entire device becomes expensive.

(問題を解決するだめの手段) そこで本発明は、パワープラント出力トルクの変動に伴
ない前後輪の回転速度差が変動することに着目し、この
回転速度差に基づき、−1−記動力伝達手段の伝達トル
ク量を調整し、これによって前後輪のトルク配分比を所
望の値に維持することを特徴とするものである。
(Means for Solving the Problem) Therefore, the present invention focuses on the fact that the rotational speed difference between the front and rear wheels fluctuates as the power plant output torque fluctuates, and based on this rotational speed difference, -1- The present invention is characterized in that the amount of torque transmitted by the means is adjusted, thereby maintaining the torque distribution ratio between the front and rear wheels at a desired value.

すなわち本発明の4輪駆動車の伝達l・ルク制fffl
装置は、パワープラントからのトルクを前後輪にそれぞ
れ伝達するトルク伝達経路の少なくとも一方に、トルク
伝達量可変の動力伝達手段が設けられ、この動力伝達手
段を可変制御して前後輪へのトルク配分を制御する4輪
駆動車の伝達トルク制御装置であって、車速を検出する
車速検出手段、舵角を検出する舵角検出手段、前後輪回
転速度差を検出する回転速度差検出手段、および前記3
つの検出手段からの出力信号を受け、前記3つの検出手
段からの出力信号に基づき、前後輪トルク配分比が常に
所望の一定の配分比になるように、前記動力伝達手段の
トルク伝達量を制御する制御手段を備えていることを特
(敷とするものであり、以下に説明する原理に基づいて
いる。
That is, the transmission l/lux controlfffl of the four-wheel drive vehicle of the present invention
The device is provided with a power transmission means that can vary the amount of torque transmission on at least one of the torque transmission paths that transmits torque from the power plant to the front and rear wheels, respectively, and the power transmission means is variably controlled to distribute the torque to the front and rear wheels. A transmission torque control device for a four-wheel drive vehicle, which includes vehicle speed detection means for detecting vehicle speed, steering angle detection means for detecting a steering angle, rotational speed difference detection means for detecting a difference in rotational speed between front and rear wheels, and the above-mentioned 3
Based on the output signals from the three detection means, the torque transmission amount of the power transmission means is controlled so that the front and rear wheel torque distribution ratio always becomes a desired constant distribution ratio. The invention is based on the principle described below.

(発明の原理) まず、リヤ側に」−記動力伝達手段を設け、パワープラ
ント出力トルクをTp、フロントおよびリヤ側トルクを
それぞれT r 、Tr %目標リヤトルク配分率を1
」とすると、次のような式が成り立つ。
(Principle of the Invention) First, a force transmission means is provided on the rear side, the power plant output torque is Tp, the front and rear torques are respectively T r , and the target rear torque distribution ratio is 1
'', then the following formula holds true.

T、=Tr +T、       、−−−−0(1)
Tr −uT、         ・・・・・・(2)
1」 また、フロントおよびリヤ駆動力をそれぞれFfNFr
 、フロントおよびリヤタイヤスリップ比をS f −
、Sr %フロントおよびリヤタイヤ角速度をω1、1
、フロントおよびリヤ接地荷重をω N、、Nr、フロントおよびリヤタイヤ動的有効半径を
R,、R,、左右を平均してのフロントおよびリア車体
速度をV (、Vr 、駆動計数をμ、タイヤのスリッ
プ特性より決まる定数をkとすると、次の式が成り立つ
。なお、上記、駆動計数μ、定数には第8図に示すよう
な使用するタイヤ固有のスリップ特性から求められる値
で μmF/N (F ;駆動力、N;接地荷重)k−μ/
S(S;スリップ率) である。
T,=Tr +T, ,---0(1)
Tr-uT, ......(2)
1" Also, the front and rear driving forces are respectively FfNFr.
, the front and rear tire slip ratios are S f −
, Sr % front and rear tire angular velocity ω1,1
, front and rear ground contact loads are ω N,, Nr, front and rear tire dynamic effective radii are R,, R,, front and rear vehicle body speeds averaged from left and right are V (, Vr, drive coefficient is μ, tire If k is a constant determined from the slip characteristics of (F: driving force, N: ground load) k-μ/
S (S; slip rate).

Ff =μNr  = k Sr Nr  ・・・・・
・(4)Fr  −μN、  −k S、 Nr・・−
(5)更に、フロントおよびリヤギヤ比(ペロペラシャ
フト/ハーフシャフト)をG f 、Gr 、フロント
およびリヤ側のペロペラシャフトの各速度をnr 、n
r  とそれぞれすると、トルクと角回転速度の関係は
、次の式で表わすことができる。
Ff = μNr = k Sr Nr...
・(4) Fr −μN, −k S, Nr・・−
(5) Furthermore, the front and rear gear ratios (pellet shaft/half shaft) are G f , Gr , and the respective speeds of the front and rear propeller shafts are nr , n
The relationship between torque and angular rotational speed can be expressed by the following equation.

L+r n(=Gr  ωr          ・・・・・・
(10)n 7  ” G r  ω、       
   ・・・・・・(■1)式(4)、(6)、(8)
、(10)から式(5)、(7)、(9)、(11)か
ら式(12)から 式(13)から フロントとリヤの車体速度比tは、 ■。
L+r n(=Gr ωr ・・・・・・
(10) n 7 ” G r ω,
・・・・・・(■1) Equations (4), (6), (8)
, (10), from equations (5), (7), (9), (11), from equations (12), from equations (13), the front and rear vehicle speed ratio t is: (1).

で表わすことができる。式(14)、(15)、(16
)からリヤトルクと各回転速度との関係は、式(3)、
(17)から次のように表わすことができる。
It can be expressed as Equations (14), (15), (16
), the relationship between rear torque and each rotational speed is expressed by equation (3),
From (17), it can be expressed as follows.

、−、T、− ・・・・・・(18) リヤトルクと前後輪の回転速度差を八nの関係は次のよ
うに示すことができる。
, -, T, - (18) The relationship between the rear torque and the rotational speed difference between the front and rear wheels (8n) can be expressed as follows.

Δn−ηf−η、     ・・・・・・(19)、°
、η、−71.−八n    ・・・・・・(20)式
(18)、(20)より 1メーゝ\、                  メ
ール−き+1 メ             H 従って、車両の走行条件(例えば車速やコーナリング)
に応じて予め設定した目標リヤトルク配分率11を一定
とするには、前後輪回転速度差△n、フロント側プロペ
ラシャフト角速度n、および車体速度比tを測定し、」
1記式(21)にあてはめ、リヤ側トルクT、を得られ
た値とすればよい。なお、舵角を一定にした場合、およ
び車速を一定にした場合の」1記式(21)から得られ
たリヤ側トルクTrと回転速度差△nの関係を第1図、
第2図に示した。
Δn−ηf−η, ・・・・・・(19), °
, η, −71. -8n ......(20) From formulas (18) and (20), 1 m\, mail + 1 m H Therefore, the driving conditions of the vehicle (e.g. vehicle speed and cornering)
In order to keep the target rear torque distribution ratio 11 set in advance in accordance with
The value obtained by applying the equation (21) to the rear side torque T may be used. In addition, the relationship between the rear side torque Tr obtained from equation (21) and the rotational speed difference Δn when the steering angle is constant and the vehicle speed is constant is shown in Figure 1.
It is shown in Figure 2.

なお、前輪の間隔をす3、後輪の間隔をb2、前後輪の
間隔を11転舵状態の内側の前輪の舵角をα1 、外側
の前輪の舵角をα2、回転中心から内側および外側の前
輪および内側および外側の後輪への距離をそれぞれR1
、R2、R3、R4とすると、車体速度比tは次のよう
に表わすことができる。
In addition, the distance between the front wheels is 3, the distance between the rear wheels is b2, the distance between the front and rear wheels is 11, the steering angle of the inside front wheel in the steered state is α1, the steering angle of the outside front wheel is α2, and the inside and outside from the rotation center. R1 is the distance to the front wheel and the inner and outer rear wheels respectively.
, R2, R3, and R4, the vehicle speed ratio t can be expressed as follows.

tan α、     tan α2 従って、舵角がわかれば、車体速度比tは知ることがで
きる。
tan α, tan α2 Therefore, if the steering angle is known, the vehicle speed ratio t can be known.

(発明の効果) 以」二説明した構成の本発明の4輪駆動車の伝達トルク
制御装置においては、エンジンの出力トルクが変化した
としても、前後輪回転速度差、車速および車体速度比を
測定し、これらの測定値に基づいて動力伝達手段のトル
ク伝達量を制御するだけで、前後輪のトルク配分比を一
定に維持することができ、従って高価なトルク伝達量等
を用ことなく、高精度な前後輪のトルク配分制御が行な
える。
(Effects of the Invention) In the transmission torque control device for a four-wheel drive vehicle of the present invention having the configuration described above, even if the output torque of the engine changes, the difference in rotational speed between the front and rear wheels, the vehicle speed, and the vehicle body speed ratio can be measured. However, by simply controlling the torque transmission amount of the power transmission means based on these measured values, it is possible to maintain a constant torque distribution ratio between the front and rear wheels. Accurate torque distribution control between front and rear wheels is possible.

(実施例) 以下、添付図面を参照しつつ本発明の好ましい実施例に
よる4輪駆動車の伝達トルク制御装置について説明する
(Embodiment) Hereinafter, a transmission torque control device for a four-wheel drive vehicle according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings.

第3図および第4図は、本発明の一実施例を示すもので
ある。第3図において、符号1はパワープラントを示し
、このパワープラント1はエンジンおよびトランスミッ
ション等からなっている。
3 and 4 show an embodiment of the present invention. In FIG. 3, reference numeral 1 indicates a power plant, and this power plant 1 consists of an engine, a transmission, and the like.

このパワープラン)1の出力軸2には、歯車列3を介し
てフロント側プロペラシャフト4が連結されているとと
もに、動力伝達手段である油圧式可変クラッチ5を介し
てリヤ側プロペラシャフト6が接続されている。フロン
ト側プロペラシャフト4はファイナルギヤユニット7を
介して前輪8にリヤ側プロペラシャフト6はファイナル
ギヤユニット9を介して後輪1oにそれぞれ接続されて
いる。以上の構成において、クラッチ5へ加える作動油
の圧力を変化させて、クラッチ5の伝達トルク量を変化
させ、これにより前後輪のトルク配分比を調整する。
A front propeller shaft 4 is connected to the output shaft 2 of the power plan 1 via a gear train 3, and a rear propeller shaft 6 is connected via a hydraulic variable clutch 5, which is a power transmission means. has been done. The front propeller shaft 4 is connected to a front wheel 8 via a final gear unit 7, and the rear propeller shaft 6 is connected to a rear wheel 1o via a final gear unit 9. In the above configuration, the pressure of the hydraulic oil applied to the clutch 5 is changed to change the amount of torque transmitted by the clutch 5, thereby adjusting the torque distribution ratio between the front and rear wheels.

次に、第4図を参照しつつ、上記クラッチ5のための油
圧制御系について説明する。図に示すように、油タンク
11内の作動油は、ポンプ12によって吸い上げられ、
所定の圧力で吐出され、油圧制御弁13を介して、クラ
ッチ5の作動油室5aに供給される。油圧制御弁13は
、制御ユニット14で制御されて、その作動油圧が調整
される。これによって、クラッチ5の作動油室5aへの
作動油の圧力が調整され、クラッチ5の締結力が制御さ
れる。
Next, a hydraulic control system for the clutch 5 will be explained with reference to FIG. As shown in the figure, the hydraulic oil in the oil tank 11 is sucked up by the pump 12,
It is discharged at a predetermined pressure and supplied to the hydraulic oil chamber 5a of the clutch 5 via the hydraulic control valve 13. The hydraulic control valve 13 is controlled by a control unit 14 to adjust its working hydraulic pressure. As a result, the pressure of the hydraulic oil in the hydraulic oil chamber 5a of the clutch 5 is adjusted, and the engagement force of the clutch 5 is controlled.

上記制御ユニット14には、車速を検出し、車速信号S
v を出力する車速センサ15、舵角を検出し、舵角信
号Sαを出力する舵角センサ16、およびフロント側お
よびリヤ側プロペラシャフト4.6の回転速度差Δnを
検出し、速度差信号SΔ。を出力する速度差センサ17
が接続されている。なお、上記車速センサ15としては
、フロント側プロペラシャフト、4の回転速度を検出す
る回転速度センサを用いることができる。また、回転速
変体へnを求めるには、上記速度差センサを用いずに、
リヤ側プロペラシャフト6の回転速度を検出する回転速
度セン→ノ゛を制御ユニット14に接続し、該制御ユニ
ットで演算するようにしてもよい。
The control unit 14 detects the vehicle speed and receives a vehicle speed signal S.
A vehicle speed sensor 15 outputs a steering angle signal Sα, a steering angle sensor 16 detects a steering angle and outputs a steering angle signal Sα, and detects a rotational speed difference Δn between the front and rear propeller shafts 4.6, and outputs a speed difference signal SΔ. . Speed difference sensor 17 that outputs
is connected. Note that as the vehicle speed sensor 15, a rotational speed sensor that detects the rotational speed of the front propeller shaft 4 can be used. In addition, to obtain n for the rotational speed variable body, without using the speed difference sensor,
A rotation speed sensor for detecting the rotation speed of the rear propeller shaft 6 may be connected to the control unit 14, and the control unit may perform the calculation.

制御ユニット14は、上記3つの信号Sv、Sαおよび
S△0を人力し、予約記憶している次のような第1およ
び第2の制御マツプM、 、M2に従い制御電流1を油
圧制御弁13に供給する。
The control unit 14 manually inputs the three signals Sv, Sα, and SΔ0, and controls the control current 1 to the hydraulic control valve 13 according to the following first and second control maps M, , M2 that are reserved and stored. supply to.

これらの第1および第2制御マツプMl  およびM2
は、第1図および第2図に示された特性図に基づいて定
められたものであり、縦軸が制御電流1を、横軸が回転
速度差△nを示している。第1制御マツプM、は直進時
用のものであり、車速が速くなるにつれて回転速度差大
側に移動する複数本の制御線Ill、12.13を備え
ている。一方、第2制御マツプM2 は、転舵時用のも
のであり、舵角が大きくなるにつれて回転速度差大側に
移動する複数本の制御線L 、As 、f16 を備え
ている。
These first and second control maps Ml and M2
is determined based on the characteristic diagrams shown in FIGS. 1 and 2, and the vertical axis shows the control current 1 and the horizontal axis shows the rotational speed difference Δn. The first control map M is for when the vehicle is traveling straight, and includes a plurality of control lines Ill and 12.13 that move toward the larger rotational speed difference side as the vehicle speed increases. On the other hand, the second control map M2 is for steering, and includes a plurality of control lines L, As, and f16 that move toward the larger rotational speed difference side as the steering angle increases.

次に、上記伝達トルク制御装置の作動について説明する
Next, the operation of the transmission torque control device will be explained.

制御ユニット14は、まず各センサ15.16.17か
ら車速信号Sv、舵角信号Sαおよび回転速度差信号S
△0を人力し、舵角信号Sαから直進状態か転舵状態か
を判断し、直進状態のときには第1制御マツプM、 を
、転舵状態のときには第2制御マツプM2をそれぞれ読
み出す。まず、直進状態のときの制御について説明する
と、上記車速信号Sv に応じて第1制御マツプM1 
から適切な制御線11、β2または13 を選択し、回
転速度差信号S△nをこの制御線に照して制御電流】を
決定する。この制御電流lは、油圧制御弁13に供給さ
れ、この油圧制御弁13は、この制御電流1に応じて、
該電流1に比例した圧力Pの作動油をクラッチ5に供給
する。クラッチ5は、この作動油の圧力Pに応じた圧力
で締結され、その締結圧力に比例したトルクTrリヤ側
プロペラシャフト6に伝達する。
The control unit 14 first receives the vehicle speed signal Sv, steering angle signal Sα, and rotational speed difference signal S from each sensor 15, 16, 17.
Δ0 is manually input, and it is determined whether the vehicle is in a straight-ahead state or a steered state based on the steering angle signal Sα. When the vehicle is in a straight-ahead state, the first control map M and M2 are read out, and when the vehicle is in a steered state, the second control map M2 is read out. First, to explain the control when the vehicle is traveling straight, the first control map M1 is set according to the vehicle speed signal Sv.
An appropriate control line 11, β2, or 13 is selected from the above, and the control current 1 is determined by comparing the rotational speed difference signal SΔn with this control line. This control current 1 is supplied to a hydraulic control valve 13, and this hydraulic control valve 13 responds to this control current 1 by:
Hydraulic oil with a pressure P proportional to the current 1 is supplied to the clutch 5. The clutch 5 is engaged at a pressure corresponding to the pressure P of the hydraulic oil, and transmits a torque Tr proportional to the engagement pressure to the rear propeller shaft 6.

一方転舵状態のときには、上記舵角信号Sαに応じて第
2制御マツプから適切な制御線14.15またはL を
選択し、回転速度差信号S△7をこの制御線に照して制
御電流lを決定し、以下、上記と同様の制御を行なう。
On the other hand, in the steering state, an appropriate control line 14.15 or L is selected from the second control map according to the steering angle signal Sα, and the rotational speed difference signal S△7 is compared with this control line to control the control current. 1 is determined, and the same control as above is performed thereafter.

以上により、回転速度差Δnを知って、後輪のトルク配
分率Uを一定に維持する。なお、後輪のトルク配分率U
は車両の諸元に応じて予め設定した固定値あるいは車両
の走行条件に応じて変更される値とすることができる。
As described above, the rotational speed difference Δn is known and the torque distribution ratio U of the rear wheels is maintained constant. In addition, the torque distribution ratio U of the rear wheels
can be a fixed value that is preset according to the specifications of the vehicle or a value that is changed according to the driving conditions of the vehicle.

また、上記制御は、制御マツプを用いて制御電流1を求
める形式のものについて説明したが、演算によって求め
る形式のものであってもよい。
Moreover, although the above-mentioned control has been described using a control map to determine the control current 1, it may also be determined by calculation.

また、上記実施例においては、フロント側プロペラシャ
フト4をパワープラント1の出力軸2に常に連結させ、
リヤ側プロペラシャフト6と出力軸20間にクラッチ5
を設けたものについて説明したが、これを逆にしてもよ
く、更に、第7図に示すように2つ目のクラッチ20お
よび歯車列21を出力軸2とフロント側プロペラシャフ
ト4の間に設けて、直結するプロペラシャフトを選択で
きるようにしてもよい。なお、この場合には、第2の油
圧制御弁22を設ける必要がある。
Further, in the above embodiment, the front propeller shaft 4 is always connected to the output shaft 2 of the power plant 1,
A clutch 5 is installed between the rear propeller shaft 6 and the output shaft 20.
Although the explanation has been given on a case where a second clutch 20 and a gear train 21 are provided between the output shaft 2 and the front propeller shaft 4, this may be reversed. It may also be possible to select the propeller shaft to be directly connected. Note that in this case, it is necessary to provide the second hydraulic control valve 22.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、トルク配分率一定、舵角一定としたときの伝
達トルクTr −回転速度差へ〇特性を示すグラフ、 第2歯は、トルク配分率一定、車速一定としたときの伝
達トルクTr−回転速変体△η特性を示すグラフ、 第3図は、4輪駆動車の駆動系を示す概略図、第4図は
、本発明の一実施例による伝達トルク制御装置の概略図
、 第5図およず第6図は、それぞれ上記伝達トルク制御装
置における伝達トルク制御に用いられる第1および第2
制御マツプを示すグラフ、第7図は、本発明の他の実施
例による伝達トルク制御装置の概略図、 第8図は、タイヤ固有のスリップ特性を示す特性図であ
る。 1・・・・・・パワープラント  2・・・・・・出力
軸4・・・・・・フロント側プロペラシャフト5・・・
・・・クラッチ 6・・・・・・リヤ側プロペラシャフト13・・・・・
・油圧制御弁  14・・・・・・制御ユニット第8図 手続補正書 昭和  年  月  日 3、補正をする者 事件との関係  出願人 名称 (313)マツダ株式会社 4、代理人 5、補正命令の日付  自   発 6、補正の対象    明細書の発明の詳細f#、1、
明細書第5頁下から第5行および第3行の、、−j計数
”を「駆動係数」に訂正する。 2、同書第6頁第8行および第10行の“ペロペ8:″
ヲ「プロペラ」に訂正する。 1第9頁の式 %式%) を次のように改める。 r、°、T、= 1[ ・・・・・・ (1B)   J 4、同書第10頁全体を次のように改める。 2                〆〆      
          ト5、同書第12頁第1行の
Figure 1 is a graph showing the characteristics of the transmission torque Tr - rotation speed difference when the torque distribution ratio is constant and the steering angle is constant. The second tooth is the transmission torque Tr when the torque distribution ratio is constant and the vehicle speed is constant. - A graph showing rotational speed variation Δη characteristics; FIG. 3 is a schematic diagram showing a drive system of a four-wheel drive vehicle; FIG. 4 is a schematic diagram of a transmission torque control device according to an embodiment of the present invention; Figures 6 and 6 respectively show the first and second transmission torques used for transmission torque control in the transmission torque control device.
FIG. 7 is a graph showing a control map, and FIG. 7 is a schematic diagram of a transmission torque control device according to another embodiment of the present invention. FIG. 8 is a characteristic diagram showing slip characteristics specific to a tire. 1... Power plant 2... Output shaft 4... Front propeller shaft 5...
...Clutch 6...Rear propeller shaft 13...
・Hydraulic control valve 14... Control unit Figure 8 Procedural amendment document 1939, Month, Day 3, Person making the amendment Relationship to the case Applicant name (313) Mazda Motor Corporation 4, Agent 5, Amendment order Date of origin 6, subject of amendment Details of the invention in the specification f#, 1,
In the fifth and third lines from the bottom of page 5 of the specification, ``-j count'' is corrected to ``drive coefficient.'' 2. “Perope 8:” on page 6, lines 8 and 10 of the same book.
ヲCorrect to ``propeller''. 1, page 9, amend the formula % formula %) as follows. r, °, T, = 1 [... (1B) J 4, the entire page 10 of the same book is revised as follows. 2 〆〆
5, page 12, line 1 of the same book.

Claims (1)

【特許請求の範囲】[Claims] パワープラントからのトルクを前後輪にそれぞれ伝達す
るトルク伝達経路の少なくとも一方に、トルク伝達量可
変の動力伝達手段が設けられ、この動力伝達手段を可変
制御して前後輪へのトルク配分を制御する4輪駆動車の
伝達トルク制御装置であって、車速を検出する車速検出
手段、舵角を検出する舵角検出手段、前後輪回転速度差
を検出する回転速度差検出手段、および前記3つの検出
手段からの出力信号を受け、前記3つの検出手段からの
出力信号に基づき、前後輪トルク配分比が常に所望の一
定の配分比になるように、前記動力伝達手段のトルク伝
達量を制御する制御手段を備えた4輪駆動車の伝達トル
ク制御装置。
At least one of the torque transmission paths that transmits torque from the power plant to the front and rear wheels is provided with a power transmission means that can change the amount of torque transmission, and the power transmission means is variably controlled to control torque distribution to the front and rear wheels. A transmission torque control device for a four-wheel drive vehicle, comprising vehicle speed detection means for detecting vehicle speed, steering angle detection means for detecting a steering angle, rotational speed difference detection means for detecting a difference in rotational speed between front and rear wheels, and the above three detections. control for receiving an output signal from the means and controlling the amount of torque transmitted by the power transmission means so that the front and rear wheel torque distribution ratio always becomes a desired constant distribution ratio based on the output signals from the three detection means; A transmission torque control device for a four-wheel drive vehicle.
JP19103585A 1985-08-30 1985-08-30 Transmission torque controlling device for four-wheel-drive vehicle Pending JPS6250229A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP19103585A JPS6250229A (en) 1985-08-30 1985-08-30 Transmission torque controlling device for four-wheel-drive vehicle
EP86111919A EP0215352B1 (en) 1985-08-30 1986-08-28 Torque control system for vehicles
DE8686111919T DE3668586D1 (en) 1985-08-30 1986-08-28 TORQUE CONTROL SYSTEM FOR VEHICLES.
US06/901,776 US4709775A (en) 1985-08-30 1986-08-29 Torque control system for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19103585A JPS6250229A (en) 1985-08-30 1985-08-30 Transmission torque controlling device for four-wheel-drive vehicle

Publications (1)

Publication Number Publication Date
JPS6250229A true JPS6250229A (en) 1987-03-04

Family

ID=16267809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19103585A Pending JPS6250229A (en) 1985-08-30 1985-08-30 Transmission torque controlling device for four-wheel-drive vehicle

Country Status (1)

Country Link
JP (1) JPS6250229A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6231529A (en) * 1985-08-05 1987-02-10 Nissan Motor Co Ltd Drive force distribution control device for four wheel drive vehicle
JPS628830B2 (en) * 1982-05-07 1987-02-25 Hitachi Ltd

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628830B2 (en) * 1982-05-07 1987-02-25 Hitachi Ltd
JPS6231529A (en) * 1985-08-05 1987-02-10 Nissan Motor Co Ltd Drive force distribution control device for four wheel drive vehicle

Similar Documents

Publication Publication Date Title
JP2922924B2 (en) Four-wheel drive vehicle and its torque distribution control device
JP3850530B2 (en) Vehicle motion control device
US5017183A (en) Power transmission apparatus
JP2860339B2 (en) Left and right wheel torque distribution control device
US4936406A (en) Power transmitting system for a four-wheel drive vehicle
JPH03245B2 (en)
JP2772979B2 (en) Torque distribution control device for four-wheel drive vehicle
JPH0616061A (en) Four wheel drive control device
JPH02290730A (en) Torque distribution control device of four-wheel drive vehicle
EP0421594A1 (en) Torque distribution control system for a four wheel drive motor vehicle
JPS62168715A (en) Torque divider for vehicle
JPS6250229A (en) Transmission torque controlling device for four-wheel-drive vehicle
JPH11240458A (en) Vehicle movement control unit
JPS6250231A (en) Transmission torque controlling device for four-wheel-drive vehicle
JPS6253233A (en) Transmitted torque control device for four-wheel drive vehicle
JPS6259125A (en) Transmission torque controller for four-wheel drive car
JPS6253232A (en) Transmitted torque control device for four-wheel drive vehicle
JPS6250226A (en) Transmission torque controlling device for four-wheel-drive vehicle
JPS6259126A (en) Transmission torque controller for four-wheel drive car
JPS6250228A (en) Transmission torque controlling device for four-wheel-drive vehicle
RU2266448C2 (en) Differential for vehicle
JPS6250230A (en) Transmission torque controlling device for four-wheel-drive vehicle
JPH03118230A (en) Unequal torque distribution control device for four-wheel drive vehicle
JP7301458B2 (en) vehicle controller
JPS6253231A (en) Transmitted torque control device for four-wheel drive vehicle